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ABSTRACT
We construct a new approach to model the velocity distribution function (VDF) for the protons in

stellar atmosphere expansions or planetary polar winds. The generalized Grad method of construction is
used, and comparisons with the bi-Maxwellian polynomial expansion model are made in applications to
the solar wind in the context of the measurements made by the Helios probes between 0.3 and 1 AU. A
Ðtting procedure based on a sum of two Maxwellian functions is used to check the convergence property
of both polynomial expansions and to calculate the predicted polynomial expansion proÐles along the
magnetic Ðeld orientation for typical proton VDFs in the solar wind. The generalized model is better
adapted than the bi-Maxwellian polynomial expansion function to reproduce the long-tail features of a
majority of the observed proton VDFs ; moreover, our model does not display negative values of the
VDF, contrary to the bi-Maxwellian expansion for normalized heat Ñux larger than unity. A 16 moment
approximation, which corresponds to a third order of development, allows us to provide an associated
set of generalized transport equations better closed than the equivalent system associated with a bi-
Maxwellian polynomial expansion.
Subject headings : plasmas È solar system: general È solar wind È stars : mass loss

1. INTRODUCTION

The solar corona is the source region of the solar wind, a
supersonic Ñow composed of electrons, protons, and heavy
ions that carves the heliosphere. The polar wind is a plasma
Ñow of electrons, protons, and O` ions, escaping from the
polar terrestrial ionosphere along the magnetic Ðeld lines.
Prototypes of stellar atmospheres expanding into the inter-
stellar space, they expand from collision-dominated regions,
through transition regions, to collisionless regions. To
model such plasmas in their collision-dominated regions, an
isotropic hydrodynamic approach (Chapman 1965 ; Parker

is generally well adapted because the collisions1958)
between particles are sufficiently numerous to thermalize
the Ñow. It consists of the resolution of a system of trans-
port equations for the macroscopic parameters. In collision-
less regions, kinetic models &(Chamberlain 1960 ; Lemaire
Scherer are much more adapted than Ñuid models.1971)
Indeed, particles in such a medium move nearly indepen-
dently of the others. These methods generate exospheric
models based on a microscopic description of the Ñow. But
in transition regions, both models fail because, with a
Knudsen number (which is deÐned as the ratio of the parti-
cle mean free path to the density scale height) roughly equal
to one interactions between particles are suf-(Shizgal 1977),
Ðcient to alter pure collisionless approaches and not enough
to justify a pure collision-dominated state. For instance, the
proton temperature anisotropy is equal to unity for all the
hydrodynamic models, while the kinetic approaches
provide proton temperature anisotropy between 10(T

A
/T

M
)
pand 900 & Scherer whereas observations in(Lemaire 1973),

the solar wind reveal values of 2^ 1.
Therefore, another approach is needed to model plasma

expansions in these intermediate regions. hasGrad (1958)
proposed a solution of the Boltzmann equation, the so-
called moment approach, in which the distribution function
is a polynomial expansion with a weight function, which is
the local equilibrium Maxwellian distribution function.
Used in nearÈlocal-equilibrium states, it is based on the

resolution of an associated system of transport equations
for the velocity moments of the distribution function. Thus,
Cuperman, Weiss, & Dryer have derived a set(1980 ; 1981)
of transport equations up to the fourth order of the velocity
moments for spatially inhomogeneous, anisotropic, multi-
species, and spherically symmetric systems of particles
obeying an inverse-square law of interactions. They have
calculated the velocity collisional transfer by the Fokker-
Planck operator based also on a local Maxwellian poly-
nomial expansion. But for plasma Ñows in states far from
the local equilibrium, such as, for instance, with large tem-
perature anisotropies, these microscopic descriptions seem
not to be available. Then, an improved solution is to take
into account as Ðrst principles the properties of the non-
equilibrium system. Goldgerger, & Low wereChew, (1956)
the Ðrst to derive transport equations based on a bi-
Maxwellian species distribution function. Transport e†ects
such as heat Ñux and viscosity for Coulomb collisions have
been included by & Pohl andChodura (1971) Oraevskii,
Chodura, & Feneberg Finally, & Schunk(1968). Demars

extended this development to arbitrary degrees of(1979)
ionization and built the 16 moment set of transport equa-
tions (using velocity moments until order 3 in gyrotropic
microscopic states). They have shown in applications to the
solar and polar winds (Demars & Schunk 1989, 1990, 1991)
the great interest of such models that provide a microscopic
and a macroscopic description in relatively good agreement
with observations.

GradÏs solution cannot describe states with large tem-
perature anisotropies because such a polynomial expansion
based on an isotropic Maxwellian function is only allowed
to generate small deviations from isotropic states. In the
same way, a polynomial expansion with a bi-Maxwellian
function as a weight factor cannot generate large deviations
from the bi-Maxwellian distribution function. For instance,
it cannot be used to describe plasma Ñows that are charac-
terized by large, magnetic ÐeldÈaligned heat Ñux because a
bi-Maxwellian function is not well adapted to generate such
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heat Ñux. Several authors have tried to determine the Ðelds
of application of the & Schunk model.Demars (1979)

Ganguli, & Mitchell have foundPalmadesso, (1988)
unstable waves modes when this model is used for large-
scale magnetospheric-ionospheric dynamics and have
deÐned a threshold that depends on the magnetic ÐeldÈ
aligned heat Ñux normalized by the free-streaming heatq

ApÑux (which is the thermal energy of ions times the mag-P
Apnetic ÐeldÈaligned thermal speed and isVthAp
) q

Ap
¹

Above this limit the bi-Maxwellian expan-0.44(P
A

VthA)p.sion cannot correctly describe such plasmas. Cordier
has studied the hyperbolic nature of the(1994a, 1994b)

system of transport equations built from a 16 moment poly-
nomial expansion for collisionless plasmas and has
obtained very similar limits : Moreq

Ap
¹ 0.46(P

A
VthA)p.recently, a general analysis of the microscopic description

was developed by Moroko†, & NadigaLevermore, (1995).
It consists of studying the realizability and positivity of any
model of velocity distribution functions (VDFs). They have
built methods to make sure that the velocity moments and
the VDF remain physically realistic. The best illustration of
these rules is given by & Rasmussen whoGombosi (1991),
has shown that the 16 moment VDF has negative values for
too high values of the magnetic ÐeldÈaligned heat Ñux ;

Blelly, & Fontanari have stressed theRobineau, (1996)
hypothesis of Ñuid description and concluded that the
transport of energy should contribute only to a small part
of the local thermal energy creation. A di†erent criterion
has been deÐned by He analyzed the natureMintzer (1965).
of the convergence of any polynomial expansion gener-
alizing the Grad approach and has obtained a necessary
condition on the choice of the weight function in compari-
son with the exact solution. Then, has shownHubert (1985)
the nonconvergence of a bi-Maxwellian polynomial expan-
sion describing a microscopic model characterized by a
long tail, typical of the observed proton velocity distribu-
tion of the solar wind.

