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ABSTRACT
This is the third and last of a series of papers that present a new theoretical approach to modeling the

expansion of the solar and terrestrial polar winds by solving the Fokker-Planck equation. The Coulomb
collisional transfers between the di†erent species that compose these winds are presented after the veloc-
ity distribution function and the set of transport equations associated with the generalized model. The
method and the assumptions used to calculate these terms are described. They are derived from generic
expressions, which must be numerically estimated for speciÐc applications. Their new properties are
analyzed in the context of the terrestrial polar wind, and their potential importance in the processes of
heating and acceleration of the solar wind is discussed. Because the generalized model is adapted to
reproduce the high suprathermal part of the velocity distribution function currently observed in the solar
wind, we also emphasize the role of this contribution in the collisional transfers. In the terrestrial polar
wind, the region of energy transfer between H` and O` ions is thinner than previously predicted. In the
solar wind, the region of energy transfer between electrons and protons in the inner corona is larger than
previously thought. The role of the thermal and mirror forces and the mechanisms of isotropization of
the electrons are underlined.
Subject headings : atomic processes È interplanetary medium È plasmas È solar wind È

stars : winds, outÑows

1. INTRODUCTION

The solar and terrestrial polar winds, called the astro-
physical winds, have a common property ; they escape from
a collision-dominated region and reach a collisionless
region despite the e†ect of a gravity Ðeld. Usually, we con-
sider that two dependent phenomena must be understood.
First, the original mechanisms, that generate the observed
speed at 10 for the fast solar wind or the supersonicR

_speed of the H` ions in the terrestrial polar wind at an
altitude of 4000 km; and second, the evolution of the parti-
cle state during their expansion. In this set of papers, we
have decided to deal with the second phenomenon,
developing an original solution of the Fokker-Planck equa-
tion adapted to the observed nonequilibrium state.

There exists no available theory that is able accurately to
model the evolution of a plasma from collision-dominated
regions to collisionless regions. Indeed, there exist models
that neglect the collisional e†ect (Chamberlain 1960 ;
Lemaire & Scherer 1973) and models for collision-
dominated plasmas (Parker 1958 ; Banks & Holzer 1968),
but no model well adapted to the transition between these
two situations. However, a third class of models, the multi-
moment approach (Grad 1958 ; Demars & Schunk 1979), is
currently more and more frequently used for the solar and
terrestrial polar winds. It has already provided a well-
adapted description of the terrestrial polar wind (Ganguli
1996) and has signiÐcantly improved, with respect to recent
observations, the classical Ñuid description of the acceler-
ation of the solar wind by the description of the electron
and proton heat Ñux (Olsen & Leer 1996, 1999 ; Li 1999).
The multimoment approach is an extension of the classical
magnetohydrodynamical models to situations far from the

local thermodynamic equilibrium state. It is a perturbative
method that describes the state of the plasma with new
macroscopic parameters related to those used in a hydrody-
namic description ; e.g., a temperature anisotropy, a stress
tensor, or a heat Ñux. But these methods are Ðnally limited
to states near local equilibrium, that is, in the context of the
wind expansion, to small values of the rate between the heat
Ñux and the free-streaming heat Ñux. Indeed, in Leblanc &
Hubert (1997), we have shown that the approaches deduced
from the Grad model have difficulties describing most of the
characteristics of the proton velocity distribution function
observed in the solar wind by Helios 1 and 2 (Marsch et al.
1982a, 1982b).

The generalized model is also a multimoment approach,
but devoted to describing states far from local equilibrium.
Leblanc & Hubert (1997, 1998) have shown that this new
approach is better adapted to the typical in situ obser-
vations made in the solar wind. Indeed, the microscopic
description is a good approximation of the observations of
the distribution function. The truncation of the set of trans-
port equations is in good agreement with the typical obser-
vations in the solar wind between 0.3 and 1 AU (Leblanc &
Hubert 1997). The velocity distribution function never
developed negative values, contrary to the previous multi-
moment approaches applied to model the astrophysical
winds. The macroscopic description respects the hyper-
bolicity and realizability criteria for constructing the set of
transport equations (Leblanc & Hubert 1998), and it is able
to reproduce the typical proÐle of the macroscopic param-
eters in the terrestrial polar wind (Leblanc, Hubert, & Blelly
2000). At least the generalized model accounts better for the
suprathermal particles than the other multimoment models.
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In this paper we present the Coulomb collisional transfers
between species calculated in the frame of the generalized
model. This paper is a Ðrst analysis of the role, in the inter-
action processes, of the suprathermal part of the velocity
distribution that is observed in the solar wind between 0.3
AU and several AU for protons and a ions (Marsch et al.
1982a, 1982b), for the electrons (Pilipp et al. 1990), and for
minor ions in the solar corona between 1 and 10 (KohlR

_et al. 1997). We have no direct measurements of the dis-
tribution function in the terrestrial polar wind, but all the
theoretical models predict such a suprathermal part.

Section 2 gives a brief summary of the method used to
obtain the collisional transfer expressions. We also describe
the assumptions made for applications to the solar and
terrestrial polar winds. In the ° 3, these new expressions are
analyzed in the context of the terrestrial polar wind and in
the context of the solar wind in the lower part of the solar
corona. Our conclusions are presented in ° 4. The expres-
sions for the complete set of transport equations are pre-
sented in Appendices A and B.

