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Letter

The budget of light elements in Earth’s core is a long-standing geochemical 
problem (Poirier, 1994), as constraining such elements and their abundances 
can tell us much about the physiochemical conditions of Earth’s differentiation. 
Sulphur is often cited as one such element: cosmochemical estimates suggest that 
the core contains ~2 wt. % S (Dreibus and Palme, 1996); sulphur in the core is 
seemingly necessary to explain mantle W and Mo abundances (Wade et al., 2012) 
and can explain the disparity between the radiometric Pb and W isotope ages of 
the mantle (Wood and Halliday, 2005). However, recent molecular dynamics esti-
mates suggest S may not be present at all in the core (Badro et al., 2014); also, it is 
unclear as to whether S entered the core as an iron alloy, or as a discrete sulphide 
phase (O’Neill, 1991). Further complications stem from the fact that late addition 
of extra-terrestrial S to the mantle, post-core formation, should overwhelm any 
pre-existing S (isotope) signature (the “late veneer”; Holzheid et al., 2000; Wang 
et al., 2013). In an effort to investigate the role of S during Earth’s differentiation, 
we have investigated the Cu isotope compositions of bulk Earth and BSE; this is 
because Cu is siderophile and strongly chalcophile (~2/3 of Earth’s Cu is thought 
to be in the core; Palme and O’Neill, 2014, McDonough, 2003) but is less volatile 
than S, so is abundant enough in Earth’s mantle to have been largely unaffected 
by a late veneer.

To begin with, it was necessary to obtain robust Cu isotope composi-
tions for both BSE and bulk Earth. To this end, we measured the Cu isotope 
composition of 88 extra-terrestrial and terrestrial samples using high precision 
multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS; see 
Supplementary Information for methods and data tables) and combined these 
results with pre-existing literature data.

Choosing samples to constrain the Cu isotope composition of BSE is not 
trivial, due to the specific behaviour of Cu during mantle melting. The concentra-
tion of Cu in a mantle melt is predominantly controlled by the consumption of 
sulphide phases by such a melt (Lee et al., 2012). If melt fraction remains below 
~25 %, residual sulphides should retain Cu, which could potentially give rise to 
isotopic fractionation. With this in mind, two lithologies were initially chosen 
to constrain the copper isotopic composition of BSE. The first were komatiites, 
mantle-derived ultramafic lavas generated by high degrees (>25 %) of mantle 
melting and typically found in Archaean terrains (Arndt, 2008). In this study, we 
analysed komatiite samples from two localities; 2.4 Ga Vetreny Belt (Baltic Shield) 
and 2.7 Ga Belingwe (South Africa). The second were “fertile” orogenic lherzo-
lites from Lanzo (Italy) and Horoman (Japan); that is, samples of the mantle that 
appear to have undergone little to no melt depletion. These data were augmented 
by Cu isotope analyses of mid-ocean ridge basalts (MORB), which are typically 
formed by fairly high (10-15 %) degrees of melting of upper mantle. We also 
include data from a variety of ocean island basalt samples to investigate the 
possibility of Cu isotope mantle heterogeneities (see Supplementary Information 
for all sample information).
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The differentiation of Earth into a metallic core and silicate mantle left its signature on 
the chemical and isotopic composition of the bulk silicate Earth (BSE). This is seen in the 
depletion of siderophile (metal-loving) relative to lithophile (rock-loving) elements in Earth’s 
mantle as well as the silicon isotope offset between primitive meteorites (i.e. bulk Earth) 
and BSE, which is generally interpreted as a proof that Si is present in Earth’s core. Another 
putative light element in Earth’s core is sulphur; however, estimates of core S abundance 
vary significantly and, due to its volatile nature, no unequivocal S isotopic signature for core 
fractionation has thus far been detected. Here we present new high precision isotopic data for 
Cu, a chalcophile (sulphur-loving) element, which shows that Earth’s mantle is isotopically 
fractionated relative to bulk Earth. Results from high pressure equilibration experiments 
suggest that the sense of Cu isotopic fractionation between BSE and bulk Earth requires that 
a sulphide-rich liquid segregated from Earth’s mantle during differentiation, which likely 
entered the core. Such an early-stage removal of a sulphide-rich phase from the mantle 
presents a possible solution to the long-standing 1st terrestrial lead paradox.
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Figure 1 	 Copper isotope range of the primitive (chondritic) meteorite groups. Inset: Box and 
whisker plot showing the range of Cu isotope compositions for the terrestrial samples used 
in constraining the BSE Cu isotope composition. Green box and dotted line represents the 
composition of BSE, light grey box and long dashes represent the composition of “chondritic 
bulk Earth” (CBE), dark grey box and short dashes represent the composition of “enstatite 
chondrite bulk Earth” (ECBE). Errors on the estimates are all 2 s.d.

