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Abstract

There has recently been renewed interest in understanding the physics of foam flow in 

permeable media. As for Newtonian flows in fractures, the heterogeneity of local apertures in 

natural fractures is expected to strongly impact the spatial distribution of foam flow. 

Although several experimental studies have been previously performed to study foam flow in 

fractured media, none of them has specifically addressed that impact for parallel flow in a 

realistic fracture geometry and its consequences for the foam’s in situ shear viscosity and 

bubble morphologies. To do so, a comprehensive series of single-phase experiments have 

been performed by injecting pre-generated foams with six different qualities at a constant 

flow rate through a replica of a Vosges sandstone fracture of well-characterized aperture map. 

These measurements were compared to measurements obtained in a Hele-Shaw (i.e., smooth) 

fracture of identical hydraulic aperture. The results show that fracture wall roughness 

strongly increases the foam’s apparent viscosity and shear rate. Moreover, foam bubbles 

traveling in regions of larger aperture exhibit larger velocity, size, a higher coarsening rate, 

and are subjected to a higher shear rate. This study also presents the first in situ measurement 

of foam bubbles velocities in fracture geometry, and provides hints towards measuring the in 

situ rheology of foam in a rough fracture from the velocity maps, for various imposed mean 

flow rates. These findings echo the necessity of considering fracture wall when predicting the 

pressure drop through the fracture and the effective viscosity, as well as in situ rheology, of 

the foam. 

Keywords: Fractured media, Foam flow, Aperture heterogeneity, Shear rheology, Bubble 

morphology
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1. Introduction

Fracture media are present in a wide range of geological media used for industrial 

applications including CO2 sequestration, subsurface/soil remediation, and Enhanced Oil 

Recovery (EOR) [1-5]. In these applications, when injecting a displacing fluid in a reservoir 

containing fractures, channeling and preferential flow paths occur, which leads to low sweep 

efficiency [6-8]. The use of foams, which consist of gas bubbles separated by thin liquid 

films denoted as lamellae [9-11], has proven to be a potential solution to overcome these 

issues [12-15]. In particular, a high viscous pressure drop is produced through the foam-

saturated fracture, diverting the flow to less permeable regions and thus improving oil 

recovery [16-19].

Foams are generated by three main mechanisms: snap-off, lamellae division, and leave-

behind [20, 21], and can exist in either bulk or confined form [22]. “Bulk foams” are foams 

with individual bubbles which are considerably smaller than the characteristic length scale of 

the porous medium [23]. This type of foams can be classified into ball (or wet) foam and 

polyhedral (or dry) foam, depending on the foam bubble shape [24]. Polyhedral foam bubbles 

are more common at high gas volume fractions, while spherical foam bubbles form at low gas 

volume fraction [24, 25]. On the other hand, confined foams are produced when the 

characteristic length scale of individual bubbles is of the same order of magnitude or greater 

than, the characteristic length scale of the porous medium [26].

Predicting and controlling foam coalescence is a key factor for successful foam flooding 

projects. Chambers and Radke [27] proposed two main mechanisms of foam coalescence. 

The first one is capillary-suction, which results from the Lamellae’s expansion and 

contraction to conserve mass as they go out through constrictions in the porous medium. The 

lamellae thin and thicken in a sequence of squeezing-stretching and draining-filling events. 
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This oscillation of the lamella thickness has a wider oscillation range at higher gas flow rate 

and larger pore-body to pore-throat aspect ratio [28], and can lead to lamella rupture. In this 

respect, Jimenez and Radke [28] stated that the capillary suction pressure increases with pore-

body to pore-throat aspect ratio. The other mechanism stems from Ostwald ripening and 

occurs due to differences in gas pressure between neighboring bubbles of different sizes, due 

to Laplace law, which stipulates that the pressure drop across the interface is all the larger as 

the curvature ratio of the interface is smaller. That pressure difference results in gas diffusion 

from the smaller to the larger bubbles, and progressive vanishing of the smaller bubbles. 

According to Von Neumann’s law [29], the rate of change in bubble surface area depends on 

the number of neighbor bubbles, the surface tension of the liquid and the permeability of the 

porous medium. It is worth mentioning that whereas foam coarsening was extensively 

investigated in bulk systems, there is less evidence of this phenomenon in confined geometry 

[30], probably because the involved diffusive time scales are larger than the characteristic 

time of most laboratory experiments.

Foams can serve as efficient displacing fluids in porous media due to their specific 

rheological properties. A concept frequently used to characterize the rheology of foams is 

their apparent (or effective) viscosity, (Pa.s). Knowing the foam’s apparent injection 𝜇app

velocity (or specific discharge) q (m/s), defined as the ratio of the total volumetric flow rate 

of the foam to the cross-sectional area of the fracture , with w being the width of 𝑆 = 𝑤 × ℎm

the fracture and  (m) its mechanic (that is, arithmetic mean) aperture, the pressure drop ℎm ∆𝑃

 through the fracture of length L (m), and the permeability K (m2) of fracture, the (𝑃𝑎)

apparent viscosity is the viscosity that must be used in order to be able to write a Darcy’s law 

for the foam flow [29]:

      (1) 𝜇app =
𝐾∆𝑃
𝑞𝐿 =

ℎ2∆𝑃
12𝑞𝐿
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In the preceding equation,  (m) is the constant aperture of a smooth fracture ℎ = (12𝐾)1/2

(parallel plate) generating the same pressure drop as the considered real fracture when a 

Newtonian fluid is injected at the same flow rate.