2. THE COLLISIONAL TRANSFERS

A multimoment approach is based on the assumption
that the microscopic state can be accurately described using
a Ðnite number of velocity moments of the velocity distribu-
tion function. A velocity moment is deÐned as
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transport equations. These equations are obtained by the
integration of a kinetic equation, which could be the Bolt-
zmann equation or the Fokker-Planck equation. This oper-
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which represents the evolution of the velocity moments
as a function of the time t and the space r. In equationSC
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s species due to encounters of s particles with particles of
type t. The technique for constructing these equations is
described in Jancel & Kahan (1963), Tanenbaum (1967),
and Burgers (1969). We have chosen to integrate the
Fokker-Planck equation, which is well adapted to describ-
ing the Coulomb interactions between the particles that
compose the astrophysical winds.
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distribution function and the velocity moments that are
used as unknowns is needed. This relation allows us to close

the set of transport equations. For instance, Grad (1958)
described the distribution function by a polynomial devel-
opment based on a local Maxwellian function. He devel-
oped models for 5, 8, 13, and 20 independent velocity
moments. Oraevskii, Chodura, & Feneberg (1968),
Chodura & Pohl (1971), and then Demars & Schunk (1979)
have considered situations that could be described by a
polynomial development based on a bi-Maxwellian func-
tion. They improved GradÏs description for situations in
which high values of the temperature anisotropy could
exist. They also deÐned the 16 velocity moments that are
needed to properly describe the expansion of the solar and
terrestrial polar winds. These 16 parameters correspond to
the three Ðrst orders of the velocity moment (for p \ 0È3) in
a gyrotropically dominated situation. In Leblanc & Hubert
(1997), we presented and discussed a new choice of distribu-
tion function (see eqs. [A2] and [A3]). We made this choice
to better take into account the suprathermal part of the
velocity distribution, which could play an important role in
the processes of acceleration of the particles in astrophysical
winds.

The left-hand side of equation (2) was presented and dis-
cussed in Leblanc & Hubert (1998). In this paper we present
and analyze the properties of the collisional terms deduced
from the right-hand side of equation (2). The expressions of

and allow us to determine an exact form for the col-f
s

f
tlisional transfers associated with each velocity moment. In

the context of further applications to the astrophysical
winds, we have chosen the 16 independent parameters of
Demars & Schunk (1979), which are deÐned in Leblanc &
Hubert (1998).

Because of the high complexity of the collisional transfer,
Burgers (1969) deÐned a semilinear approximation in the
case of the Grad approach. This approximation is based on
the assumption that the di†erent species are sufficiently col-
lisional to remain not far from the local thermodynamic
equilibrium state ; the distribution function of each species
is supposed to be not far from a Maxwellian distribution,
and thus the corrections to this function should not be
important. If the expression of the velocity distribution orf

sin a multimoment approach is schematized byf
tf \ g0(1] /), g0 is then called the zeroth-order approx-
imation and / the polynomial part. The term g0 is a local
Maxwellian function in the Grad approach and a bi-
Maxwellian function in the Chodura & Pohl (1971) and
Demars & Schunk (1979) approaches. In the semilinear
approximation, the polynomial part, /, should be small
with respect to 1 because we consider states that could be
describe approximately by g0. Therefore, when determining
the collisional transfer, the product is given byf
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that the relative velocity between two species is always
smaller than the thermal velocity,
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where is the Boltzman constant and is the temperaturekB T
sof the s species. He then neglected all the contributions in

the collisional transfers that depend on the product of the
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relative velocity by a term of the stress tensor or a term of
the heat Ñux. As an example, the semilinear approximation
neglects all the terms proportional to where(u

s
[ u

t
)p/v

st,thp
p º 2.

However, because the generalized model is built to con-
sider states that could be far from the local thermodynamic
equilibrium, we change some of these assumptions. As pre-
viously, the correction term / to the zeroth-order function
is supposed to be small with respect to 1. In the perpendicu-
lar direction, the relative velocity between two species is
supposed to be much smaller than the thermal velocity,
while this assumption is not made for the parallel direction.
Indeed, observations in the solar wind (Marsch et al. 1982a,
1982b), as well as observations and theoretical models of the
terrestrial polar wind (Abe et al. 1993 ; Blelly & Schunk
1993) have indicated that the relative speed in the direction
parallel to the magnetic Ðeld could be of the order of the
thermal velocity. To sum up, we applied the semilinear
approximation for the perpendicular direction but kept all
the contributions that depend on the parallel direction in
the expressions of the collisional transfer.

In this paper we consider a one-dimensional situation ;
that is, we suppose that the plasma is gyrotropically domi-
nated by the strong magnetic Ðeld. The motion of the par-
ticles is then conÐned along the magnetic Ðeld lines. This
assumption greatly simpliÐes the set of transport equations.
From the 16 independent parameters considered in Leblanc
& Hubert (1998), we only keep six parameters, described in
Appendix A (see eq. [A1]), which are referred to as the six
moments. The expressions of the collisional transfers are
presented in Appendix B. Comparing them to the similar
expressions of Demars & Schunk (1979), we can remark
that the new expressions (see eqs. [B3]È[B6]) generalize
these terms. As explained in Leblanc & Hubert (1997), the
model of velocity distribution functions contains the bi-
Maxwellian function of Demars & Schunk (1979). The
expressions of Demars & Schunk (1979) are then found
again when the parameters and in equations (B3)ÈD

s
* D

t
*

(B6) are set to zero.

3. PROPERTIES OF THE COLLISIONAL TRANSFERS

The choice to develop a multimoment and multispecies
approach is motivated by an analysis of the observations
made in the solar and terrestrial polar winds. For instance,
observations have shown that the mechanisms of heating
and acceleration of the solar wind are di†erent for the di†er-
ent species (electrons, protons, and a ions), and that the
interactions between species could play an important role.
The most recent models of these winds are then based on
multiÑuid descriptions (see Olsen & Leer 1996, 1999 ; Tu &
Marsch 1997 ; Li, Esser, & Habbal 1997 ; Li 1999) and have
underlined the importance of heat transfers (Olsen & Leer
1996 ; Tu & Marsch 1997) and the role of heavy ions (Li et
al. 1997 ; Kohl et al. 1998). The temperature anisotropy
should also be considered as a potential mechanism for
acceleration of the particles via the mirror force, as has
already been emphasized for the terrestrial polar wind
(Jones et al. 1998). Therefore, in a theoretical approach it is
important to integrate an accurate description of the col-
lisional processes, of the transport of the temperature
anisotropy, and, as a consequence, of the transport of the
heat-Ñux anisotropy. This is why we derived an analytic
formulation of the collisional transfers despite the difficulty.
This work was done for each velocity moment correspond-

ing to the density, velocity, temperature, and heat Ñux of the
di†erent species.