Considering all these analyses, the results of &Demars
Schunk are open to some criticisms because they(1990)
have elaborated models for the solar wind proton VDF

& Schunk from Helios 2 solar probe data(Demars 1990)
et al. Indeed, this probe has revealed the(Marsch 1982).

existence of three main types of three-dimensional proton
VDF contours : an isotropic state, an anisotropic state dis-
playing a long tail in the magnetic Ðeld orientation, and a
double-humped VDF oriented in the same way and associ-
ated with large values of temperature anisotropy and heat
Ñux. Furthermore, the heat Ñux value is higher than the
limit deÐned by previously cited authors [in q

Ap
¹

with the coefficient a being larger than unity ina(P
A

VthA)p]most of these observed proton distributions, and the bi-
Maxwellian polynomial expansion provides unphysical
VDF proÐles.

This paper is the Ðrst part of a work whose purpose is to
establish a generalized microscopic solution as well as a
generalized Ñuid theory for the description of time-
dependent, spatially nonhomogeneous, anisotropic, and
multispecies space plasma winds. Our approach is directly
inspired by the generalized polynomial solution of the Bolt-
zmann equation established by in which theMintzer (1965),
most important point for application is the choice of the
zeroth-order approximation. Indeed, it is as important that
a good approximation can be obtained when the expansion
is truncated after a small number of terms as it is for the

expansion to converge when the number of terms
approaches inÐnity ; moreover, the zeroth-order approx-
imations have to be sufficiently simple so as not to give a
complex associated system of coefficients of the polynomial
expansion (or, equivalently, a sufficiently simple associated
system of the general transport equations). Thus, our
approach will be to model the characteristics of the solar
wind proton VDF in order to select a zeroth-order approx-
imation from an exact solution of a similar but simpliÐed
problem. A similar step has been used by inHubert (1983)
the Ðeld of non-Maxwellian auroral phenomena, whose
results provide good comparison with respect to Monte
Carlo simulations & Barakat &(Hubert 1990 ; Barakat
Hubert 1990).

is devoted to the analysis of typical propertiesSection 2
of the proton VDF observed in solar wind. dealsSection 3
with the mathematical structures of the bi-Maxwellian
polynomial expansion. In we develop our new solution° 4
for the microscopic description of the proton in solar and
polar winds. is a brief discussion of the merits ofSection 5
this approach. A conclusion is presented in ° 6.

2. CHARACTERISTICS OF THE PROTON VELOCITY

DISTRIBUTION FUNCTION OF THE SOLAR WIND

2.1. Macroscopic Features
et al. have provided observations of theMarsch (1982)

radial evolution of the macroscopic parameters of the
protons between 0.3 and 1 AU. Using the data of the Helios
2 probe, the evolution of the total temperature and the heat
Ñux has been determined for di†erent speeds of the protons.
The total temperature evolves faster for low-speed windsT

pthan for high-speed winds. It follows a radial evolution as
R~a, where 0.76¹ a ¹ 1.33, and R is the distance to the Sun

& Marsch The proton temperature anisot-(Schwenn 1991).
ropy increases with heliocentric distance ; it evolves(T

A
/T

M
)
pbetween 1 and 2 and is always larger than unity at 1 AU.

Furthermore, Marsch has shown that at 0.3 AU, the proton
perpendicular temperature could be twice as large asT

Mpthe proton parallel temperature Indeed, decreasesT
Ap

. T
Mpby 2 orders of magnitude from 0.3 to 1 AU. The evolution of

the total heat Ñux is also proportional to R~a, whereQ
p3.8¹ a ¹ 4.7. The heat Ñux is larger for slow winds than for

fast ones. Finally, the perpendicular heat Ñux is muchq
Mpsmaller than the parallel heat Ñux q

Ap
.

For heliocentric distances larger than 1 AU, data of
several probes provide us macroscopic parameter radial
variations also The density, as expected, varies(Gazis 1984).
as R~2, but the proton temperature evolves slower
(following a R~a law with 0.3¹ a ¹ 0.7 ; see Maksimovic

than an adiabatic expansion, as it was the case1995)
between 0.3 and 1 AU. Gazis, from Voyager 1 data, has
provided an estimation of the radial component of the heat
Ñux. He has suggested that follows a radial evolution asQ

pR~2.44. The di†erences between observations made in the
regions less distant than 1 AU from the Sun and beyond are
usually explained by a heating of the solar wind caused by
shocks or interplanetary compression zones mainly
observed beyond 1 AU. Moreover, et al. haveLiu (1995)
explained that somewhere near 10 AU, the observations of
the macroscopic parameters are perturbed by the high-
speed winds that mix with slow solar winds. Then, at large
heliocentric distances, the analysis of the total proton tem-
perature and of the total heat Ñux have to take intoT

p
Q

p
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account new cooling/heating mechanisms and interpene-
trating processes.

To sum up, for all heliocentric distances, observations
reveal a nonadiabatic expansion of an anisotropic plasma
composed of particles that interact weakly. We will focus
our attention on the evolution of the temperature anisot-
ropy and the heat Ñux.

2.2. Microscopic Features
The study et al. of the(Marsch 1982 ; Marsch 1982)

proton VDF has revealed some speciÐc aspects of the solar
wind microscopic state. It has shown a wide variety of non-
thermal features : gyrotropic contours with respect to the
magnetic Ðeld direction, a core and halo shape of the proton
VDF along the magnetic Ðeld, a temperature anisotropy of
the core always as while(T

A
/T

M
)core ¹ 1 (T

A
/T

M
)totalº 1

almost everywhere, large values of the magnetic ÐeldÈ
aligned heat Ñux, and even resolved double peaks. The
observations have shown three main types of three-
dimensional VDFs. The Ðrst class is composed of isotropic
VDFs and is mainly observed in interplanetary magnetic
Ðeld sector boundaries. Most of the VDF proÐles develop a
long tail in the magnetic Ðeld orientation (see below).Fig. 2,
The third class displays a surprising proÐle, which reveals a
magnetic ÐeldÈaligned second peak (see Fig. 1).