The Cu isotope compositions of terrestrial basalts and ultramafic rocks define 
a limited range (–0.07 ‰ < δ65Cu < +0.16 ‰; Fig. 1, δ65Cu = [(65Cu/63Cusample /  
65Cu/63Custd.) – 1] × 1000; where std. is NIST SRM976). Despite the potential 
for Cu isotope fractionation through sulphide retention, each sample group is 
statistically identical and the data are normally distributed (Supplementary Infor-
mation), providing a robust and precise average BSE Cu isotope composition of 
δ65CuBSE = 0.07 ± 0.10 ‰ (2 s.d.).

It is of course impossible to obtain a sample of the ‘bulk Earth’ and hence, 
like many studies before ours, we assume that bulk Earth formed from primitive 
(chondritic) meteorites (e.g., Palme and O’Neill, 2014). The issue then is to decide 
which group(s) of meteorites best represents Earth, in terms of its Cu budget. This 
is particularly important, as the range of chondrite Cu isotope compositions span 
a wide range (–1.45 ‰ < δ65Cu < +0.07 ‰, Fig. 1; Luck et al., 2005), thus we now 
discuss a number of model-dependent scenarios.

a)	 The Earth’s Cu budget was established early in Earth’s accretion: 
Like Cu, large isotope variations also exist in systems such as O, Ti, 
Cr, Ru, Ca etc., suggesting that no single chondrite group represents 
a perfect match to Earth, and many workers posit a mixture. Based on 
modelling of Fitoussi and Bourdon (2012), we calculate a chondritic 
bulk Earth (CBE) value of δ65CuCBE = –0.19 ± 0.10 ‰ (2 s.d., Fig. 1). 
Another approach is to utilise the enstatite chondrites; despite being 

chemically dissimilar, these meteorites are identical to the Earth for 
most isotope systems (Dauphas et al., 2014) and many models suggest 
that the material that accreted to form the Earth contained a large 
proportion of enstatite chondrite-like planetesimals (Dauphas et al., 
2014). Both enstatite chondrites groups have similar ranges as well as 
having identical δ65Cu values (Fig. 1); a mixture of EH and EL chon-
drites gives an enstatite chondrite bulk Earth (ECBE) of δ65Cu = –0.24 
± 0.09 ‰ (2 s.d., Fig. 1), identical to δ65CuCBE.

b)	 The Earth’s Cu was delivered late, as a result of the Moon-forming 
giant impact: The mantle budget of Cu and other moderately volatile 
elements may be dominated by the final 10 % of material accreted to 
Earth, associated for example with the Moon-forming giant impactor, 
Theia (Albarède, 2009). The Cu in the mantle, therefore, would have 
escaped the effects of all but the final stages of planetary differentia-
tion, as Hf-W isotope data suggests that the majority of the core had 
formed by the time of impact (Kleine et al., 2010). Work on Ag isotopes 
by Schönbächler et al. (2010) seemed to indicate that the impactor mate-
rial was dominated by CI-like material. If this is the case, then our data 
would seem to support their model; our estimate for BSE is almost iden-
tical to the Cu isotope composition of CI chondrites. However, more 
recent isotope data seems to rule out a CI-like impactor; in particular, 
precise lunar O isotope data suggests that the impactor had an enstatite 
chondrite isotope signature (Herwartz et  al., 2014). In this instance, 
again, the enstatite chondrite model would seem most representative 
of bulk Earth.

