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ABSTRACT
In Paper I, we presented a new model of the velocity distribution function for protons composing a

stellar atmosphere expanding in interstellar space, valid from collisional to collisionless regions. In this
paper, the set of generalized transport equations associated with this model and the closure assumptions
for higher order velocity moments are provided for 9 and 16 moment approximations. The study of the
properties of such a set of transport equations in the collisionless limit is presented and discussed. A
comparison with the similar bi-Maxwellian approximation is made using two kinds of analysis, in the
context of an application to solar wind expansion. Our model is better adapted to high values of the
heat Ñux and thus is able to provide a macroscopic parameter evolution for stellar atmosphere expan-
sion in a state far from local equilibrium, as well as for the expansion of planetary polar winds.
Subject headings : hydrodynamics È plasmas È solar wind È stars : atmospheres È stars : mass loss

1. INTRODUCTION

In a previous article & Hubert hereafter we have presented a new model for the proton velocity(Leblanc 1997, Paper I),
distribution function (VDF) in astrophysical winds. This function is a polynomial expansion based on an exact solution of the
BGK equation for moderately ionized plasmas, and has been constructed following the generalized Grad method (Grad 1958 ;

We have emphasized that the main advantage of this function is that it is close to the observed proton VDFMintzer 1965).
proÐles in the solar wind. Indeed, our zeroth-order approximation is an asymmetric function that displays a suprathermal tail
in the magnetic Ðeld direction. In this paper, we present the transport equations, the moment closure, and the one-
dimensional derived system associated with our generalized model of the VDF. This approach has been developed to be well
adapted to the description of particle states from collisional to collisionless regions (corresponding to large Knudsen numbers
and suprathermal velocity distribution functions with large normalized heat Ñux). Moreover, the moment approach of Grad
enables us to derive direct relations between the macroscopic and microscopic descriptions of the particles and between the
kinetic e†ects and the classic hydrodynamic parameters.

In transitional collisional regions, the characteristics of the distribution functions that compose the solar wind are now
better known from the solar corona to interplanetary space, thanks to numerous probes like Ulysses and SOHO, which
provide new information from the solar corona and solar wind et al. But several very important phenomena(Feldman 1996).
still need to be accurately understood, e.g., the heating and increase of wind speed in the corona, the nonadiabatic evolution of
particles between 0.3 and 1 AU et al. Strachan, & Gardner the origin of the proton temperature(Marsch 1982 ; Kohl, 1996),
anisotropy et al. the importance of heat Ñux in the corona and the interaction between the(Marsch 1982), (Withbroe 1988),
heavy and light ions Improving the heat-Ñux conduction law is also important for obtaining a good descrip-(Habbal 1996).
tion of the thermal forces in the corona and interplanetary medium, where the classical Spitzer law is no longer valid (Dorelli
& Scudder In addition to the wave-particle e†ects in all these processes Esser, & Habbal we1996). (Jacques 1977 ; Hu, 1997),
need an accurate description of the Coulomb collisional e†ects.

In this paper, we establish the new transport equations associated with our generalized velocity distribution function
model. We study the fundamental properties generated by the new closure assumption of the equation system, using two
approaches that have already been applied in analyzing the bi-Maxwellian model of Demars & Schunk (Cordier 1994a,

Moroko†, & Nadiga The hyperbolicity criterion of Cordier and the realizability1994b ; Levermore, 1995 ; Levermore 1995).
criterion of Levermore et al. allow us to underline the improvements to the generalized model in the context of measurements
made in the solar wind.

Section 2 is devoted to the presentation of the VDF and the macroscopic parameters used to describe the plasma; we then
present the closure assumption for higher order moments and the transport equations. Section 3 deals with the properties of
the generalized system. In we discuss the main advantages of the generalized multimoment equations compared to the set° 4
of transport equations associated with a bi-Maxwellian function. A conclusion is given in ° 5.