Observed at all heliocentric distances, this type of shape
represents 20% of all the measurements made by the Helios
2 probe, according to et al. Furthermore, aMarsch (1982).
correlation between the Alfve� n speed and the relative speed
between the two peaks persists during low and high
streams, suggesting an Alfve� n waves regulation phenomena

et al. The double-humped proton dis-(Montgomery 1976).
tribution function is a stable feature of the solar wind
proton VDF, related to large values of the magnetic ÐeldÈ
aligned heat Ñux.

The crosses in Figures and are a cut through the1 2
proton VDF cases I and K (obtained from Marsch data :

et al. along the magnetic Ðeld direction. TheMarsch 1982)
case K was measured at an heliocentric distance of 0.39 AU
and a solar wind speed of 494 km s~1, and the case I at 0.54
AU and 618 km s~1.

In order to characterize the microscopic state, Feldman
Ðts the observations with a sum of two Maxwellian(1979)

functions. In Figures and we show results of such Ðtting.1 2
The dashed and dotted lines Ðt the core and the halo respec-

FIG. 1.ÈMagnetic ÐeldÈaligned proÐle of case K issued from Marsch
data and Ðtting by a sum of two Maxwellian functions plotted in the
random velocity space. The crosses represent the Helios probe measure-
ments, the solid line is the sum of two Maxwellian functions, and the
dashed and dotted lines are the independent representation of the two
Maxwellian functions composing the sum.

tively with a Maxwellian function, while the solid line is the
sum of these two Maxwellian functions. Tables and give1 2
the value of the Ðtting variables obtained in the two cases I
and K and the derived macroscopic parameters. It also
provides the values determined by et al. forMarsch (1982)

FIG. 2.ÈMagnetic ÐeldÈaligned proÐle and Ðtting of case I : the plotting
format is the same as that for Fig. 1.

TABLE 1

FITTING OF CASE I

FITTING VELOCITY MOMENTS

Parameter Value Parameter Fitting Data Marsch Data

n1/(n1] n2) 0.8 n
p

(cm~3) 14 10.4
T1 (K) 71,130 V

m
(km s~1) 9.9 . . .

T2 (K) 500,480 T
Ap

204,420 267,000
U12 (km s~1) 49 q

Ap
] 10~13 (kg m3 s~3) 6.2 2.88

n
p
m

p
Sc

A
4T ] 10~8 (kg m4 s~4) 3.27 . . .

n
p
m

p
Sc

A
5T ] 10~3 (kg m5 s~5) 4.16 . . .

n
p
m

p
Sc

A
6T ] 102(kg m6 s~6) 8.08 . . .

NOTE.ÈResults of a sum of two Maxwellian functions Ðtted to the proÐle along the magnetic Ðeld
of case I. The terms deÐned the Ðrst Maxwellian function of the sum and the second ;n1, T1 T2, U12is the relative velocity between the two Maxwellian functions ; and areU12 n2\ 1 [ n1, T1, T2temperatures ; is the average velocity relative to the velocity of the maximum phase space density ;V

mis the parallel temperature ; and is the parallel heat Ñux.T
Ap

q
Ap
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TABLE 2

FITTING OF CASE K

FITTING VELOCITY MOMENTS

Parameter Value Parameter Fitting Data Marsch Data

n1/(n1] n2) 0.83 n
p

(cm~3) 7.82 26.2
T1 (K) 217,638 V

m
(km s~1) 22.2 . . .

T2 (K) 215,327 T
Ap

509,706 566,000
U12 (km s~1) 131 q

Ap
] 10~13 (kg m3 s~3) 3.47 6.19

n
p
m

p
Sc

A
4T ] 10~7 (kg m4 s~4) 9.92 . . .

n
p
m

p
Sc

A
5T ] 10~1 (kg m5 s~5) 1.05 . . .

n
p
m

p
Sc

A
6T ] 10`3 (kg m6 s~6) 2.25 . . .

NOTE.ÈThe variables are deÐned as in Table 1.

comparison. It is important to underline that in our Ðtting
we have only used a contour plot along one direction to
calculate the macroscopic parameters, while Marsch has
used three-dimensional contour plots. Furthermore, the
value of that we give as the Marsch value is calculatedq

Apas where is the heat Ñux density given inq
Ap

\ q
p
/(2n

p
), q

pthe Marsch data, and is the density.n
pAs shown in Figures and a sum of two Maxwellians1 2,

Ðts these proÐles very well along the magnetic Ðeld direc-
tion. With this model, we are able to calculate the velocity
moments at any order. We have established a great sensi-
tivity of the proÐle in relation to the velocity moment
values. Indeed, a variation of 10% of the heat Ñux value can
generate a second peak in a proÐle modeled with a sum of
two Maxwellian functions. The Ðtting has to be very accu-
rate for regions of large velocity in order to obtain the best
estimate of the velocity moments.

Figures and are obtained with the3a 3b Marsch (1982)
macroscopic parameters. They represent values of as aq

Apfunction of the parallel thermal velocity, VthAp
\

times pressure term is the(2k
B
T
Ap

/m
p
)1@2 P

Ap
\ k

B
T
Ap

(k
BBoltzmann constant, and is the proton mass), which ism

pthe parallel free-streaming heat Ñux. The double-peaked
VDF measurements are separated into other cases.(Fig. 3b)
The solid line represents the relation Itq

Ap
\ (P

A
VthA)p.corresponds to the upper limit deÐned in the paper of

et al. above which unphysical behaviorsPalmadesso (1988),

FIG. 3.ÈRepresentation of as a function of for Marschq
Ap

(P
A

VthA)
pvalues : (a) the data without a resolved double peak ; (b) the double-humped

cases. The crosses represent the Helios probe measurements, the solid line
denotes the relation, and the dashed line denotes the con-q

Ap
\ (P

A
VthA)

pstraints of construction of a generalized polynomial expansion.