It is important to note that  is not an intrinsic property of the foam: its value is usually 𝜇app

observed to decrease as q increases, which indicates a shear-thinning behaviour of the foam. 

Indeed, the foam bubbles tend to agglomerate at low flow rates, which impedes their relative 

movement, but are aligned and deformed in the direction of flow when the flow rate 

increases, resulting in a decrease in viscosity. Note however that the in-situ rheology of a 

foam in a porous medium whose characteristic pore size is on the same order as the typical 

foam bubble size, is not necessarily the same as that of the bulk flow of the same foam, since 

in the former case most friction occurs between the liquid films and the solid walls, while in 

the latter case viscous dissipation occurs mostly within liquid films between bubbles. In this 

regard, Hirasaki and Lawson [10] showed that the apparent viscosity of a foam is the sum of 

three contributions: (1) the flow resistance of slugs of liquid between gas bubbles (which 

results from viscous friction at the solid walls), (2) the flow resistance due to surface tension 

gradient between the front and rear of foam bubbles (3) and the resistance to deformation of 

foam bubbles as they pass through the pores. They considered both bulk foam flows and the 

flow of foam in porous media. They also showed that foam texture (i.e. the number of 

bubbles per unit area) is a key parameter controlling . Some studies showed that foam 𝜇app

behaves as a yield stress fluid [31-33]. After the stress passes a threshold, foam bubbles 

rearrange and flow like a viscous non-Newtonian fluid. Princen [34] and Hohler and Cohen-

Addad [35] showed that the yield stress is inversely proportional to the bubble size in bulk 

and bubble scale.
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 The effects of aperture variations on the creeping (that is, laminar with ) flow through 𝑅𝑒 ≪ 1

a rough fracture, in particular its departure from the ideal model of the flow through two 

perfectly smooth parallel palates [36], have been addressed extensively in the literature of the 

last 35 years [36-38]. Spatial variations of aperture result in flow channelling, which is all the 

larger as the fracture is more closed and as the correlation length between the facing fracture 

walls is larger [39]. Flow channelling usually coincides with a deviation of the hydraulic 

conductivity of the fracture from that of the parallel plate of identical mechanical (mean) 

aperture. Surprisingly, this effect has up to now been largely ignored in most studies dealing 

with foam flow in rock fractures, with a few striking exceptions, which we present below.

Indeed, relatively few studies on foam flows in fractured media are reported in the literature, 

and several of them neglect fracture wall roughness, considering Hele-Shaw cell fractures 

which consist of the space between two parallel plane walls. For example, Yan et al. [40] 

studied the flow of an aqueous foam in a Hele-Shaw cell fracture at ambient conditions and 

showed how the gas fraction, mean bubbles size and ratio between the latter and the fracture 

aperture control foam displacement efficiency. They also showed experimentally, and 

evidenced theoretically, a diversion mechanism in which the foam tends to flow in thinner 

fractures rather than thicker fractures within a fractured medium. Osei-Bonsu et al. [41] also 

used a Hele-Shaw cell set-up analogous to a smooth fracture and investigated the link 

between foam quality, mean bubble size, mean flow behavior and the foam’s apparent 

viscosity; they also measured the recovery factor of a silicone oil. The experimental and 

theoretical study by Jones et al. [42] provides detailed insight into how pressure drops 

develop in such smooth channels when the foam can be considered two-dimensional (a 

feature observed by Kovscek et al. in natural fractures [26], see below) due to friction at the 

Plateau border between the lamella separating bubbles and wall films The effect of surface 

roughness was also confirmed by Polden et al. [43].  Buchgraber et al. [44] went one step 

https://www.sciencedirect.com/science/article/pii/S0021979715302630#!
https://scholar.google.co.uk/citations?user=BpKbs_wAAAAJ&hl=en&oi=sra
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further in addressing geometrical complexity, by considering both a constant aperture (Hele-

Shaw) fracture,  a checkerboard-like fracture with two different apertures of 20 and 40 

micrometers, and a fracture possessing a three-level synthetic roughness, to study the effect 

of aperture variations on foam flow. They found that the geometry of the fracture can greatly 

impact foam generation mechanisms and foam texture. They visualize and analyzed 

quantitatively the size distribution of bubbles in situ, but did not measure their velocities.

To our knowledge the first study to address foam flows in a realistic fracture geometry  is that 

by Kovscek et al. [26], who studied the radial flow of an aqueous foam through a transparent 

replica of a natural rough-walled fracture at ambient conditions, and measured the pressure 

drop for various global flow rates and foam qualities [26]. They could characterize 

qualitatively the morphology of the bubbles in the fracture plane and in planes perpendicular 

to the fracture plane, evidencing the two-dimensionality of the foam under these conditions. 

But they did not obtain a quantitative characterization of the flow from the visualization of 

the bubbles. Very recently, AlQuaimi and Rosen [45] performed very detailed flow 

experiments at ambient conditions in synthetic fractures made of roughened glass plates to 

study foam generation mechanisms and propagation and found that fracture-wall roughness 

geometry played a major role in controlling the mechanisms of foam generation as well as the 

foam’s mobility. Note however that the geometries which they consider (roughened plates) 

does not correspond to the known geometry of fractures, i.e., geometries obtained from the 

fracturing of solid materials (rocks, metals, ceramics); in particular, AlQuaimi and Rossen’s 

geometries exhibit different spatial correlation properties than those of walls resulting from a 

fracturing process, and are much more akin to two-dimensional porous media than the latter.