2. THE GENERALIZED TRANSPORT EQUATION SYSTEM

2.1. T he Velocity Distribution Function
To describe each species in a gas mixture, we use a separate VDF, that is a solution of the Boltzmann equation,f

s
(r, ¿

s
, t),

where r is the position vector, is the species velocity, and t is the time. The distribution function can be viewed as a¿
s

f
sprobability density in r, phase space. For most Ñow situations, mathematical difficulties do not allow us to obtain¿

sclosed-form solutions to BoltzmannÏs equation. Therefore, these approaches are restricted to the determination of a limited
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number of low-order velocity moments of the species distribution function, which are deÐned as
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s
,

microscopic description as a function of the velocity moments. Indeed, to close the transport equations of the generalizedf
sstate variables, such an approximate expression is needed. As in & Schunk we construct this function as aDemars (1979),

polynomial expansion based on a zeroth-order function In a 16 moment approximation, the macroscopic param-(Paper I).
eters used to describe the plasma Ñows derived from the velocity moments are :
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The unknowns used in a 16 moment approximation are and The higher order velocity momentsn
s
, u

s
, T

sA
, T

sM
, s

s
, q

s
A, q

s
M.
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2.2. T he 16 Moment Transport Equations
The method of constructing the transport equations has been explained by and and usedBurgers (1969) Tanenbaum (1967)
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The stress tensor equation is obtained by subtracting times the parallel energy equation and times thee3 e3 (I[ e3 e3)perpendicular energy equation from the pressure tensor equation, and then the closed system of transport equations is
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Parallel heat Ñux :
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We verify the results presented in this subsection in comparison to those presented by & Schunk by settingDemars (1979)
equal to zero, as in the previous subsection. The new terms that correspond to the second, third, and fourth lines ofD
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and the third term of the second line in change into gradients involving only the stress tensor andequation (14) equation (15)
the parallel energy. The heat-Ñux gradients and the nonlinear heat-Ñux terms in equations and are then new terms,(14) (15)
di†ering from previous moment approach models. The right-hand side of each equation (see eqs. is the velocity[9]È[15])
moment of BoltzmannÏs collision integral. These quantities will be evaluated in a forthcoming paper for typical interparticle
force and particle populations.
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(see and the expressions of the higher order velocity moments as a function of the lower order moments (see eqs.eq. [B1]),

are given in Appendix B.[B2]È[B4])

3. PROPERTIES OF THE GENERALIZED TRANSPORT EQUATIONS

3.1. T he Hyperbolicity Criterion
The hyperbolicity criterion is a necessary condition for a linearized system of transport equations to be well posed, being

the condition for the existence of a stable and unique solution of a linearized problem associated with Cauchy boundary
conditions. Cordier and & Girard have described a mathematical method for studying the(1994a, 1994b) Cordier (1996)
hyperbolicity of a system of transport equations. These works have been applied to systems derived from a polynomial
expansion function based on a bi-Maxwellian function for 8, 10, 13, and 16 independent moments. In this section we discuss
the hyperbolicity criterion relative to the set of transport equations (9)È(15).

The Ðrst step is to project equations onto the direction of the magnetic Ðeld. This amounts to supposing that the(9)È(15)
motion of the particles is conÐned along the magnetic Ðeld lines, which allows us to reduce the number of independent
moments to consider (6 in the case of a 16 moment approximation). We note that this assumption of gyrotropic-dominated
plasmas is often made in studies of the polar and solar winds Ganguli, & Mitchell & Schunk(Palmadesso, 1988 ; Demars

If we write the velocity in the form where and are, respectively, the components of parallel and1991). ¿ (¿
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perpendicular to the magnetic Ðeld, we then have and the state variables depend only on z : t), t),u
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We also neglect the collisional terms, and consequently the dissipative e†ects that would have generated a less restrictive
limit. But this corresponds to the situation observed in the solar wind for large heliocentric distances. The one-dimensional
system projected along the magnetic Ðeld is given by
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As explained by in a simple species case, the one-dimensional system (see eqs. has a schematicCordier (1994a) [16]È[21])
form of

LU
Lt

] A(U)
LU
Lz

\ 0 , (22)

where U is the vector and A(U) is a 6] 6 matrix.(n
s
, u

s3, p
sA

, p
sM

, q
s3A , q

s3M )T
In the case of a perturbation of the form the solution of the characteristic polynomial ofU \U0] U1 exp [i(kz [ ut)],