(for instance, negative values of the proton VDF) appear in
the model of & Schunk Indeed,Demars (1979). Palmadesso
et al. have deÐned the domain of application of the(1988)
solution of & Schunk by the conditionDemars (1979)

where a \ 0.44 according to the study ofq
Ap

¹ a(P
A

VthA)p,the dispersion relation issued from a 16 moment model, and
they have stressed that a is equal to unity for dynamic Ñuid
plasma simulations. We have retained this last value for a as
the less restrictive criterion. Although it is not a statistical
analysis because of the small number of three-dimensional
VDF proÐles in paper, it nevertheless givesMarschÏs (1982)
an indication of the validity of the 16 moment model in
solar wind. For instance, in cases I and K, isq

Ap
/(P

A
VthA)prespectively equal to 1.7 and 1.3. Therefore, it seems that in

most of these cases, the bi-Maxwellian polynomial expan-
sion cannot be used to model solar wind proton VDF. Fur-
thermore, we Ðnd no relation between the normalized
parallel heat Ñux value and the existence of the double peak,
if we compare withFigure 3a Figure 3b.

The lack of measurements in transitional regions of the
polar wind does not give us the possibility to provide a
similar analysis. But a few Monte Carlo simulations

Bargouthy, & Schunk have(Barakat, 1995 ; Wilson 1992)
supplied the evolution of the predicted proton VDF pro-
Ðles. Thus, taking into account their results, we note that
the typical proton VDF proÐles in the polar wind are
similar to the typical proton VDF shapes in the solar wind.
Moreover, measurements in the solar wind are exclusively
made in the transition region far from the Sun, while a
number of measurements have been made in the collision-
dominated region of the polar wind, but few are made in
higher regions. Thus, the study of the polar wind has a
complementary aspect to the study of the solar wind from
the point of view of the measurements of the plasma param-
eters of astrophysical winds.

3. THE BI-MAXWELLIAN POLYNOMIAL EXPANSION TO

MODEL THE PROTON VELOCITY DISTRIBUTION

FUNCTION

3.1. General Algebraic Rules of Construction
First developed by a polynomial expansionGrad (1958),

based on a weight function presents great interest for
solving the Boltzmann equation. The weight function in the
original Grad approach is the local Maxwellian equilibrium
distribution function. His mathematical structure has been
generalized for far-from-equilibrium states by Mintzer

This latter has deÐned the general form of an expan-(1965).
sion in velocity space around a zeroth-order distribution
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function, which has to be chosen as a good approximation
in some limits of the exact solution of the Boltzmann equa-
tion (in order to ensure the rapid convergence of the
expansion). The VDF is expressed as follows :

f (r, ¿, t) \ f 0(r, ¿, t) ;
q/0

`=
a
q
(r, t)M

q
(¿) , (1)

where f 0 is the zeroth-order function, the are a completeM
qset of functions in velocity space (but may also depend on

space and time), and the coefficients act as the generalizeda
qstate variables.

In order to construct the simplest set of equations for the
we deÐne an orthonormalization rule,a

q
,

P
V
f 0(r, ¿, t)M

p
(¿)M

q
(¿)d¿\ d

pq
, (2)

which involves

a
q
(r, t)\

P
V
f (r, ¿, t)M

q
(¿)d¿ , (3)

where V is the velocity space. The equations for area
qobtained by multiplying the Boltzmann equation by M

qand integrating the result in velocity space. If only the Ðrst
few velocity moments are useful, then a solution is to form
the set from the complete set of monomials 1,M

q
¿, ¿¿, ¿¿¿,

. . . (using a dyadic notation). Then, the moments of order m
will linearly derive from the coefficients with q ¹ m. Buta

qthe equation for involves coefficients of at least ordera
qq ] 1. Therefore, it is necessary to make some assumptions

for the coefficients higher than those that we are solving. As
for the Grad choice, Mintzer has suggested to truncate the
expansion, that is, higher coefficients than a given ordera

qm are set equal to zero. Finally, we obtain a closed set of
equations for the coefficients In the same way, an equiva-a

q
.

lent system of equations for the velocity moments of lower
order than m (or for the equivalent macroscopic
parameters) can be obtained by multiplying the Boltzmann
equation with vq for q varying from 0 to m and by inte-
grating in velocity space. The closure assumption is deter-
mined with the expression of f, which depends on (a

q
)
q/0,mand consequently on the velocity moments of lower order

than m. Such a limiting condition, that is, to know a priori f,
is essential in determining the expression of the collisional
transfers for non-Maxwellian potential forces and in closing
the set of transport equations in spatially nonhomogeneous
systems.

has deÐned the convergence properties ofLowell (1967)
the polynomial expansion constructed from equations (1),

and We review them, as this point is seldom dis-(2), (3).
cussed, before embarking on long calculations that may not
lead to a good approximation whatever the number of
terms kept in the expansion. The coefficients of thea

qexpansion minimize the integral :(eq. [3])

I\ 1
n
p

P
V

[ f E(r, ¿, t)[ f A(r, ¿, t)]2
f 0(r, ¿, t)

d¿ , (4)

where f E is the exact solution and f A the approximation. It
is equivalent to minimizing the mean square error in an
expansion of F\ f 0~1@2f E. Thus, the velocity space regions
in which the f 0~1@2f A would be near f 0~1@2f E, following this
criterion, could not exactly correspond to the regions where
the exact solution f E would be well approximated by f A.

Therefore, particular care must be taken when we choose
f 0. A natural criterion for the convergence of the polyno-
mial expansion, which would have been that [ f E(r,/

V
¿, t)

[ f A(r, must be minimized, is useless because it¿, t)]2d¿
prevents an easy construction of the equations for the coeffi-
cients Then, a necessary condition deriveda

q
(Mintzer 1965).

from is that the integral [ f E(r, t)]2/equation (4) /
V

¿,
[ f 0(r, exists. One condition for the deÐnition of this¿, t)]d¿
integral is that

lim
@ v @?=

f E(r, ¿, t)
[ f 0(r, ¿, t)]1@2 \ 0 . (5)

In what follows we use the condition deÐned in equation (5)
to know whether the polynomial expansion is divergent.