Other studies have addressed fractured media at a scale larger than the scale of a single 

fracture. Haugen et al. [46] studied foam flow in a carbonate rock cores cut along a plane 

containing their axis with a saw, at ambient conditions, and found that using pre-generated 

https://scholar.google.co.uk/citations?user=CQ1koU8AAAAJ&hl=en&oi=sra
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foam greatly enhanced oil recovery by diverting the injected fluid from fracture to matrix. 

Fernø et al. [47] performed foam flow experiments at ambient conditions in fracture networks 

consisting of fractured marble tiles. They measured the global rheology of the foam and 

performed a qualitative analysis of bubble geometries some of the fracture. They also found 

that foam improved sweep efficiency significantly and delayed gas breakthrough. Using a 

synthetic porous two-dimensional micromodel containing a parallel plate fracture in its 

middle, Telmadarreie and Trivedi [48] examined the pore-scale phenomenology of heavy oil 

displacement by foam in fractured carbonate reservoirs at ambient conditions. Their mostly 

qualitative analysis revealed that foam not only acts as a mobility enhancement agent but also 

significantly increase heavy oil recovery from the oil-wet matrix. Gauteplass et al. [49] 

studied the mechanisms of foam generation in a porous microfluidic micromodel mimicking 

a sandstone geometry and characterized the role of snap off, evidence that it also occurs at the 

boundaries between fractures and the porous matrix.

In all the preceding studies addressing foam flow at the fracture scale, the only one to 

consider a realistic fracture geometry is the seminal paper by Kovscek et al. [26], but it 

addresses a radial flow (i.e., a point injection) for which the velocity decreases as the inverse 

of the distance to the injection point. The prime objective of the present research was to 

provide insight into the role of aperture spatial variations on the shear rheology of the foam, 

the foam bubbles size, and foam coarsening in a realistic fracture geometry under parallel 

flow conditions, with the additional knowledge of the bubble velocity field (following recent 

studies of foam flows in two-dimensional porous media [50, 51]), which has been measured 

in none of the earlier studies on foam flows in fractures. To do so, single-phase foam flow 

experiments were carried out using a replica of a Vosges sandstone fracture with well-

characterized aperture map at several flow rates and different foam qualities. The results were 

https://scholar.google.co.uk/citations?user=9DVmuskAAAAJ&hl=en&oi=sra
https://scholar.google.co.uk/citations?user=CQ1koU8AAAAJ&hl=en&oi=sra
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compared with those performed by Osei-Bonsu et al. [41] in a Hele-Shaw cell of constant 

aperture equal to the hydraulic aperture of the Vosges fracture.

2. Materials and Methods

2.1. Experimental Setups and Procedure

The experiments were conducted by injecting pre-generated foam in a replica of a Vosges 

sandstone fracture with a length L of 26.0 cm, a width w of 14.8 cm, a mechanical (mean) 

aperture hm of 0.86 mm and a hydraulic aperture h of 0.500 ± 0.005 mm. The details about 

the fabrication of the replica can be consulted elsewhere [52, 53]. The aperture map of the 

fracture replica, which was obtained by Nowamooz et al. [54] by using an image processing 

procedure based on the attenuation law of Beer-Lambert, is presented in FIGURE 1(a). The 

minimum aperture is 0 (closed regions) and the maximum aperture 2.294 mm. This figure 

shows that the smallest apertures are located in the center of the model, while the largest 

apertures are close to the inlet and the outlet. The probability density function (PDF) of the 

fracture apertures, shown in FIGURE 1(b), is peaked around 0.71 mm but not symmetrical, as 

a second smaller peak is seen around 1.13 mm. The power spectrum of one-dimensional 

profiles of the aperture map parallel to  (FIGURE 1(c)) exhibits a power law behavior with a x

global exponent -1.6, which indicates long-range spatial correlations along the aperture field. 

This so-called self-affine behavior is characterized by the exponent of self-affinity (the so-

called Hurst exponent ), such that the exponent of the Fourier power spectrum should be 𝐻

 [55]. Hence  here. The properties of apethe rture field of geological ‒ (2𝐻 + 1)  𝐻 = 0.3

fractures are in large part inherited from those of the facing fracture walls which define them. 

In particular, the Fourier spectrum of the aperture field is expected to be self-affine with a 

Hurst exponent characteristic of the fracture surface topographies (which, for sandstone, is 

0.5 [56]) at scales smaller than the correlation length between the two fracture walls, and to 
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exhibit a lesser decrease at larger scales due to matching of the two walls at these scales [57, 

58]. The measured aperture field is consistent with such behaviour if one considers that the 

correlation length is on the order of the fracture’s length. In addition, an inflection of the 

spectrum towards a -2 exponent is visible at the largest probed wave numbers (see FIGURE 

1(c)), Similarly, the PDF of fracture wall topographies has been measured to be Gaussian 

[59], from which it follows that the aperture field should have a PDF that is not very different 

from a Gaussian. In our data (FIGURE 1 (b)), a log-normal distribution which may be 

suggested by the asymmetry of the curve has been ruled out by plotting the PDF of log(a), 

and so the hypothesis of a Gaussian distribution with an additional secondary peak is the 

most likely. The secondary peak could be due to chemical weathering of the minerals over 

long times.
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FIGURE 1. (a) Aperture map of the fracture used in the present experiments (data obtained 

from Nowamooz et al. [54]). (b) Probability density function (PDF) of the aperture map. (c) 

The Fourier power spectrum of 1D profiles parallel to , averaged over all profiles, exhibits a 𝑥

power law behaviour.