With the new expressions for the collisional transfers, we
are not able to directly identify the main contributions of
the collisional transfer as thermal and friction forces in the
momentum transfer (eq. [B3]) or thermalization and fric-
tion terms in the energy transfer (eqs. [B4] and [B5]).
However, we can numerically estimate the role of these
terms from typical proÐles of the macroscopic parameters
in these winds and compare the new collisional transfers to
those deduced from the previous multimoment and multi-
species models (Demars & Schunk 1979 ; Chodura & Pohl
1971). In the next sections, we will consider the collisional
transfers associated with the 16 moment approximation
deduced from the work of Demars & Schunk (1979) for the
momentum and heat-Ñux transfer, and the more complete
expressions of Chodura & Pohl (1971) for the energy trans-
fer.

3.1. In the Terrestrial Polar W ind
Although the generalized model was Ðrstly developed in

the context of the solar wind, we have shown in previous
papers (Leblanc & Hubert 1997, 1998) that this model is
also well adapted to the description of the terrestrial polar
wind.

Figures 1È5 are deduced from theoretical proÐles of the
six velocity moments determined by Blelly & Schunk (1993)
for electrons and H` and O` ions in the terrestrial polar
wind at altitudes between 200 and 8000 km. These authors
have compared di†erent multimoment approaches based
on Maxwellian distribution functions (5, 8, and 13
moments ; Schunk 1977) and on a bi-Maxwellian distribu-
tion function (16 moments ; Demars & Schunk 1979). These
proÐles were obtained with a gyrotropically dominated 16
moment bi-Maxwellian approach in the case of a stable
neutral atmosphere with an electron solar extreme-
ultraviolet (EUV) heating, simulated by an electron heat
Ñow imposed at the top boundary and dissipated by colli-
sion with neutrals and ions. The result of this simulation is a
supersonic Ñow of H` ions and a subsonic Ñow of O` ions
escaping from the terrestrial polar ionosphere. At an alti-
tude of 8000 km, the H` velocity is of the order of 10 km
s~1, and for O` ions it is of the order of 1 km s~1, which is
in good agreement with in situ measurements (Abe et al.
1993). The temperatures reach a maximum of 6000 K for
H` ions around 4000 km and 3500 K for O` ions around
2000 km. The increase of the electron temperature is
roughly constant and reaches 10,000 K around 8000 km,
with a very weak anisotropy. Afterward, we will only
describe the interaction of the H` ions with the electrons
and the O` ions.

In Figure 1, the left panel displays the relative velocity
between H` and electrons (dotted line) and between H` and
O` ions (solid line), normalized to the thermal velocity as
deÐned in equation (3). The right panel displays the normal-
ized total heat Ñux for each species (H` ions, solid line ; O`
ions, dotted line ; and electrons, dashed line). The normalized
heat Ñux is deÐned as the heat Ñux normalized by the free-
streaming heat Ñux : The normalized heatn

s
m

s
(kB T

s
/m

s
)3@2.

Ñux is always smaller than the limit of validity determined
in Leblanc & Hubert (1998). The transfers between H` ions
and electrons will not be considered. Indeed, the relative
velocity between these two species and the normalized heat
Ñux for the electrons is always small, because of the very
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FIG. 1.ÈL eft : Relative velocity between H` and O` ions (solid line) and between H` ions and electrons (dotted line) as functions of the altitude,
normalized to the thermal velocity determined from the thermal velocities of both considered species (see eq. [3]). Right : Heat Ñux of parallel energy for H`
ions (solid line), O` ions (dotted line), and electrons (dashed line) as functions of the altitude, normalized to the free-streaming heat Ñux associated with each
species. These proÐles are derived from typical proÐles of the six velocity moments in the terrestrial polar wind (Blelly & Schunk 1993).

large electron thermal velocity. As a consequence, the di†er-
ences between the generalized and the bi-Maxwellian
models are not important. On the other hand, the relative
velocity between H` and O` ions is not negligible. We then
observe signiÐcant di†erences between the two models.

In the momentum transfer, an important contribution is
the friction force, where is the collision fre-l
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stquency of the particles of the s species with the particles of
the t species. A second important term is the thermal force,
which depends on the heat Ñux : l
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sis the total heat Ñux of the s species. The thermal force is aq
scorrection of the friction force that takes into account the

dependence of the collision frequency as a function of the
relative velocity for Coulomb collisions. For a pure Max-
wellian potential interaction, this contribution does not
appear. In Figure 2 we present the momentum transfer of
the generalized approach (solid line), the friction force

FIG. 2.ÈComparison of the momentum-generalized transfer (solid line)
between H` and O` ions for typical proÐles of the six velocity moments in
the terrestrial polar wind (derived from Blelly & Schunk 1993) with the
friction force (dashed line), the thermal force (dotted line), and the sum of
these two forces (dash-dotted line). These transfers are normalized to the
electron pressure force.

(dashed line), the thermal force (dotted line), and the sum of
the friction and thermal forces (dash-dotted line) between
H` and O` ions. These parameters are normalized to the
electron pressure force, which is equal to1/o

e
L(n

e
kB T

e
)/Lr,

the e†ect of the charge-separation electrostatic Ðeld E (see
Appendix A). This term is usually identiÐed as one of the
main acceleration mechanisms of the particles. The e†ect of
the interaction between the H` and O` ions is to slow
down the H` ions, which move faster than the O` ions.
Figure 2 indicates that the friction force is always dominant
in the collisional momentum transfer. The thermal force is
opposite in sign to the friction force. The sum of the friction
and thermal forces in the dash-dotted line is never negligible
with respect to the charge-separation electrostatic Ðeld E.
The generalized transfer is not exactly the sum of these two
terms, in particular in the region of acceleration of the par-
ticles, mainly below 2000 km. The generalized model pre-
dicts a slowing down of the H` ions due to interaction with
the O` ions that is more important than the e†ect of the
sum of the thermal and friction forces. We can conclude
that the suprathermal part of the velocity distribution func-
tion, which is better taken into account by the generalized
model than by the bi-Maxwellian model, plays a non-
negligible role in the acceleration process of the particles (in
this particular application).