3.2. Bi-Maxwellian Function as a Weight Factor
Several authors have generalized GradÏs method for far-

from-equilibrium states with a bi-Maxwellian function as a
weight factor. First applied by et al. for a colli-Chew (1956)
sionless anisotropic plasma, the approach was generalized
by & Schunk to a large class of spaceDemars (1979)
plasmas. They have provided a system of transport equa-
tions for the Ðrst 16 velocity moments and have deÐned a
microscopic description as in The mathemati-equation (1).
cal deÐnition of the bi-Maxwellian weight function is

f
bM
0 (r, c

A
, c

M
, t)\ n

p

A m
p

2k
B
nT

Ap

B1@2 m
p

2k
B
nT

Mp

] exp
G
[ m

p
2k

B
T
Mp

c
M
2 [ m

p
2k

B
T
Ap

c
A
2
H

, (6)

where is the density, is the random thermal velocityn
p

c
Aparallel to the magnetic Ðeld where is the(c

s
\ ¿

s
[ u

s
, u

sspecies average drift velocity), and the perpendicular veloc-
ity is a vector of two dimensions (we consider gyration-c

Mdominated plasmas), andT
Ap

\m
p
Sc

Ap
2 T/k

B
T
Mp

\
where . The poly-m

p
Sc

Mp
2 T/2k

B
, SAT \ /

V
f (r, ¿, t)Adc

pnomials generated by the weight function deÐned in
and the orthonormalized rule (see areequation (6) eq. [2])

the Hermite polynomials along the parallel velocity
denoted and the associated Laguerre polynomials ofH

iorder zero along the perpendicular velocity denoted L
j& Kahan Therefore,(Jancel 1966).

f
bM
A (r, c

A
, c

M
, t)\ f

bM
0 (r, c

A
, c

M
, t)

]
G
1 ] ;

i,j/1

m
a
ij
(r, t)H

i
(c

A
)L

j
(c

M
)
H

(7)

is the approximation expansion of order m with i ] j ¹ m.
In the 16 moment development, m is equal to 3.

In the & Schunk investigations, theDemars (1990)
derived polynomial expansion should be able to reproduce
all the proÐles of the VDF observed in the solar wind and
expected in the polar wind. Their model should also be able
to provide the macroscopic parameter evolution in good
agreement with observations. But some criticisms have been
made on their conclusions. et al. havePalmadesso (1988)
solved the dispersion relation issued from a 16 moment
model and obtained unstable waves when isq

Ap
/(P

A
VthA)pabove about 0.44. However, in their study they did not

consider the collisional terms, and, consequently, they over-
estimated this criterion by neglecting dissipative terms. But
they pointed out that in any case when running dynamic
Ñuid plasma simulations, unstable behaviors appear when
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FIG. 4.ÈPolynomial expansion based on a bi-Maxwellian weight
factor, centered on the average velocity for case K issued from Marsch
data. The crosses represent the Helios probe measurements in the magnetic
Ðeld direction. The solid line is the zeroth-order function deÐned in ° 3.2
(see In the top panel, the dashed line corresponds to order 3 ofeq. [6]).
development (see eq. [7]) and the dotted line to order 4, while the bottom
panel shows orders 5 and 7, respectively.

is on the order of 1. Indeed, in that case, theq
Ap

/(P
A

VthA)ppolynomial expansion ' in reaches af
bM
A \ f

bM
0 (1 ] ')

value of the order of the unity, so that the VDF may be in
the process of breaking down et al.(Palmadesso 1988).
Thus, when & Schunk tried to reproduceDemars (1990)
contour plots of a typical proton VDF in the solar wind, in
order to obtain a double-peaked shape, they increased the
total proton heat Ñux value determined by Marsch within
the important experimental uncertainty, and they arbi-
trarily Ðxed the anisotropy heat Ñux, which was not given in
Marsch data. Therefore, their conclusions, to a certain
extent, fail because they did not respect the limitation cri-
terion on the parallel heat Ñux. Thus, the second peak
appears simultaneously with negative values of the proton
VDF. In conclusion, it seems that the contour plots with a
double peak that they have obtained are due to a mathe-
matical artifact of the polynomial expansion, as pointed out
as early as 1985 by Hubert stressing conse-(Hubert 1985),
quences on instabilities.

The convergence criterion of a polynomial expansion
deÐned in is not easy to apply because ofequation (5)
the unknown f E. But if we use the representation of f E
deÐned in then we are able to check such a crite-° 2.2,
rion. We model the observed VDF by the sum of two
Maxwellian distribution functions : f (v)\ n1 fMax1(T1, v) ]

In regions of large velocity, one of the Max-n2 fMax2(T2, v).
wellian functions of the sum is much larger than the other,

FIG. 5.ÈPolynomial expansion based on a bi-Maxwellian weight
factor for case I : the plotting format is the same as that for Fig. 4.

which therefore can be neglected and is the function that
Ðts the core. The convergence criterion (see eq. [5])

when is then equivalentfMax(cA)/( f
bM
0 )1@2(c

A
)] 0 c

A
] ^O

to the condition Tables and give the ÐttingTMax\ 2T
A
. 1 2

values (the Maxwellian function number 2 Ðts the halo, the
number 1 the core) ; then, we can note that this required
condition is not veriÐed in case I for large positive velocity
modulus, as K andTMax\ T2\ 500,480 2T

A
\

408,840 K.
In Figures and we have plotted Helios probe obser-4 5

vations denoted as cases K and I, respectively, in the paral-
lel velocity plane (crosses) and the corresponding
bi-Maxwellian polynomial expansion of order 0 (solid line),
3 (dashed line), and 4 (dotted line) in the top panel and 0
(solid line), 5 (dashed line), and 7 (dotted line) in the bottom
panel. We note the evident nonconvergence of the model in
case I and the slow convergence in case K (in that case we
have established the convergence criterion and that the
apparition of the oscillation is very sensitive to the values of
the velocity moment). The convergence criterion deÐned in

seems to be realistic according to these twoequation (5)
Ðgures.

Furthermore, the negativity of the distribution function is
in contradiction with the & Schunk assump-Demars (1979)
tion on the calculation of the collisional transfers, i.e., the
polynomial expansion ' must remain lower than unity.