The foam was generated by simultaneous injection of gas and surfactant solution into a 

customized foam generator containing a sintered glass disc (Glass Scientific, UK) with a pore 

size distribution comprised between 16 and 40 µm. The foaming agent was prepared by 

adding a 1:1 blend of Sodium Dodecyl Sulphate and Cocamidopropyl betaine (2% active 

content) to a 0.25M NaCl aqueous solution. A dual piston pump (Prep Digital HPCL pump, 

A.I.T., France) was used to inject the surfactant solution at a controlled flow rate. The gas 
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phase was air, injected from a pressurized cylinder in series with a mass flow rate regulator 

(Brooks Instrument 5850S, Serv’ Instrumentation, France). The generated foam was 

transferred to the models using a tube with 4 mm internal diameter and then injected through 

four ports regularly spaced across the width of the inlet to ensure uniform foam injection. A 

membrane-type differential pressure sensor (DP15 Variable Reluctance Pressure Sensor, 

Validyne, USA) was used to measure the steady-state pressure drop through the model during 

foam injection. The outlet of the model was connected to the atmosphere. A digital camera 

with a resolution of 2045 × 2048 pixels was used to capture the dynamics of the process. A 

light box was placed under the flow cells to improve the illumination of the captured images.

Two different series of fracture flow experiments were conducted in this study. First, pre-

generated foams with different qualities were injected at a constant gas flow rate of 10 

ml/min through the real fracture. The qualities of the injected foams were of 98, 95, 90, 85, 

80 and 75% in each case. The fracture was saturated with air before injection of each foam. 

In these first series of experiments, the foam quality was varied by setting a different liquid 

flow rate while keeping the gas flow rate constant. Therefore, the total flow rate decreased 

with increasing foam quality. The second type of experiments aimed at assessing the effects 

of flow rate by injecting a single foam with a constant quality of 85% through the Vosges 

sandstone fracture at different gas flow rates: 10, 20, 30, 40, 50 and 60 ml/min. Each 

experiment was repeated three times to ensure reproducibility and possibly evaluate the 

uncertainty of the measurements. Error bars represent the standard deviation of the 

measurements over the three experimental runs performed under identical experimental 

conditions.

The results were compared to those obtained by Osei-Bonsu et al. [41] using a Hele-Shaw 

cell with a uniform aperture of 0.5 mm size (equal to the hydraulic aperture of the real 

fracture) and smooth surface. This allowed the identification of the impact of aperture 
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variations on the foam flow. A customized Hele-Shaw cell with dimensions of 31 × 20 × 0.5 

cm was used by the latter authors, and the foam was generated by simultaneously pumping 

air and aqueous surfactant solution through a foam generator similar to the one used in the 

present experiments. The pre-generated foam was then delivered to the cell through a tube 

connected to a metal pipe junction, which was screwed to the inlet of the medium. Pressure 

transducers were also connected to the inlet and the outlet to measure the pressure drop 

throughout the Hele-Shaw cell.

At the end of the foam flood experiments in the real fracture, after the injection had been 

interrupted and once the pressure gradient along the fracture could be considered to have 

approached zero and foam bubbles to have become stagnant, the evolution over time of the 

size of the bubbles was recorded in different zones in order to assess the impact of the local 

aperture on foam coarsening.

Finally, another type of flow cell was used to characterize the bubble size distribution of the 

foams. Indeed, foams obtained with the same foam generator as in the rough fracture flow 

experiments were flown through a Hele-Shaw cell, that is, a parallelepipedal tank of 

thickness much 1 mm much smaller than its two other dimensions, and pictures of the foams 

were taken.

2.2. Image processing & segmentation

A combination of the open source image-processing program ImageJ [60], and of either 

custom-written MATLAB scripts or available MATLAB functions were used to segment and 

analyze the image sequences captured during the experiments. Two types of analyses were 

performed.
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Firstly, the foams images taken in the 1mm Hele-Shaw cell were treated to measure the 

bubble size distribution of the foams, for the various foam qualities. The images were first 

thresholded and transformed into black and white pictures were the bubbles appeared white 

on a black background (see figure 2(a)), then the equivalent diameter of all connected white 

regions in the images was measured as   from their area . We thus obtained the 𝑑 = (𝐴/𝜋)1/2 𝐴

probability density functions for the bubbles’ apparent diameters. There are power laws (see 

figure 2(b)), except for the largest foam quality (0.98) for which we obtained an exponential 

distribution. The foam image appeared very different in the latter case, as compared to the 

others, so obtaining a different type of bubble size distribution was not surprising. For all 

images a range of small apparent diameters that were outside of the functional trend and 

corresponding to connected white regions with shapes very different from the circular shapes, 

were discarded in the analysis.

FIGURE 2. (a) Image of foam of quality 85% in the Hele-Shaw cell (with 12535 bubbles). 

(b) Corresponding PDF for the apparent diameters of bubbles in (a), fitted with a power law 

of exponent -2.63. The smallest connected white regions, which fell outside of this 

distribution and had very non-spherical shapes, were removed from (a).
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The bubbles whose apparent diameter is smaller than the HS cell’s thickness (  mm) can 𝑒 = 1

be considered to have real diameter equal to the measured apparent diameter, while those 

with an apparent diameter larger than 1 mm are squeezed between the top and bottom glass 

plates, so their real diameter (when unconstrained) is different from the measured apparent 

diameter. We have considered that the bubbles of apparent diameter three times larger than 

the confining cell thickness had a cylindrical shape, and that their real diameter could 

therefore be estimated from the apparent diameter as . In the range of 𝑑real = ((3/4)𝑒(𝑑
2)2)

1/3

apparent bubble diameters between 1 and 3 mm we have considered a smooth monotonic 

transition based on a nonlinear combination between these two regimes. The obtained results 

do not depend much on the functional form taken for that nonlinear combination. Finally the 

average diameter for the foam bubbles was computed from the distribution. Given the fact 

that the distribution is a power law, it was obviously important to perform the measurement 

on a large population of bubbles.