Accepting either model ‘a’ or ‘b’ above, the bulk Earth Cu isotope compo-
sition lies somewhere between δ65Cu = –0.19 ± 0.10 ‰ and –0.24 ± 0.09 ‰. 
Therefore, in terms of Cu isotopes, BSE is enriched in the heavy Cu isotope 
compared to bulk Earth, with a minimum offset (taking bulk Earth to be –0.19 ‰) 
of +0.26 ± 0.14 ‰ (2 s.d., Fig. 1). This suggests that some process related to 
planetary differentiation and accretion has affected the Cu isotope composition 
of Earth’s mantle; we now consider the two most likely culprits: volatile loss of 
Cu, and core formation.

Preferential removal of the lighter Cu isotope during volatile loss could 
lead to enrichment in isotopically heavy Cu in Earth’s mantle. This, however, can 
be discounted by considering the Zn isotope system. Zinc is more volatile and 
less siderophile/chalcophile than Cu (Lodders, 2003); like all moderately volatile, 
lithophile elements, Earth’s mantle is depleted in Zn compared to most chondrite 
groups suggesting partial loss or incomplete accretion (Palme and O’Neill, 2014). 
However, the bulk Earth Zn isotope composition is equal to or lighter than those 
same meteorites (Albarède, 2009; Chen et al., 2013), i.e. contrary to the isotope 
effect predicted by volatile loss. Hence whichever process(es) resulted in the 
volatility-related depletion of Zn in Earth’s mantle did not affect its isotopes. 
It is therefore unlikely that such a process can explain the heavy Cu isotope 
enrichment in BSE.
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Planetary differentiation is therefore the most likely explanation for the 
Cu isotope difference between BSE and bulk Earth. To further investigate the 
behaviour of Cu isotopes during core formation, i.e. metal-silicate and sulphide-
silicate equilibration, we performed a preliminary series of high-pressure, high 
temperature experiments wherein natural basalt rock powder, doped with Cu 
(as either metal or oxide) was equilibrated with either pure Fe metal or stoichio-
metric FeS under fully molten conditions (see Supplementary Information). In 
the metal-silicate experiments, the direction of isotopic fractionation between 
the two phases (Δ65Cumetal-silicate) was always slightly positive, varying little with 
temperature (~ +0.1 ‰). Crucially, in the sulphide-silicate experiments the sense 
of fractionation is negative, opposite and with a larger magnitude to that of metal-
silicate equilibration (> –0.5 ‰). These data agree with the sense of Cu isotope 
fractionation between metal, silicate and sulphide measured in iron meteorites 
(Williams and Archer, 2011), as well as the extremely light Cu isotope composi-
tions measured in secondary sulphide minerals (Markl et al., 2006). Therefore, 
the positive Cu isotope difference between BSE and bulk Earth cannot be due 
to metal-silicate fractionation, because the isotopic fractionation has the incor-
rect sense. Instead, Earth’s “missing” light Cu must be stored in a sulphide-rich 
reservoir.

Mantle sulphides are a potential explanation; however, given the relative 
Cu isotope homogeneity of mantle-derived lithologies (Fig. 1) as well as the fact 
that a typical peridotite contains >90 % of its Cu in sulphides (Lee et al., 2012), 
this requires that a relatively significant budget of Cu is stored in sulphides that 
are never sampled by mantle melting or by tectonic exhumation. This does not 
seem to be the case: for instance, komatiites, which formed via high degrees of 
partial melting (such that at least 95 % of the Cu in the mantle source should be 
transferred to the melt), have Cu isotope compositions equal to that of orogenic 
lherzolites, which are (arguably) direct samples of the mantle. Komatiites also 
provide a temporal view on mantle composition and suggest that the Cu isotope 
composition of BSE was established at least as far back as 2.7 Ga, the age of 
our oldest sample. Similarly, ocean island basalts, which potentially sample 
sulphide-rich pyroxenites, show no evidence for significant Cu isotope mantle 
heterogeneity (Fig. 1). The lower continental crust is also a possible reservoir for 
isotopically light Cu sulphides – however, even if the bulk Cu concentration in the 
lower continental crust was three times current estimates, it would only represent 
~0.6 wt. % of BSE Cu and so would require an unfeasibly light composition (δ65Cu 
< –40 ‰). Hence, sulphides in the mantle or crust may host some isotopically 
light Cu, but are apparently not abundant enough to account for the significant 
Cu isotope offset between BSE and bulk Earth.