4. GENERALIZED POLYNOMIAL EXPANSION OF THE

PROTON VELOCITY DISTRIBUTION FUNCTION

IN POLAR AND SOLAR WINDS

has recommended the choice of a weightMintzer (1965)
function (which is also the zeroth-order approximation)
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near the expected exact solution. Then, for applications to
solar wind, an interesting idea for a microscopic model
would be an expansion with a weight factor, such as an
asymmetric function involving large parallel heat Ñux.

being inspired by the & WooHubert (1985), Whealton
exact solution of the BGK equation for the moderate(1971)

ionized plasma subjected to an electrostatic Ðeld, built a
polynomial expansion with a weight function deÐned as
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where and were deÐned in and erfc is thec
A
, c

M
, T

Mp
° 3,

complementary error function & Stegun(Abramovitz 1964).
D* and E* are chosen such that the exact Ðrst-order veloc-
ity moments and are equal to those provided bySc

A
mT Sc

M
l T

the zeroth-order approximation, that is,
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Then, we obtain the following relations :
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and the formal expression for in which is completelyf
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where are Laguerre polynomials associated with(L
j
)
j/1,nthe perpendicular part (dependent on of isc

M
) f

G
0 . (M

i
)
i/1,nan orthonormalized polynomial set deÐned in the veloc-c

Aity space and associated with the parallel part of and n isf
G
0 ,

the order of development with i] j ¹ n. With this function
we are able to calculate the velocity moments at any order.

Such a has a long suprathermal tail in the magneticf
G
0

Ðeld direction and displays an anisotropic temperature. We
follow the advice of by choosing a zeroth-Mintzer (1965)
order function as a known solution of equations that
approximate the real physical phenomena. Indeed, in the
polar wind et al. considered a Ñow of H`Barakat (1995)
ions through a background of O` ions (with constant
average velocity and temperature) subjected to an electro-
static Ðeld and velocity-dependent Coulomb collisions.
They obtained long-tailed VDF proÐles that become
double-humped VDF proÐles when the number of colli-
sions decrease in the transition region. In the solar wind a

similar evolution of the VDF of the protons was obtained
by & Marsch by studying the evolution ofLivi (1987)
proton species subjected to self-Coulomb collisions
described by the BGK operator. Therefore, the relaxation of
protons in a background of neutrals subjected to an electro-
static Ðeld and a constant collision frequency (which is the
problem solved by & Woo can be con-Whealton 1971)
sidered as the Ðrst-order approximation of processes that
provide typical observed VDFs.

Furthermore, the deÐnition of proposed by Hubertf
G
0

imposes that be less than 2 times the parallel free-q
Apstreaming Ñux (derived from the condition that the e†ective

temperature has to be positive). This limitation is rep-T0resented in by the dashed lines in the context of theFigure 3
observations made by the probe Helios in the solar wind.
Most of the measurements are under the broken curve,
which means that is almost everywhere deÐned. A similarf

G
0

approach for the study of non-Maxwellian ion states in the
auroral latitudes has been developed by TheHubert (1983).
polynomial expansion is based on the exact solution of the
BGK equation for a moderate ionized plasma subjected to
an electrostatic Ðeld perpendicular to the magnetic Ðeld.

& Barakat and & HubertHubert (1990) Barakat (1990)
have shown the good convergence properties of this poly-
nomial expansion when compared to Monte Carlo simula-
tions.

As the convergence property deÐned for a bi-Maxwellian
function, an equivalent condition to is obtainedequation (5)
by substituting for large velocity modulus, f E with the sum
of two Maxwellian distribution functions deÐned in ° 2.2.
We have determined an equivalent condition as TMax ¹

2T 0, where T 0 is deÐned in and is theequation (10), TMaxlarger temperature between the two temperatures andT1 T2of the sum of the two Maxwellian functions. For case I,
2T 0\ 91,105 K and K for large nega-TMax\ T2\ 500,480
tive values of the parallel velocity, and in case K,
2T 0\ 484,182 K and K. However, forTMax\ T1\ 217,638
these regions we have observed that the function that Ðts
the halo overestimates the proÐle of case I in large negative
velocity regions ; the other Maxwellian function is more
adapted (in this case, the criterion of convergence is veriÐed :

K). Nevertheless the long-tail part, inTMax\ T1\ 71,133
positive velocity regions, of the function is more interesting
because it characterizes the non-Maxwellian behaviors of
the VDF. Thus, for positive values of the parallel velocity,
the convergence criterion is always veriÐed. Indeed, the con-
dition of convergence is equivalent to

lim
cA?`=

exp [[(m
p
/2k

B
TMax)cA2 ] (c

A
/D*)]

erfc ME*1@2[(1/E*) [ (c
A

] D*)/2D*]N1@2\ 0 ,

which is always veriÐed because

lim
cA?`=

erfc
C
E*1@2

A 1
E*

[ c
A

] D*
2D*

BD
\ 2 .

Therefore, the necessary convergence condition deÐned in
is veriÐed in both cases.° 3

We show in Figures and the corresponding poly-6 7
nomial expansion function obtained with velocityf

G
A

moments of Tables and in the same way as in Figures1 2 4
and We have used for the construction of the same5. f

G
A

order m of development and the assumption of gyration-
dominated plasmas as in The crosses represent the° 3.
Helios probe measurements. The top panel of Figures and6
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FIG. 6.ÈPolynomial expansion based on the generalized weight func-
tion deÐned in centered on the average velocity for case K issued from° 4,
Marsch data. The crosses are the Helios probe measurements in the mag-
netic Ðeld direction. The solid line is the zeroth-order function deÐned in

(see In the top panel, the dashed line corresponds to order 3 of° 4 eq. [8]).
development (see and the dotted line to order 4, while the bottomeq. [11])
panel shows orders 5 and 7, respectively.

represents the 0, 3, and 4 orders of the generalized poly-7
nomial expansion, and the bottom panel represents the
orders 0, 5, and 7.

Comparing to we note that case KFigure 6 Figure 4,
seems to be better approached with a bi-Maxwellian poly-
nomial expansion than with a generalized approximation
for order m larger than 4. Indeed, in a double peakFigure 6,
never appears, but neither do negative values, as observed
in Both developments seem to converge slowlyFigure 4.
and to need orders larger than 3 to Ðt accurately the
observed distribution function.

FIG. 7.ÈPolynomial expansion based on the generalized weight func-
tion deÐned in for case I : the plotting format is the same as that for° 4
Fig. 6.

In case I, the divergence of the bi-Maxwellian polynomial
expansion is obvious. With a generalized polynomial
expansion the convergence is slow, but with development of
order 7 the polynomial expansion approaches very accu-
rately the exact proÐle.

Another query into the nature of a polynomial expansion
f A of given order p is to compare the velocity moments of
larger order than p calculated from f A, to their exact values.