Secondly, pictures or the foams flowing inside the rough fracture, taken at regular time 

intervals, were used to obtain maps of velocity vectors of the foam bubbles inside the fracture 

using PIV (Particle Image Velocimetry) analyses, which estimates local velocity by cross-

correlating sub-regions of the images between two successive time steps. We used package 

PIVLab [61] in MATLAB, with a single interrogation size of 128× 18 on the first pass, and 

64 × 64 pixels on the second pass. The raw images were first applied a high pass filter of size 

15 pixels (see figure 3(a-b)). The horizontal dimension of 2048 pixels corresponded to a 

length of 260 mm, hence one pixel corresponded to 127 µm in real space, about one order of 

magnitude smaller than the typical bubble size, but the PIV procedure provided a horizontal 

resolution of the velocity map of 16 mm. Note that the bubbles whose velocities were 

measured in this manner belonged to the top layer of bubbles, in contact with the upper wall 
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of the fracture. For some subparts of the image, the filtered image did not contain any 

significant “dots” to be traced, so no velocity was measured in these regions (see figure 3(b-

d)). It is, in particular, the case for four circular regions along the center line of the flow cell, 

where pressure sensors were installed.

FIGURE 3. (a) Raw image of the foam flowing through the fracture (flow rate 10 ml/min, 

quality 85%). (b) Filtered image (high-pass filter). (c) Velocity field obtained with a window 

size of 128 for the first pass, and 64 for the second pass. (d) Corresponding map of the 

velocity magnitude. The white regions in (c) are regions where the image contrast was not a 

good image for the PIV to be successful. In (d) they have been filled by linear interpolation to 

the surrounding measured values, and the velocity map has been interpolated to match the 

original resolution.

3. Results and discussion

3.1. Dependence of the initial mean bubble size on the foam quality
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From analyzing images of the foams in the Hele-Shaw cell as explained in section 2.2, we 

obtain the mean bubble size for the freshly-generated foams, that is, the initial bubble size for 

the foams that are being injected in the rough fracture. This initial mean bubble size increases 

monotonically with the foam quality (see figure 4 (a)) but only varies by 25% when the foam 

quality varies between 80% and 95%. Between 95% and 98% the foam structure changes 

sharply and consequently the increase in mean bubble size is much more abrupt.

3.2. Bubble velocity fields

For Newtonian fluids, it is well known that the presence of in a real fracture of spatially-

correlated regions of large (respectively, low) apertures results in the creation of tortuous 

preferential flow paths [36-38, 62]. This flow channeling impacts the fracture’s permeability 

(or transmissivity), but is also responsible for the anomalous (non-Fickian) transport [54]. 

According to the results of Tsang [63] for Newtonian fluids, this mechanism can generate 

pressure drops one or two orders of magnitude higher as compared to the case of a smooth 

Hele-Shaw cell. In the present experiments, tracing the trajectory of bubbles in the fracture 

plane shows that the bubbles do not follow an extremely tortuous path that avoids the low-

aperture region in the central part of the fracture (see for example figure 3), but their velocity 

varies significantly along their trajectories, decreasing sharply in this central region. One 

should remember that such a foam flow is overall incompressible, so if the overall flux for 

this layer of bubbles varies longitudinal, it must be compensated by an antagonist change in 

the flux of other bubble layers which we do not measure. In any case, the aperture 

heterogeneities impact the velocity field significantly, and, therefore, the values of  are 𝜇app

expected to be higher in the rough fracture than in a smooth fracture of identical mean 

aperture.

3.3 Dependence of the apparent shear viscosity of the foams on their quality
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The relationship between foam quality and  for both the real fracture and e Hele-Shaw 𝜇app

cell was calculated from the experimental measurements using Eq. (1). The results are 

presented in FIGURE 4 (b). It can be noticed that  is much higher in the real fracture than 𝜇app

in the Hele-Shaw cell for all investigated foam qualities at the considered flow rate, which is 

consistent with the increase in pressure drop resulting flow channelling which is responsible 

for changes in hydraulic conductivity. Note that the pressure loss sensitivity to aperture 

fluctuations is expected to be higher in the case of shear-thinning fluids and yield stress fluids 

as foams (shear viscosity depends on the local aperture) [64], as compared to Newtonian 

fluids. 

FIGURE 4. (a) Dependence of the mean initial size of the generated bubble on the foam 

quality.  (b) Relationship between the quality and the apparent viscosity of the injected foams 

in the real fracture and in the Hele-Shaw cell [41]. (c) Relationship between the quality and 

mean velocity, computed from the volumetric flow rate. (d) Relationship between the quality 

and the aperture threshold. The gas flow rate (qg) is 10 ml/min.
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It can also be observed from FIGURE 4 (b) that the relationship between the foam’s apparent 

viscosity and its quality in the Vosges fracture is monotonically decreasing whereas this 

dependency is monotonically increasing in the Hele-Shaw cell. In their work, Osei-Bonsu et 

al. [41] stated that the bubbles of foam with a higher quality offer more resistance against 

interface deformation and hence exhibit lower mobility in the Hele-Shaw cell. In contrast, 

 is all the larger as the foam quality is smaller in the present case of realistic fracture 𝜇𝑎𝑝𝑝

geometry, which is in agreement with some previous studies [44, 65, 66]. Note however that 

foam was mainly generated by snap off in a foam generator. As we increased the flow rate of 

surfactant to decrease the foam quality, more surfactant solution was available for foam 

generation, leading to an increased rate of foam generation and a decrease in the size of the 

mean bubble size of the foam at the inlet of the fracture (i.e., mean initial bubble size), as 

shown in FIGURE 4 (a). This also explains the decreasing dependence of the apparent 

viscosity  on the foam quality (FIGURE 4 (b)). Note however that in the data of FIGURE μapp