We can identify three contributions in the energy transfer
of Chodura & Pohl (1971). The Ðrst is the thermalization
term, the second is a friction term,m
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st,th2 kB),to the friction, which takes into account the dependence of
the collision frequency as a function of the relative velocity.
This term does not appear in the expression of Demars &
Schunk (1979) because of the assumption of a low parallel
relative velocity between species with respect to the thermal
velocity and of a low total heat Ñux with respect to the
free-streaming heat Ñux. Chodura & Pohl (1971) did not
make this assumption. In Figure 3 we present the total
energy transfer of the generalized approach (solid line), the
sum of the friction and thermalization terms (dashed line),
the correction to the friction term (dotted line), and the sum
of these two last contributions (dash-dotted line). The total
energy transfer is deÐned as dp

s
/dt \ (dp

sA
/dt] 2dp

sM
/dt)/2,
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FIG. 3.ÈComparison of the generalized transfer of total energy (solid
line) between H` and O` ions for typical proÐles of the six velocity
moments in the terrestrial polar wind (derived from Blelly & Schunk 1993)
with the sum of the thermalization and friction terms (dashed line), the
correction of the friction term (dotted line), and the sum of these two
contributions (dash-dotted line). These transfers are normalized as
explained in ° 3.1.

where and are the parallel and perpendiculardp
sA

/dt dp
sM

/dt
energy transfers, respectively (see eqs. [B4] and [B5] for the
generalized model). The di†erent contributions are normal-
ized to the sum of two terms of the left-hand side of the
equation for the total energy : TH`A

LuH`/Lr ] [3LqH`/Lr]/
In Figure 3, the friction and thermalization terms(2nH` kB).are always more important than the correction of the fric-

tion term and have opposite signs. This last term is mainly
important in the acceleration and heating region of the par-
ticles, that is, between altitudes of 200 and 4000 km. The
friction and the thermalization terms dominate the equa-
tion for the total energy at almost all altitudes. Once again,
it seems that the suprathermal part of the velocity distribu-
tion function plays an important role in the determination
of the energy transfer. Indeed, if we compare the generalized
energy transfer (solid line) with the sum of the three com-
ponents (dash-dotted line), we remark that the di†erence

between the two proÐles is important. The generalized
model predicts a higher increase of the H` temperature in
the region of heating (for altitudes less than 3000 km) and a
lower increase at higher altitudes.

In order to complete the comparisons between the 16
moment bi-Maxwellian model and the generalized model,
we also provide the normalized transfers of parallel and
perpendicular energies and the nonnormalized transfers of
heat Ñux for parallel and perpendicular energy. The normal-
ization of the energy transfer is the same as in Figure 3. In
Figure 4 we present the transfer of parallel (left) and perpen-
dicular (right) energies between H` and O` ions for the
generalized model (solid line) and for the bi-Maxwellian
model (dotted line). The generalized transfer of energy pre-
dicts a higher variation of the anisotropy of the energy
transfer than the bi-Maxwellian model. The parallel energy
transfer also tends more rapidly to zero (for altitudes above
4000 km). For the perpendicular part, the bi-Maxwellian
transfer is always negative, whereas the perpendicular
energy transfer predicted by the generalized model is posi-
tive above 1500 km. The transfer of energy is more impor-
tant for the parallel energy than for the perpendicular
energy, according to the generalized model. The parallel
temperature will then be higher than predicted by the bi-
Maxwellian approach, in the acceleration region.

Figure 5 presents the proÐles of the heat-Ñux transfer for
the parallel (left) and perpendicular energy (right) compared
with the 16 moment bi-Maxwellian expressions. The trans-
fer of the heat Ñux is presented for the generalized model
(solid line) and the bi-Maxwellian model (dotted line). Figure
5 shows that the transfers of the heat Ñux are similar in both
approaches.

3.2. In the Solar W ind
We are not able to perform the same analysis in the solar

wind, because we do not have theoretical proÐles of the six
velocity moments as in the terrestrial polar wind. However,
we can make some remarks and predictions about the
transfer between the di†erent species in the solar wind. Here
we only consider the two main species that compose the
solar wind, that is, protons and electrons. We will restrict
our analysis to the fast solar wind, which originates from
the polar coronal holes. The collisional transfer for the slow

FIG. 4.ÈPerpendicular and parallel energy transfers between H` and O` ions as functions of the altitude. Collisional transfers are derived from the
generalized model (solid line) and from the model of Chodura & Pohl (1971 ; dotted line). L eft : Parallel energy. Right : Perpendicular energy. These proÐles are
derived from typical proÐles of the six velocity moments in the terrestrial polar wind (Chodura & Pohl 1971) and have been normalized in the same way as for
Fig. 3.
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FIG. 5.ÈTransfer of heat Ñux between H` and O` ions as functions of the altitude. Collisional transfers are derived from the generalized model (solid line)
and from the model of Demars & Schunk (1979 ; dotted line). L eft : Heat Ñux of parallel energy. Right : Heat Ñux of perpendicular heat Ñux. These proÐles are
derived from typical proÐles of the six velocity moments in the terrestrial polar wind (Blelly & Schunk 1993).

solar wind should be more important, due to the higher
density of particles (10 particles per cm3 at 1 AU in the slow
solar wind, whereas there are only 2 or 3 particles per cm3
in the fast solar wind). In this paragraph, we show how an
accurate description of the collisional transfers between
electrons and protons could help us to better understand
the observed behavior of the electron velocity and tem-
perature in the fast solar wind.