We have calculated the velocity moments of order 4, 5,
and 6 in the magnetic Ðeld direction from the bi-
Maxwellian expansion (see and from the gener-eq. [7])
alized expansion (see limited at the third order.eq. [11])

shows the accuracy for cases I and K in comparisonTable 3
with the exact values of the velocity moments obtained by

TABLE 3

COMPARISON OF VELOCITY MOMENTS

CASE I CASE K

Parameter Generalized Bi-Maxwellian Generalized Bi-Maxwellian

(Sc
A
4TA [ Sc

A
4TE)/Sc

A
4TE (%) . . . . . . 4.7 56.2 30.5 10.5

(Sc
A
5TA [ Sc

A
5TE)/Sc

A
5TE (%) . . . . . . 19.9 35.5 89.7 39.6

(Sc
A
6TA [ Sc

A
6TE)/Sc

A
6TE (%) . . . . . . 32.7 85.1 163 17.6

Sc
A
4TA/[3(Sc

A
2TE)2] . . . . . . . . . . . . . . . . 2.21 . . . 1.55 . . .

Sc
A
6TA/[15(Sc

A
2TE)3] . . . . . . . . . . . . . . 9.6 . . . 4.2 . . .

NOTE.ÈComparison between the velocity moments of orders 4, 5, and 6 of the approximation f A
(superscript A) for a polynomial expansion of order 3 (see and with respect to the momenteqs.[7] [11])
value of the exact function (superscript E) deÐned in Tables and The ratios between moments of order 41 2.
and 6 of f A and the corresponding value for a Maxwellian function deÐned with the exact density and
parallel temperature are also given.
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the Ðtting deÐned in Their non-Maxwellian nature (in° 2.2.
comparison with the theoretical value of the velocity
moments of a Maxwellian function deÐned with the exact
parallel temperature) is also provided (last two rows in

The accuracy of the moment of order 4 is veryTable 3).
good in case I for a generalized polynomial expansion and
is better estimated than for a bi-Maxwellian one. Further-
more, the study of their non-Maxwellian features allows us
to conclude that the velocity moments of higher order than
p are more and more ““ non-Maxwellian ÏÏ and contribute to
the formation of the long tail in the VDF proÐle. In case K,
velocity moments are better estimated with a bi-Maxwellian
polynomial expansion despite the negative values of the
distribution function. Globally, we can hope for a better
macroscopic description of protons in solar wind, because
our assumption of velocity moments closure is better
adapted to the long-tailed VDF, which is a feature of a large
majority of solar wind proton VDF shapes.

5. DISCUSSION

We have chosen for our study two typical proÐles, cases I
and K, from Helios probe measurements. These VDFs
reproduce the main features of the proton distribution func-
tion observed in the solar wind but are also typical distribu-
tion functions of moderate ionized plasmas with a constant
collision frequency or with soft interactions(Hubert 1985)

and of Monte Carlo simulations applied to(Skullerud 1984)
polar wind et al. A sum of two(Barakat 1995 ; Wilson 1992).
Maxwellian functions Ðts with good precision the cuts
through the three-dimensional distribution along the mag-
netic Ðeld direction ; in particular, this Ðtting seems to be
well adapted to the long-tailed proÐles.

The long-tailed proÐles follow in a number of kinetic
states an exp ([bvc`1) law with b constant, for instance, in
an ion swarm experiment [0.5¹ c¹ 1 or(Skullerud 1984)
with c\ 0 for the solution of the BGK equation with a
constant collisional frequency & Woo(Whealton 1971).
Then, when these tails are Ðtted with a sum of two Maxwel-
lian functions [roughly following an exp ([bv2) law for
large velocity values], we overestimate the decreasing of the
function. Consequently, the criterion of convergence will be
easier to verify. In fact has shown that inSkullerud (1984)
the case of a polynomial expansion based on a Maxwellian
function, the convergence would never occur if the accurate
solution falls o† asymptotically slower than any Gaussian.
In the same way, has clearly shown the diffi-Hubert (1985)
culty of the convergence of a bi-Maxwellian polynomial
expansion. He has constructed such a polynomial expan-
sion to approximate the solution of a BGK equation for the
moderately ionized plasmas subjected to an electrostatic
Ðeld, and he has concluded that whatever the value of

might be, the criterion of convergence couldq
Ap

/(vthAP
A
)
pnot be veriÐed. He has emphasized that higher orders in

polynomial expansion do not necessarily give a better
approximation.

The slowness of the convergence is another aspect
revealed by Figures and In Figures and dis-4, 5, 6, 7. 4 5,
playing the bi-Maxwellian polynomial expansion, oscil-
lations and negative values appear as soon as the third
order. But they do not appear in Figures and because6 7
the zeroth-order generalized function damps such
unphysical behaviors. Indeed, in we show the poly-Figure 8
nomial expansion of order 3 based on the generalized func-
tion (see with a solid line, and on theeq. [11])

FIG. 8.ÈPolynomial expansions of order 3 based on the generalized
weight function deÐned in (solid line), and on the bi-Maxwellian° 4, eq. (11)
weight function deÐned in (dashed line), centered on the average° 3, eq. (7)
velocity for cases K (top) and I (bottom) issued from Marsch data. The
crosses are the Helios probe measurements in the magnetic Ðeld direction.

bi-Maxwellian function (see with a dashed line. Weeq. [7])
note that the two proÐles are very similar. A third-order
level of microscopic description cannot reproduce accu-
rately the proÐles of the observed VDF. But it is important
to stress that the generalized distribution function at the
third order does not display negative values, contrary to the
bi-Maxwellian polynomial expansion at the same order.
This property is certainly important for the evaluation of
the velocity collision transfer.

Another point, already emphasized, is the closure of the
associated transport equations to a given order. Table 4
shows the precision obtained on the velocity moments of
order p ] 1 calculated with an approximated polynomial
expansion function of order p, for p equal to 3, 4, 5, and 6.
There is no evident increase of the accuracy of the derived
velocity moments of order p ] 1, except for the bi-
Maxwellian expansion in case K. Nevertheless, we note that
there is a good estimation of from the generalizedSc

A
4T

expansion of order 3 in case I, as well as for at a fourthSc
A
5T

order of development. In case K the results relating to the
closure of the transport equations show that a bi-
Maxwellian polynomial expansion seems to be more
adapted than a generalized one.