4(c) the foam quality is not varied independently of all other parameters. Part of the 

dependence of   on the foam quality is due to the slight increase in mean velocity μapp

observed as the foam quality is decreased, which clearly appears in FIGURE 4 (c).

Visual observations (which will be discussed in more details in section 3.4) revealed that 

foam bubbles were stagnant in some parts of the fracture, which means (not surprisingly) that 

the foam behaved as a yield stress fluid. These observations also showed, in agreement with 

previous studies [34, 35], that the extension of the stagnant area in the rough fracture 

becomes smaller as the foam quality was decreased and smaller foam bubbles were 

generated. The apertures encountered in these areas where bubbles were stagnant were 

smaller than a threshold value. This threshold value was observed to vary with the foam 

quality, as shown in FIGURE 4(d), due to the dependence of the size of the bubble on the 

foam quality (FIGURE 4(a)). 
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3.4 Shear rate distribution in the rough fracture

FIGURE 5. Maps of velocity magnitude and wall shear rate at 85% foam quality for the 

rough fracture (a, c) at 10 ml/min gas flow rate and (c, d) at 20 ml/min gas flow rate.

A remarkable feature of the flow patterns in the real fracture is that bubbles were stagnant in 

the lowest aperture regions. As expected, the foam behaved as a yield stress fluid which does 

not flow when the applied shear stress is below a threshold value. In the present case, the 

local shear stress in the low-aperture area fell below the yield stress as the pressure gradient 

was not high enough at the lowest flow rates. The required pressure gradient to exceed this 

threshold is obtained by increasing the flow rate. This phenomenon can be seen by comparing 

the velocity map at 10 and 20 ml/min in FIGURE 5. As the flow rate increased, a larger area 

of the fracture plane was occupied by flowing foam bubbles.

3.5 Shear rate distribution in the fracture plane

Given that the foam is a shear thinning fluid, the variation in velocity leads to different 

viscosity values in different regions of the fracture. The equivalent Newtonian wall shear rate 
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 was calculated from the aperture and velocity magnitude maps using the following 𝛾𝑁

expression [67].

                                                                                                                           (2)𝛾𝑁 =
6𝑣
𝑎

In the preceding equation, v is the local velocity magnitude, i.e. the average value of the 

velocity profile between both surfaces of the fracture. Here we assume that the local velocity 

magnitude which we measure and is represented in FIGURE 5 can be assimilated to v in Eq. 

(2). In the same equation, a is the local aperture value as represented in the aperture map of 

Figure 1. Eq. (2) applies to the 2-D flow of a constant viscosity liquid between two infinite 

parallel planes (the plane Poiseuille configuration). However, for flows of liquids with a 

shear-rate-dependent viscosity, the calculation of the shear rate is more complex as the 

velocity profile is no longer parabolic [68]. In this case, the true wall shear rate can be found 

using the Weissenberg–Rabinowitsch–Mooney equation [68]:

  ,𝛾 =
𝛾𝑁

3 [2 +
𝑑(𝑙𝑛𝛾𝑁)
𝑑(𝑙𝑛𝜏) ] (3)

with   the wall shear stress. It must be noted that the rough approximation  has been 𝜏 𝛾 ≈ 𝛾𝑁

made in the present analysis. Improved accuracy can be achieved by calculating , which 
𝑑(𝑙𝑛𝛾𝑁)
𝑑(𝑙𝑛𝜏)

is needed as input in Eq. (3). However, the experimental pressure distribution throughout the 

fracture would be required for the calculation of , which was not available in the present 𝜏

experiments. 

The results in terms of wall shear rate distribution are shown in FIGURE 5, for foams of 

quality 85% and flow rates of 10 and 20 ml/min. This figure shows that the shear rate in the 

rough fracture is strongly impacted by the spatial variations of the aperture field, as expected 

from its definition. In contrast, it would be uniform within the Hele-Shaw cell of [41].  The 
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zero shear rate regions are simply the regions where the velocity of the foam is zero, which 

exist due to the fact that the foam is a yield stress fluid. The extension of these regions of 

stagnant bubbles became smaller as the flow rate was increased (see Figure 5). 

The steady-state shear flow of bulk foams has been proved to be well described by the 

Herschel–Bulkley law [69] in previous works [70-72]. This empirical law can be written as 

follows:

{𝜏 = 𝜏0 + 𝑎𝛾𝑛   for    𝜏 > 𝜏0
𝛾 = 0    for   𝜏 ≤ 𝜏0

(4)

Where  is the yield stress,  is the consistency and n is the flow index of the fluid. In the 𝜏0 𝑎

case of shear-thinning yield stress fluids, n is inferior to unity. For bulk foams it is usually in 

the range  (see for example[73]). The three parameters are generally calculated by [0.2;0.4]

fitting the data obtained by measuring the shear rate  as a function of the applied shear stress 𝛾

τ using a rheometer, which is particularly challenging in the case of foams. For a foam 

flowing through a porous medium, the rheology is also expected to follow a similar Herschel-

Bulkley rheology, but with values of the yield stress, consistency and yield stress that are 

different from those exhibited in bulk foam flow. Our present study provides hints towards a 

method to measure the in situ rheology of the foam flowing through the porous medium.