An alternative explanation is the early-stage formation of a sulphide-rich 
(Fe-O-S) liquid in the mantle, as the final volatile-rich residue after crystallisation 
of a magma ocean; this is often called the “Hadean Matte” (HM; Fig. 2; O’Neill, 
1991). Given its higher density compared to ambient mantle, a HM should pond 
at the core/mantle boundary and, potentially, admix into the core, isolating it 
from subsequent re-equilibration. Such a reservoir has been invoked to explain 

Figure 2 	 Schematic evolution of Cu concentration and isotopic composition of Earth’s mantle 
as modelled in this contribution. Earth accretes as a mixture of chondrites such that the bulk 
Earth Cu isotope composition is δ65CuCBE. Core formation sequesters ~60 % of Earth’s Cu in 
the metal phase, which is enriched in the heavy isotope, driving Earth’s mantle to a lighter 
composition. The formation of a Fe-O-S layer, the “Hadean Matte”, sequesters isotopically 
light Cu, driving Earth’s mantle to its present day composition (δ65CuBSE). Alternatively, Cu 
is delivered by an enstatite chondrite-like Giant Impactor, and mantle Cu only experiences 
sulphide-silicate equilibration.

moderately siderophile element abundances in the mantle (O’Neill, 1991) and the 
mismatch of various core formation chronometers (Wood and Halliday, 2005), and 
could host significant amounts of Cu. To this end, we have attempted to calculate 
the mass and composition of a Hadean Matte needed to balance the Cu isotope 
offset between BSE and bulk Earth. Following previous models, the HM should 
form after segregation of the majority (99 %) of the core; as such we have used a 
simple two-stage model, starting from a chondritic (δ65CuCBE) proto-Earth, where 
Cu is first partitioned into the core (metal-silicate equilibration), then a sulphide 
phase (Fig. 2). This is based on model ‘a’ above, i.e. Earth’s Cu budget was estab-
lished early in Earth’s accretion. Assuming instead that Earth’s mantle Cu was 
delivered by an enstatite chondrite-like Giant impactor (model ‘b’ above) does not 
significantly change the modelling, except that mantle Cu does not experience 
major metal-silicate equilibration, only sulphide-silicate equilibration (Fig. 2).
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A condition of the model ‘a’ is that the Cu normally assumed to be in 
Earth’s core is now apportioned between HM and core. Fixing a range of likely Cu 
concentrations in the HM, we calculated the remaining core [Cu] as a function of 
HM mass (or thickness, assuming a fixed density). This relationship is shown in 
Figure 3a, wherein the amount of Cu in the core reduces as the HM thickness and 
Cu concentration increases. The value of [Cu]core should not fall below 120 ppm 
because Cu is also siderophile (Siebert et al., 2013), which predicts a maximum 
HM thickness of ~35 km.

We then calculated the Cu isotope composition for each HM scenario 
required to drive the equilibrating silicate (i.e. the mantle) towards the modern-
day BSE value. This is shown in Figure 3b, where a smaller HM results in a more 
negative HM Cu isotope composition. We calculate a range of HM Cu isotope 
compositions because our preliminary experiments were simply used to assess the 
sense, not the magnitude of isotope fractionation; however, because large isotope 
fractionations (> 2 ‰) are not expected at the temperatures associated with the 
formation of a HM (3000-4000 K), a minimum thickness of ~2 km is predicted, 
even for the most Cu-rich HM. The maximum size for each HM as controlled 
by its Cu concentration corresponds to a minimum Δ65Cusulphide-silicate value of 
~ –0.6 ‰. To further constrain this model, further work is required to accurately 
parameterise Cu isotope fractionation factors, but these model predictions are 
in general agreement with our experimental data (Supplementary Information).