In Figure 6 we present the proÐles of the density (top left),
velocity (top right), and proton and electron temperatures
(dotted and solid lines, respectively) in the bottom left panel
for heliocentric distances between 1.1 and 10 (1R

_
R

_
\ 1

solar radius). This region corresponds to the region of accel-
eration of the fast solar wind, according to Esser et al.
(1997). The density proÐle is derived from measurements in
the polar coronal hole reported by Tu & Marsch (1997) and

FIG. 6.ÈTop left : ProÐle of the electron density in the polar solar
corona and Coulomb collision frequency, of electrons with protons.lep ,Top right : ProÐle of the mean velocity of electrons in the solar corona
(Esser et al. 1997). Bottom left : ProÐles of the electron temperature (solid
line) and of the proton temperature (dotted line), determined as explained in
° 3.2. Bottom right : Total electron heat Ñux derived from the relation
q
e
\ 0.25n

e
m

e
(kB T

e
/m

e
)3@2.

by Esser, Richard, & Brickhouse (1998). The velocity proÐle
is derived from the measurements made in the same region
and reported by Esser et al. (1997, 1998) . The proton and
electron temperatures are set to 3 ] 106 and 1 ] 106,
respectively, at 1.1 (Kohl, Strachan, & Gardner 1996 ;R

_David et al. 1998) and are supposed to evolve between 1.1
and 10 following a law in r~2@3, where r is the helio-R

_centric distance. This law is inferred from observations
beyond 0.3 AU (Marsch et al. 1982b ; Issautier et al. 1998).
The proÐles of the electron density and temperature allow
us to estimate the Coulomb collision frequency of the elec-
trons with the protons. The collision frequency is roughly
equal to 20 s~1 at 1.1 for the interaction between elec-R

_trons and protons and less than 0.001 s~1 at 10 (see Fig.R
_6, top left). Because the collision frequency of protons with

electrons is much smaller than the collision frequency of
electrons with protons, the interactions of electrons with
protons are the main collisional e†ect in the corona. At the
end, the processes of interaction should be only partial,
because the collision frequency decreases rapidly between
1.1 and 10 according to the mean velocity of the speciesR

_
,

in these regions (Esser et al. 1997, 1998). In the bottom right
panel of Figure 6, we have plotted the total electron heat
Ñux between 1.5 and 10 The total electron heat Ñux isR

_
.

supposed to be proportional to 25% of the free-streaming
heat Ñux. Indeed, we suppose that the total heat Ñux reaches
its threshold of saturation, which has been observed in the
solar wind between 1 and 5 AU in the ecliptic plane (Scime
et al. 1994) or predicted by experiments and plasma theories
(Bell, Evans, & Nicholas 1980). The temperature anisotropy
is set to 1.2 for electrons and 1 for protons. The electron and
proton heat-Ñux anisotropy is set to 1. We veriÐed that a
proton temperature anisotropy in agreement with obser-
vations (Kohl et al. 1998) does not signiÐcantly change the
results. The collisional transfers also depend on the relative
velocity between electrons and protons. This relative veloc-
ity is difficult to estimate in the solar corona but could be
proportional to the speed, according to observationsAlfve� n
made at 1 AU in the ecliptic plane (Feldman et al. 1976).
Moreover, the SOHO Ultraviolet Coronagraph and
Spectrometer (UVCS) observations (Kohl et al. 1997) have
shown that the ions do not have the same velocity between
1 and 10 Indeed, the O5` ions reach a velocity of 400R

_
.
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FIG. 7.ÈL eft : Normalized friction force (solid line), thermal force (dotted line), generalized momentum transfer (dashed line), and bi-Maxwellian momen-
tum transfer (dash-dotted line) in the solar corona derived from the temperatures, density, and heat Ñux given in Fig. 6. Right : friction term (dashed line),
correction of the friction term (dash-dotted line), generalized total energy transfer (dotted line), and thermalization term (solid line), deÐned and normalized as
described in ° 3.2.

km s~1 at 2 in the polar corona hole, whereas neutralR
_H0, and then protons, reach a velocity of about 200 km s~1

at 2 This observation could be explained by the factR
_

.
that the mechanisms of heating and then of acceleration of
the particles depend on the mass of the particles. It then
seems realistic to suppose, because of these di†erent ion
velocities and the assumption of zero current, that there
exists a relative velocity between electrons and protons in
the region of heating and acceleration of these particles. We
set the relative velocity between cold electrons and protons
to be of the order of 25% of the mean velocity.

Moreover, according to Feldman (1976), the protons
move faster than the core of the electron distribution and
then accelerate the electrons of the core via the friction
force. The thermal force has the same e†ect, if we consider
the increase of the electron heat Ñux with the heliocentric
distance starting from zero at 1.1 in the collision-R

_dominated region and reaching the positive and nonzero
value observed at 0.3 AU (Pilipp et al. 1990). Figure 7 (left)
presents a possible evolution of these two forces derived
from Chodura & Pohl (1971). In this panel we have plotted
the friction force (solid line), the thermal force (dotted line),
the generalized momentum transfer (dashed line ; see eq.
[B3]), and the bi-Maxwellian momentum transfer (dash-
dotted line). The bi-Maxwellian momentum transfer is equal
to the sum of the friction and thermal forces. All the contri-
butions are normalized to the electron-pressure force

The thermal force is dominant in the(1/o
e
)[L(n

e
kB T

e
)/Lr].

lower part of the solar corona, where the particles are
mainly accelerated (Esser et al. 1997). Moreover, this term is
never negligible with respect to the electron-pressure gra-
dient. The importance of the thermal force in the collisional
transfer underlines the importance of the suprathermal part
in the distribution function. The generalized and bi-
Maxwellian momentum transfers (see Fig. 7, left) are very
similar. This is due to the small relative velocity between
electrons and protons with respect to the thermal velocity,
but also to the small electron-normalized heat Ñux. The
apparent Ðnal increase of the transfers is due to the normal-
ization.