The double-humped functions represent 20% of all the
observations made in the solar wind by the Helios 2 probe
according to et al. Their real physical originsMarsch (1982).
have not yet been well determined and still constitute an
open Ðeld of research. Nevertheless, if we want to reproduce
their form with a polynomial expansion, then we need to
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TABLE 4

PERCENTAGE ERROR ON VELOCITY MOMENTS

CASE I CASE K

Order of Development Generalized Bi-Maxwellian Generalized Bi-Maxwellian

3 . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 56.2 30.5 10.5
4 . . . . . . . . . . . . . . . . . . . . . . . . . 21.7 35.5 74.1 39.6
5 . . . . . . . . . . . . . . . . . . . . . . . . . 42.5 27.5 53 12
6 . . . . . . . . . . . . . . . . . . . . . . . . . 24.7 26.5 73 7.4

NOTE.ÈCalculation of the percentage error on velocity moments at order p ] 1 for a bi-
Maxwellian polynomial expansion and a generalized polynomial expansion of order p \ 3, 4, 5,
and 6.

Ðnd another weight function and probably at least a fourth-
order polynomial expansion. The proÐle is too di†erentf

G
0

from a double-peaked shape to be well adapted according
to MintzerÏs advice.

Other approaches exist. For instance, andEu (1980)
& Eu have developed a modiÐed momentChen (1982)

method in order to reconcile irreversible thermodynamics
for system far-from-equilibriumstateswith the solutionof the
Boltzmann equation. In this work the microscopic descrip-
tion is deÐned as t)\ exp M[b(r, t)N,f

p
(r, ¿, ¿, t)H

p
(r, ¿,

where is a polynomial of third order, andH
p

b \ 1/(k
B
T
p
).

To overcome mathematical difficulties in the deÐnition of
the entropy density production, the method of cumulant
expansion is used & Balescu In a similar(Clause 1982).
attempt has suggested the use of distribu-Levermore (1995)
tion functions where P(v) is a polynomial off

p
\ exp MP(v)N,

even degree. But et al. has stressed theGombosi (1994)
difficulties in obtaining an explicit closed-form expression of
P in terms of the velocity moments of for degree of Pf

p
,

higher than 2. However, the great interest of LevermoreÏs
approach, as in EuÏs proposition, is to deÐne an entropy
balance equation and to secure the positivity of and thef

prealizability criterion. We have tried to verify whether such
a function deÐned with a polynomial P of degree 4 (the
lowest order to model the double-humped function) was
able to Ðt cases I and K. This was easily obtained in case K,
but without good precision, and we have met difficulties in
Ðtting proÐle case I. Another method has been proposed by

Weiss, & Dryer and et al.Cuperman, (1983) Cuperman
They have constructed a VDF from the mini-(1987).

mization of BoltzmannÏs H-function, subjected to the con-
straints provided by the set of the selected components of
the approximation (seven or nine macroscopic parameters).
Although applied to spherically symmetric systems, this
model provides almost all the typical proÐles of the solar
wind and is able, according to the authors, to generate an
improved associated system of transport equations. The
sum of two Maxwellian functions in the velocity space
parallel to the magnetic Ðeld, multiplied by a Maxwellian
function in the perpendicular velocity space, should also be
considered. But it remains difficult to use it because the
derived system of transport equations is composed of 57
variables, as the velocity moments up to order 5 are needed
to deÐne the sum of two Maxwellian functions.

6. CONCLUSION

The observations of the Helios probe in solar wind
between 0.3 and 1 AU have revealed the main aspects of the
proton VDF: a magnetic ÐeldÈaligned suprathermal tail

and, for about 20% of them, the presence of a second peak.
These nonthermal features have been studied by several
authors. Up to now, the most sophisticated solution pro-
posed to model these proton VDFs is a polynomial expan-
sion with a bi-Maxwellian as the weight factor, associated
with a system of transport equations constructed following
the Grad method. This model provides temperature aniso-
tropies similar to observations, contrary to the collisionless
approaches or to the Ñuid models.

But the choice of the microscopic description is not satis-
Ðed according to criticisms that have determined the Ðeld of
application of such a model. In fact, the polynomial expan-
sion is able to model only exact solutions that are near the
weight function. We have established that the 16 moment
bi-Maxwellian polynomial expansion does not converge for
the most typical case of a proton VDF in solar wind. In this
case, the system of transport equations does not respect
mathematical rules such as the hyperbolicity condition.
Moreover, the limited order polynomial expansion can gen-
erate negative values. Therefore, the collisional terms are
not well estimated, and the closure assumption is not
appropriate. We have also shown that an increase of the
order of development does not improve the model.

Therefore, we propose a new approach to model the
proton microscopic state in the solar and polar winds (or,
more generally, for stellar atmosphere expansion) and to
derive generalized transport equations. It is also a poly-
nomial expansion, but it is based on a function derived from
the exact solution of the BGK equation for the moderate
ionized plasma subjected to an electrostatic Ðeld. The
advantage of this representation is an intrinsic asymmetry
of the weight function, which displays a suprathermal tail in
the magnetic Ðeld direction, that is, a proÐle close to 80% of
the observed VDF. Furthermore, the heat Ñux that isq

Apused in the deÐnition of the weight function is not involved
in the construction of the polynomial part of the expansion.
Therefore, the limitation on the intensity of derives onlyq

Apfrom the rules of construction of this generalized weight
function. But in the solar wind it seems not to be a difficulty
because almost all the observations are in agreement with
this limitation. Consequently, no negative value of the VDF
appears with large values of the parallel heat Ñux, as it was
the case with a bi-Maxwellian polynomial expansion of
order 3. This new solution veriÐes the Mintzer criterion of
convergence in all the observed typical cases, contrary to
the bi-Maxwellian polynomial expansion, and, consequent-
ly, it is better adapted for the determination of macroscopic
parameters when we solve the associated system of trans-
port equations.
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The double-humped VDF needs to use more sophisti-
cated zeroth-order models for a multimoment approach or
kinetic models such as those in & MarschLivi (1987).
Indeed, these authors have combined the action of the
large-scale interplanetary magnetic Ðeld and of the col-

lisional scattering and have obtained double-humped pro-
Ðles.

Next developments will be the construction of the set of
transport equations associated with the generalized poly-
nomial expansion and the study of its properties.
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