Admixing a Fe-O-S liquid into Earth’s core will affect core composition, 
specifically with regard to the light elements S and O. Given the constraints 
provided above (HM mass ≤ 1.6 % of Earth’s core), addition of a HM to the core 
will have a small effect on the core O composition (< 0.25 wt. % addition); for S, 
the effect is more significant – our model suggests that up to ~0.5 wt. % S could be 
added (Fig. 3a), which is in line with recent estimates based on molecular dynamics 
(Badro et  al., 2014) and siderophile element partitioning studies (Siebert et  al., 
2013) – of course, this does not preclude further core addition of S as a metal alloy.

Finally, we estimate the effect that removal of the HM could have on mantle 
lead isotope composition. Lead can be strongly chalcophile, and an early fraction-
ation of isotopically primitive Pb by a sulphide-rich phase is often cited as a solu-
tion to the 1st terrestrial Pb paradox; that is, the observation that, in 206Pb/204Pb 
vs. 207Pb/204Pb space, most mantle-derived rocks, continental sediments etc. plot 
to the right of the terrestrial geochron (either the meteoritic, 4.568 Ga geochron 
or the later Hf-W core formation cessation age of ~4.53 Ga, Fig. 4; Kramers and 
Tolstikhin, 1997). Modelling the evolution of mantle Pb isotope composition 
resulting from two fractionation events, metal-silicate equilibration at 50 Ma 
and sulphide-silicate equilibration at 100 Ma (following Galer and Goldstein, 
1996; see Supplementary Information for details), predicts a present-day mantle 
Pb isotopic composition that is comparable to empirical estimates for BSE, albeit 
the more unradiogenic ones (Fig. 4; Halliday, 2004) as well as the Pb composi-
tion of the ancient primitive mantle as estimated using flood basalts (Jackson 
and Carlson, 2011). Therefore, this does not preclude further unradiogenic Pb 
reservoirs, such as sulphides in refractory mantle phases (Burton et al., 2012) or 
late accretion of mantle Pb (Albarède, 2009).

Figure 3 	 Results of modelled effects of removal of a “Hadean Matte” from the mantle. The 
effects on a) Cu concentration of Earth’s core and b) required Cu isotope composition of the 
HM to produce a modern-day δ65CuBSE – plotted as a function of the thickness of the HM. D is 
the sulphide-silicate Cu partition coefficient. a) Green box defines “allowed” Cu concentrations 
of Earth’s core; [Cu]core < 120 ppm do not comply with the siderophile nature of Cu during core 
formation. Blue dotted line describes the amount of S added to the core (in wt.%) in the case 
of total mixing of the HM composed of a stoichiometric Fe-O-S liquid into the core. b) Lines 
plotted here limited to those “allowed” in top panel.
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Figure 4 	 Modelled evolution of mantle Pb isotope composition as a result of Pb partition-
ing into the core at 50 Ma and the HM at 100 Ma (composite growth curve). Compilation of 
mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) data taken from PetDB (http://
www.earthchem.org/petdb) which all plot to the right (more radiogenic) side of the terrestrial 
(4.568 Ga) geochron (based on the evolution of Pb from primordial source – based on Canyon 
Diablo Troilite). Lower figure is a zoom, showing that the composite curve agrees with some of 
the more unradiogenic estimates for modern day BSE Pb isotope composition (Halliday, 2004), 
as well as the compositions of certain flood basalt provinces (yellow: Ontong Java Plateau; 
grey: Baffin Island) thought to best represent ancient primitive mantle composition (Jackson 
and Carlson, 2011).

To conclude, the Cu isotope composition of BSE seems to require that large 
scale sulphide-silicate equilibration occurred sometime in Earth’s history; here, 
we have modelled it as the formation of a discreet Fe-O-S reservoir, a “Hadean 
Matte”, which ponded to the base of the mantle during the final stages of Earth’s 
differentiation. Such a feature likely admixed into Earth’s core; however, if any 
of this material remains, such material could account for recently detected non-
chondritic S isotope compositions in Earth’s mantle (Labidi et al., 2013). Finally, 
the Martian core is thought to have up to 14 wt. % S (Wänke and Dreibus, 1994) 
so FeS-silicate equilibration during core formation could have a significant effect 
on Mars’ mantle; Cu isotopes have the potential to identify this effect.
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