The interactions of protons with other species are weak.
However, there exists a force, the mirror force, that is rarely
considered in the acceleration of the solar wind. This force

is related to the proton temperature anisotropy, T
pM

[T
pA

,
in the inner corona (Kohl et al. 1998). This force is equal to

where B is theF
M

\ n
p
kB(TpM

[ T
pA

)M[1/B(r)][LB(r)/Lr]N,
magnetic Ðeld strength and r is the heliocentric distance (see
eq. [A6]). With the parameters described in Figure 6, we are
able to evaluate this force between 1 and 10 with respectR

_to the gravity force, equal to whereF
G

\ n
p
m

p
M

_
G/r2,

is the SunÏs mass and G is the gravitation constant. InM
_Figure 8 we have plotted the rate as a function of theF

M
/F

Gheliocentric distance. We here consider a simple model of
B(r) et al. 1987), that is, B(r) \ 10~4] (1.18/(Pa� tzold
r2] 6/r3) in Tesla. Figure 8 shows that the mirror force is
25% of the gravity force at 2.5 for a temperature anisot-R

_ropy of 2, and this ratio increases with increasing anisot-
ropy and increasing distance r. This force tends to
accelerate the protons. In this particular case, the proton
mirror force is always larger than the electrostatic force,
which is equal to and which[[1/(n

e
m

p
)][L(n

e
kB T

e
)/Lr]

also accelerates the protons. Indeed, the ratio of these two
forces is equal to 1.35. For Ha particles, evidence for a
temperature anisotropy in the lower corona has not been

FIG. 8.ÈNormalized mirror force for the proton as described in ° 3.2
and determined for the parameters provided in Fig. 6. This force is calcu-
lated for three di†erent values of the proton temperature anisotropy.
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obtained. For heavier ions, such as O`5, this force could
also be important with respect to the gravity force because
of a very high temperature anisotropy (T

M
/T

A
\ 10È100 ;

Kohl et al. 1997, 1998). For electrons, the parallel tem-
perature is usually higher than the perpendicular tem-
perature from 0.3 to 1 AU (Pilipp et al. 1990). The e†ect of
the mirror force is then to slow down the electrons. It
should be emphasized that this e†ect is 30È60 times strong-
er than the gravity e†ect between 1.5 and 10 for anR

_electron temperature anisotropy of 1.2. This result must be
compared with the electrostatic force, which also slows
down the electrons and is equal to [1/(n

e
m

e
)][L(n

e
kB T

e
)/Lr].

Indeed, this force is 9 times larger than the electron mirror
force in the considered case.

Observations of the temperature in the solar corona
(Esser 1999 ; David et al. 1998 ; Kohl et al. 1996) have shown
that the proton temperature is 3È6 times higher than the
electron temperature. These di†erences seem to be higher in
the solar corona than at 0.3 AU (Marsch et al. 1982a,
1982b ; Pilipp et al. 1990). Therefore, there should be signiÐ-
cant e†ects of thermalization between electrons and
protons, which could be the thermalization e†ects, m

e
l
ep

(T
pand the friction e†ect, The[ T

e
)/m

p
, l

ep
m

e
(u

e
[ u

p
)2/kB.right panel of Figure 7 shows these two contributions (solid

and dashed lines, respectively), but also the correction to the
friction term, 2m

e
l
ep

(u
e
[ u

p
)[([q

e
/o

e
] q

p
/o

p
)/(v

epth
2 kB)](dash-dotted line) and the generalized total energy transfer

(dotted line). The generalized total energy transfer is equal to
(see eqs. [B4] and [B5]). These con-(dp

eA
/dt] 2dp

eM
/dt)/2

tributions are normalized to the dominant term in the left-
hand part of the equation for the total electron energy,

According to Figure 7, the dominant[3/(2n
e
kB)](Lq

e
/Lr).

term in the transfer of energy between electrons and protons
is the thermalization term from 1.5È2 At larger helio-R

_
.

centric distances, the thermalization term decreases rapidly,
while the friction term and its correction tends to be domi-
nant and to have the same order of magnitude. It is remark-
able that in this particular case, the total energy transfer
derived from Chodura & Pohl (1971) is equal to the energy
transfer derived from the generalized model. We veriÐed
that this result is independent of the value of the electron
temperature anisotropy. This means that in the solar

corona, the total energy transfer between electrons and
protons is composed of a thermalization term, a friction
term, and a correction to the friction term. The di†erences
between the generalized energy transfer and the classical
thermalization transfer show that the contributions of the
heat Ñux and of the relative velocity in the energy transfer
can generate a total energy transfer 1È8 times higher than
the thermalization transfer. These di†erences would gener-
ate a less important decrease of the electron temperature in
the solar corona than predicted by previous multimoment,
multispecies approaches (Olsen & Leer 1996 ; Tu & Marsch
1997 ; Li et al. 1997).

In order to better understand the nature of the electron
distribution function, which is less anisotropic than the
proton distribution function and probably not a†ected by
wave-particle interaction, we have analyzed the parallel and
perpendicular energy transfers by Coulomb collision with
protons. In Figure 9, the left panel presents the parallel
energy transfer and the right panel the perpendicular energy
transfer. The solid line corresponds to the generalized
model and the dotted line to the Chodura & Pohl (1971)
model. The two models predict similar energy transfers for
this temperature anisotropy of 1.2. What is remarkable in
this Ðgure is that with respect to the right panel of Figure 7,
the parallel and perpendicular energy transfers are 1 order
of magnitude higher than the total energy transfer. These
transfers predict a decrease of the parallel temperature and
an increase of the perpendicular temperature. We have
found that this result is due to a term in the Chodura &
Pohl (1971) expressions that is proportional to the ratio of
the mass of the target particles (protons, in this case) on the
mass of the incident particles (electrons). The larger this
ratio is, the more important are these transfers that
suppress the temperature anisotropy. In conclusion, the
electrons become very rapidly isotropic by collisional pro-
cesses with the protons. Moreover, this situation is ampli-
Ðed by the energy transfer between electrons, which is of the
same order of magnitude as the energy transfer between
electrons and protons. However, these remarks are valid for
a temperature anisotropy equal to 1.2. For an isotropic
electron temperature, the Chodura & Pohl (1971) model
predicts an isotropic energy transfer, whereas the gener-