The apparent shear rate of the complex fluid flowing through the real fracture  can be 𝛾𝑎𝑝𝑝

obtained from the ratio of the characteristic pore velocity q (obtained by dividing the total 

flow rate by the cross-sectional area) and the characteristic microscopic length usually taken 

as :𝐾

                                                                                                                     (5)𝛾𝑎𝑝𝑝 = 𝛼
𝑞
𝐾

where  for a fracture and  is an empirical shift factor known to be a function of both 𝐾 =
ℎ2

12 𝛼

the bulk rheology of the fluid and the porous media [74-77].  is commonly used as an 𝛾𝑎𝑝𝑝
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input in the rheological model (Eq. 4) in order to predict the viscosity of the fluid in the 

porous medium. Nevertheless, ,  and n are unknown in the case of foams, so the preceding 𝜏0 𝑎

approach is hardly applicable. Also, it has been traditionally assumed that  is independent of 𝛼

q. However, Rodríguez de Castro and Radilla [78] recently showed, using flow experiments 

of polymer solutions in rough fractures, that this assumption is no longer valid in the presence 

of a yield stress.

The average wall shear rate  throughout the media, obtained from averaging the shear rate 𝛾𝑎𝑣

maps such as those shown in FIGURE 5 is plotted as a function of the foam quality for a flow 

rate of 10 ml/min in Figure 6(a). FIGURE 6(a) shows that the average shear rate is not 

monotonic as a function of the foam quality in the real fracture. It is reminded here that foam 

quality was varied by setting a different liquid flow rate while keeping the gas flow rate 

constant. Therefore, decreasing foam quality leads to increased rate of foam generation with 

finer texture (smaller bubbles). According to Princen [34] and Hohler and Cohen-Addad [35], 

the yield stress is inversely proportional to the size of the bubbles. Finer foam bubbles at 

lower foam quality have lower yield stress that lead to the flow of foam bubbles to a wider 

area of the fracture (FIGURE 4 (b-d)), which tends to increase the average shear rate. On the 

contrary, decreasing the foam quality means decreasing the average flow velocity (see Figure 

4(c)) to some extent, which tends to promote a lower mean shear rate. These two competing 

effects may explain the non-monotonicity of the plot in Figure 6(a). 

The average shear rate was also computed for the series of experiments at constant foam 

quality 85% and various flow rates ranging between 10 and 60 ml/min, but the acquisition 

frequency of 1 Hz allowed obtaining meaningful velocity fields only for the data recorded at 

10 and 20 ml/min (at 11.5 and 22.6 m/s, respectively), with an increase when increasing the 

flow rate, as expected. In contrast, the dependence of the apparent viscosity could be obtained 
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from Eq. (1)) for all flow rates. Figure 6(b) shows apparent viscosity decreases with flow rate 

in both fracture and Hele-Shaw cell as expected due to shear thinning behavior of foam. It is 

shown in Figure 6(c) and seems consistent with a power law behavior, of exponent -0.41, to 

be compared to the exponent -0.27 for the Hele-Shaw cell data of Osei-Bonsu et al. Since 

only two measurements of the average shear rate were available, we could not check that the 

dependence of the apparent viscosity on the average shear rate was consistent with a power 

law behavior, but we propose that a method based on such “apparent rheograms” could be 

used to measure the in situ rheology of the foam in the porous medium. 
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FIGURE 6. (a) Dependence of the average shear rate on the foam quality at a 10 ml/min gas 

flow rate. (b) and (c) Apparent viscosity  vs. the mean flow velocity q for  foams of 𝜇app

quality 85% in linear and log-log plot respectively. The same is also shown for the Hele-

Shaw cell of identical transmissivity, for comparison.

Similarly, the shift factor (  assuming  in Eq. (5)) could be computed for 𝛼 = 𝛾𝑎𝑣 𝐾/𝑞 𝛾𝑎𝑣~𝛾𝑎𝑝𝑝

the two flow rates 10 and 20 ml/min, to 1.30 and 1.26, respectively. 
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3.6. Correlations between foam coarsening and aperture distribution

The nature of foams is dynamic; their structure changes with time due to foam coalescence 

by liquid drainage, film rupture and gas diffusion across the films separating neighboring 

bubbles [35]. It is interesting to observe how the local fracture aperture influences the 

coarsening dynamics of the foam after the flow has been stopped. To this end, closed views 

of the foam’s structure were recorded in sub-windows of the entire fracture plane positioned 

at different positions in that plane. All these sub-windows corresponded to different mean 

apertures (computed over the sub-window). The evolution of the mean bubble sizes was 

monitored for a total duration of 15 hours. FIGURE 7(a) shows pictures taken for three sub-

windows for which the mean aperture was respectively 0.2, 0.5 and 1.5 mm, at three different 

times after the flow has been stopped: 0 s, 3000 s, and 15 h. The coarsening in time of the 

foam is clearly visible in all image, and appears to be all the faster as the mean aperture is 

larger. FIGURE 7(b) shows the corresponding dependence of the mean bubble size   on 〈𝑑〉sw

the mean aperture , at times 0 s and 15 h after the flow has been stopped.  The gas 〈𝑎〉sw