FIG. 9.ÈL eft : Generalized parallel energy transfer (solid line) and bi-Maxwellian parallel energy transfer (dotted line), normalized in the same way as for
the right panel of Fig. 7. Right : Same as left panel, but for the perpendicular energy transfer. The parameters used to determined the collisional transfers are
those provided in Fig. 6.
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alized model predicts an increase of the parallel energy and
a decrease of the perpendicular energy. The total energy
transfer is still very similar for both approaches. We think
that this di†erence is due to the assumption that the heat
Ñux is reduced to its component along the parallel direction
because of the gyrotropic motion of particles. Indeed, it
implies that there are particles in the parallel direction that
interact only weakly with the protons, and then that the
collisional processes are not efficient enough to suppress the
temperature anisotropy. As a consequence, and contrary to
the Chodura & Pohl (1971) model, the generalized energy
transfer predicts a small electron temperature anisotropy in
the presence of an electron heat Ñux when only collisions
with protons are taken into account. As an example, for a
normalized electron heat Ñux of 0.25, the temperature
anisotropy should stabilize around a value of 1.02. Indeed,
it then corresponds to an isotropic energy transfer. Finally,
we determined that the main contribution of the parallel
and perpendicular energy transfers is the thermalization
term, which depends only on the di†erence between the
temperatures of the protons and electrons. This implies that
the correction to the friction term, which appears in Figure
7, is important only for the evaluation of the total energy
transfer.

To conclude, the interaction between electrons and
protons could partially explain the acceleration of the cold
electrons by interaction with the protons, and the decrease
of the di†erence between proton and electron temperatures
in the extended corona. There exists in the solar corona a
third nonnegligible species : the a ions, whose observed
density is around 5% (Hammer 1997) and highly variable.
These are double-charged particles and could also have a
signiÐcant importance in the process of accelerating the
electrons. Moreover, the Ha ions are much hotter than the
protons and signiÐcantly heat the electrons by thermaliza-
tion e†ects and the two other process described above.
Indeed, the relative velocity of the Ha ions with respect to
the protons is also of the order of the speed beyondAlfve� n
0.3 AU (Marsch et al. 1982a) and larger than the proton
velocity. Then the relative velocity between the cold elec-
trons and the Ha ions is important.

4. CONCLUSION

This is the last of a set of three papers establishing a
multimoment, multispecies model for the expansion of
astrophysical winds. The Ðrst paper (Leblanc & Hubert
1997) presents the microscopic level of description of the
generalized model, while the second paper (Leblanc &
Hubert 1998) presents the macroscopic level, that is, the
transport equations of the macroscopic parameters and
their properties. In this paper, we complete the macroscopic
description by presenting the collisional transfers. We give
the generic expressions associated with the six parameters
that are necessary to accurately describe the macroscopic
evolution of the solar and terrestrial polar winds. We also
discuss the approximations made in order to simplify these
generic expressions in the context of these winds. Finally,
we discuss new aspects of these terms in functions of known
collision e†ects, previous multimoment models (Chodura &
Pohl 1971 ; Demars & Schunk 1979), and observations
made by the Ulysses, Helios 1 and 2, and SOHO spacecraft.

By a study relevant to the collisional transition region of
the terrestrial polar wind, we have veriÐed the importance
of the suprathermal parts of the velocity distribution, which

are better described by the generalized model via the heat
Ñux. It must be emphasized that this region is also the
region of acceleration and heating of the particles. The
transfer of momentum is more important in this region than
previously predicted. The energy transfer shows that the
heating region is the same as the acceleration region in the
terrestrial polar wind. Moreover, the generalized model pre-
dicts a new anisotropy of the energy transfers. The transfer
of energy is also underestimated by the previous multi-
moment approaches, especially in the transition region. To
sum up, the generalized model of collisional transfers pre-
dicts higher transfers in a thinner region between the di†er-
ent species that compose the terrestrial polar wind.

In an application to the solar wind between 1.1 and 10
in the acceleration region of the fast solar wind, weR

_
,

have also underlined the importance of the suprathermal
part of the distribution function. The generalized transfers
(Appendix B) and the bi-Maxwellian transfer (Chodura &
Pohl 1971) of momentum and energy are not signiÐcantly
di†erent for the interaction between electrons and protons.
According to the bi-Maxwellian model, such an energy
transfer is composed of three contributions : the classical
thermalization term, a friction term, and a correction of the
friction term. The main contribution beyond 2 is theR

_correction to the friction term. Beyond 2 this contribu-R
_

,
tion generates energy transfer from 1 to 8 times higher than
the thermalization term. A study of the anisotropy of the
energy transfer has shown that the collisions with protons
tend to drastically reduce the electron temperature anisot-
ropy. However, it has also shown that for an electron iso-
tropic temperature and for an electron heat Ñux reduced to
the parallel direction because of the gyrotropic motion of
the particles along the magnetic Ðeld line, the generalized
approach predicts an anisotropic energy transfer between
electrons and protons, contrary to the bi-Maxwellian
model. The bi-Maxwellian approach predicts isotropic tem-
perature in the presence of an electron heat Ñux, whereas
the generalized approach predicts an anisotropic tem-
perature. In the solar wind, the main contribution of the
suprathermal part of the electron velocity distribution func-
tion is to enlarge the region where the e†ects of electron/
proton collision are important. This last remark could help
to join the proÐle of the electron temperature between 1 and
2 observed by SOHO (David et al. 1998) and the proÐleR

_observed beyond 0.3 AU (Pilipp et al. 1990) more easily.
According to this work, despite the very large proton tem-
perature anisotropy measured in the coronal holes (Kohl et
al. 1998), the transfer of energy between electrons and
protons would maintain a small anisotropic electron tem-
perature. Moreover, an important characteristic of the
microscopic state of the fast solar wind is the evolution of
the temperature anisotropy of the proton population. We
have shown that a moderate temperature anisotropy pro-
vides a new force, the mirror force, which represents a sig-
niÐcant portion of the gravitational force in the acceleration
region. The precise mechanisms originating the proton tem-
perature anisotropy and the region of the solar corona
where it takes place is then an important opened question.

Step by step, the properties of the generalized multi-
species, multimoment model have been established in an
uniÐed approach for the terrestrial polar and solar winds. In
this approach, contrary to spectral solutions of the Fokker-
Planck equation, the evolution of the di†erent species com-
prising the winds are described simultaneously and
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self-consistently from collisional to collisionless regions.
Many properties of these winds can be described by this
approach : the important mean relative velocities between
species, the large temperature anisotropy, and the large nor-
malized heat Ñux. Calculations of the collisional transfers
have been analyzed for nonequilibrium states typical of rea-
listic situations. This model provides an opportunity to
quantify more accurately pure Coulomb collision e†ects in

shaping velocity distribution, as recently obtained in an
application to the terrestrial polar wind (Leblanc et al.
2000). It also o†ers a starting point for an analysis of the
competition between Coulomb collisions and anomalous
scattering by wave-particle interaction e†ects in the Ðeld of
astrophysical wave-driven winds (Cranmer, Field, & Kohl
1999).

APPENDIX A

THE GENERALIZED TRANSPORT EQUATION SYSTEM

In a gyrotropically dominated situation arising from the presence of a strong magnetic Ðeld, the three-dimensional velocity
space can be described as a space with two dimensions, the directions parallel and perpendicular to the magnetic Ðeld. A
vector is then reduced to We also suppose that the motion of the particles is conÐned along theB(b1, b2, b3) B(b

M
, b

A
).

magnetic Ðeld lines. If we consider that the third coordinate corresponds to the direction of the magnetic Ðeld, then isu
sreduced to (0, 0, only the trace of the tensor is nonzero and is equal to the heat Ñux of the parallel energyu

s
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of a three-dimensional situation then reduce to the six parameters :
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T : heat Ñux vector for perpendicular energy in the parallel direction, (A1)

where is the vector and is the mass density. We deÐne a coordinate system where r is thec
sM

(c
s1, c

s2), c
sA

\ c
s3, o

s
\ n

s
m

sdistance in the radial direction from the origin of the system (the heliocentric distance in the case of the solar wind and the
geocentric distance in the terrestrial polar wind). We consider a magnetic Ñux tube radially oriented and spherically sym-
metric. The coordinate system is reduced to the coordinate r because of the spherical symmetry of the expansion. A(r) is the
section of the magnetic Ñux tube at the distance r, which is related to the magnetic Ðeld strength, B(r), by the Maxwell law
L[A(r)B(r)]/Lr \ 0. G is the acceleration due to gravitation, and E is the charge-separation electrostatic Ðeld.

For a one-dimensional situation, the velocity distribution function deÐned in Leblanc & Hubert (1997) is reduced to
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sis determined (Mintzer 1965). In order to construct a well-adapted model of VDF for the solar and terrestrial polar winds, we
have chosen to be asymmetric along the direction of the magnetic Ðeld that corresponds to a large parallel heat Ñux and af
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high density of suprathermal particles (Leblanc & Hubert 1997). This function is deÐned as
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and erfc is the complementary error function (Abramowitz & Stegun 1964).



488 LEBLANC, HUBERT, & BLELLY Vol. 530

The set of transport equations for the six parameters (eq. [A1]) is then :

1. Number density equation (for see eq. [2]) :C
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s
p \ c

sA
;

Lu
s

Lt
] u

s
Lu

s
Lr

] kB T
sA

o
s

Ln
s

Lr
] kB

m
s

LT
sA

Lr
] kB(TsA

[ T
sM

)
m

s

1
A

LA
Lr

[ e
s

m
s
E[ G\ du

s
dt

. (A6)
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4. Perpendicular temperature equation (associated with see eq. [2]) :C
s
p \ c

sM
2 ;

LT
sM

Lt
] u

s
LT

sM
Lr

] 1
n
s
kB

Lq
s
M

Lr
]
A 2q

s
M

n
s
kB

] u
s
T
sM

B 1
A

LA
Lr

\ 1
n
s
kB

dp
sM

dt
[T

sM
n
s

dn
s

dt
. (A8)

5. Parallel heat Ñux equation (associated with see eq. [2]) :C
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6. Perpendicular heat Ñux equation (associated with see eq. [2]) :C
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The terms and are the collisional transfers determined from the model ofdn
s
/dt, du

s
/dt, dp

sA
/dt, dp

sM
/dt, dq

s
A/dt, dq

s
M/dt

velocity distribution function (eq. [A2]). They are presented in Appendix B.

APPENDIX B

THE COLLISIONAL TERMS

In order to present the collisional transfers of the generalized model we must Ðrst deÐne
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. (B1)

In is the collision frequency of the particles of the s species with the particles of the t species.!
s
, l

st
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The expressions of the collisional transfers depend on the following integrals :
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where and are deÐned in equation (A4). The integral could be simpliÐed in a two-dimensional integralD
s
*, D

t
*, E

s
*, E

t
* V2n2mpqand could then be easily and accurately determined by numerical methods using an adapted Romberg extrapolation method

(Press et al. 1989).
The collisional transfers of the s species that interacts with the t species for the six parameters deÐned previously (see eq.

[A1]) are then :

1. Number density equation : in the case of the solar wind between 1.1 and several AU; is equal to thedn
s
/dt \ 0 R

_
dn

s
/dt

production of s particles due to charge-exchange reaction with neutrals or solar photoionization in the terrestrial polar wind
(Blelly & Schunk 1993).

2. Momentum equation :
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3. Parallel energy equation :
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4. Perpendicular energy equation :
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5. Parallel heat Ñux equation :
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6. Perpendicular heat Ñux equation :
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