diffusion rate through the films is expected to be higher at earlier times as smaller foam 

bubbles with higher internal pressure exist in the system. Gas diffuses from smaller to larger 

bubbles with a rate that is proportional to the pressure difference between them, eventually 

leading to the vanishing of the smallest bubbles and continuous coarsening of the foam. The 

mean bubble size  is indeed observed increase in time, for a given , as expected, 〈𝑑〉sw  〈𝑎〉sw

but as we only have measurements at two different times we cannot quantify the changes in 

coarsening rates. More interestingly, at a given time the mean bubble size appears to be 

highly correlated to the mean aperture in the sub-windows, following a monotonically 

increasing dependence.
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It is interesting to note that the mean aperture for which the plots are above the   〈𝑑〉sw = 〈𝑎〉sw

line correspond to regions in which the mean horizontal size of the bubbles is larger than the 

aperture that confines them vertically. Consequently, it is very likely that there is only one 

layer of bubbles in these regions of the fracture planes. In contrast, as the mean aperture is 

larger than the mean horizontal bubble size, the bubbles are expected to be pseudo-spherical 

as they are not confined between the two fracture walls. Therefore, more than one layer of 

bubbles can exist in these regions. The plot obtained for the initial time (after the flow has 

been stopped) is particularly interesting as it shows the structural state of the foam resulting 

from its flow in the fracture. This means that smaller bubbles flow in smaller aperture 

regions, while larger bubbles flow in larger aperture regions. Furthermore, only bubbles 

present in low aperture regions (or mean aperture smaller than 0.5 mm) are confined 

vertically (despite being smaller than in regions of larger aperture). On the contrary, at t = 15 

h after the flow has been stopped, the local mean bubble size is larger than the local mean 

aperture in all sub-windows, and so the foam can be expected to be confined vertically in all 

of them. In other words, at t = 15h the foam is two-dimensional in the entire fracture plane 

(i.e., there is a monolayer of bubbles everywhere).
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FIGURE 7. (a) Bubbles observed in different sub-windows of the aperture plane, at 

successive times 0 s, 3000 s, and 15 h after the flow has been stopped. The mean fracture 

aperture in the sub-window in question is denoted . (b) Dependence of the mean bubble 〈𝑎〉sw

size in the sub-window as a function of the mean aperture .〈𝑎〉sw
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As Cohen-Addad [79] showed, the foam’s apparent viscosity decreases during foam 

coarsening process. Accordingly, we can expect a deterioration of the sweep efficiency when 

using coarsened foam as displacing fluid, given the decrease in . 𝜇app

4. Conclusions

As for the creeping flow of a Newtonian fluid [80, 81], spatial variations of the aperture field 

of a rough fracture with a realistic geometry strongly impacts the flow of an aqueous foam. 

To the best of our knowledge, all previous experimental studies addressing foam flow in 

fractured media had only been conducted on fractured media manufactured by glass plates 

[40, 41, 44, 82], with unrealistic fracture geometries, or real fracture media but with no 

quantitative characterization  of the aperture field [46, 83-85]. In additional, though several of 

these previous studies featured local visualization of bubble morphologies [26][40, 41, 44] 

[45, 46][48], and in some cases the measurement of bubble size distributions [40, 44], none 

of them reported bubble velocity measurements nor tried to link local bubble velocities to the 

in situ rheology of the foam. This study set out to provide an understanding of the effects of 

spatial aperture variations on the flow patterns, shear rheology, and bubble morphology 

during the flow of foams through a realistic fracture geometry, that is, a geometry that 

possesses the right spatial correlation properties which are known to be typical of fracture 

surfaces and the gap between them [86, 87]. To do so, a comprehensive series of single-phase 

flow experiments were conducted in a replica of natural rough-walled fracture (Vosges 

sandstone), and confronted to similar measurement performed in a Hele-Shaw cell fracture of 

identical hydraulic aperture. Based on these measurements, the following observations and 

conclusions can be drawn:

 The aperture variation strongly affects the apparent viscosity of foam. In particular, 

the existence of spatially-correlated low- and high-aperture areas increases flow 
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tortuosity and the velocity contrast between preferential flow channels and stagnant 

zones, as is the case for the flow of a Newtonian fluid. By modifying the velocity field 

and, consequently, the shear rate distribution, it controls the in situ rheology of the 

foam.

 Foam is a yield stress fluid and exhibits shear-thinning behavior when flowing 

through a porous medium, but the rheology is not necessarily the same as that of the 

bulk foam. Here we could not obtain a complete “in situ” rheogram for the 85 % foam 

from foam bubble velocity measurements, but we propose to use this method to 

measure the in situ rheology of the foam. In this case, the measurements that could be 

made point to a power law of exponent -0.41.

 The foam’s bubble size inside the fracture is correlated to the local fracture aperture, 

and is all the larger as the local aperture is larger. The transition from bulk foam to a 

vertically-confined two-dimensional foam occurs in the fracture plane along the equi-

aperture lines a=0.5 mm in our setup.

 The dynamics of foam coarsening inside the fracture is correlated to the local aperture 

and is all the faster as the local aperture is larger.

A replica of a Vosges sandstone fracture with a given Hurst exponent was considered in the 

present study to investigate the effect of spatial distribution on apparent shear viscosity and 

bubble morphology. In future studies, it would be interesting to consider similar geometries 

with various Hurst (H) exponent values as well as, possibly, different matching (i.e., 

correlation) scales between the two fractures walls, and correlate the flow properties of the 

foam to theses stochastic geometrical parameters.
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