A(U) is the phase velocities u/k of the ion waves generated by this perturbation. The condition for the system to be hyperbolic
is that the phase velocities all be real. In order to determine these phase velocities, we calculate the characteristic polynomial
of A(U), which has the form

P(j) \ (X2] 14v3X [ 1)[X4 ] 2vX3[ 6X2] v(v2 [ 6)X ] 3 ] 18v4] , (23)

where and j is a characteristic velocity of A(U). The parameter is deÐned asX \ (u
s3 [ j)/w

sA
, v\ (4q

s3A /o
s
w

sA
3 )1@3, w

sAThe Ðrst bracket always has two real roots. But the second part of P has four real roots if and only ifw
sA

\ (kB T
sA

/m
s
)1@2.

o v o\ 2.00. The condition for hyperbolicity can also be written in the form

o q
s3A o\ 2.00o

s
w

sA
3 . (24)

This study is similar to the work of et al. who solved the dispersion relation issuing from a bi-Palmadesso (1988),
Maxwellian 16 moment approximation for large-scale magnetospheric ionospheric dynamics and obtained unstable wave
modes for certain values of the macroscopic parameters ; speciÐcally, for heat-Ñux values above In fact, a study of0.88o

s
w
sA
3 .

the solutions of the dispersion relation allows us to better illustrate the consequences of the nonhyperbolicity of a moment
approach. The Ðrst bracket of the characteristic polynomial (see always has two roots :eq. [23])

j \ u
s3 ]w

sA
2
GAv

2
B2^

CAv
2
B4] 4

D1@2H
.

et al. explain that these phase velocities are associated with perpendicular temperature and heat-ÑuxPalmadesso (1988)
waves. The second bracket has four real or complex roots, which are represented in as a function of the v parameter.Figure 1
The two phase velocities that are nearly independent of v are parallel acoustic waves, and the two others are thermal waves,
according to the very similar work of et al. When the v parameter is equal to ^2, two waves couple andPalmadesso (1988).
generate an unstable wave above this value in et al. emphasize that such an unstable wave is theq

s3A . Palmadesso (1988)
consequence of the truncation of the moment approach. Indeed, with a moment approach, a perturbation of the higher



380 LEBLANC & HUBERT Vol. 501

FIG. 1.ÈDependence of the four phase velocities solution of the characteristic polynomial (see as a function of the v parameter. From o v o[ 2., weeq. [23])
have represented the real part of the complex solution.

moment of the model cannot be dissipated in the Ðne structure, as with a kinetic model, because the highest order moments,
which are not taken into account as a result of the truncation, play the role of the Ðne structure in a moment approach.
Therefore, the highest moment is perturbed by an artiÐcial, undamped wave that can then interact with another real wave, as
shown in and generate an unstable wave. must be understood as a necessary condition for the stabilityFigure 1, Equation (24)
of the solution in the case of a linearized problem. It is a rough estimate of the highest value of the heat Ñux that can be
modeled with the generalized polynomial approach in applications to noncollisional astrophysical winds.

3.2. T he Moment Realizability
In recent papers, several authors et al. et al. have developed new methods(Levermore 1995 ; Levermore 1995 ; Groth 1996)

for estimating the domain of validity of the moment closure associated with the polynomial expansion function. These
authors have noted that the Ðrst-order Chapman-Enskog & Cowling model, which leads to Navier-Stokes(Chapman 1970)
equations, always has negative values when the Navier-Stokes equations have proved to be valid for Ñows in the continuum
regime. Thus, it seems that the positivity of the polynomial expansion function that generates the set of transport equations is
an overly restrictive condition. A more realistic criterion is to Ðnd the conditions that will ensure the existence of a positive
distribution function that could generate the same set of velocity moments.

According to a necessary condition for a set of moments of a function to generate a positive function isHamburger (1944),
that the matrix M, deÐned as must be positive deÐnite. U \ (1, corresponds to the velocity-M \ SUUTF

s
NT, c

si
, c

si
c
sj
, . . .)T

moment space, and is any VDF whose velocity moments are used in the approximation considered. Obviously, the derivedF
s
N

criterion cannot be used in practice. In order to construct a useful mathematical condition, Levermore et al. have considered
the subspace generated by the velocity moments corresponding to the usual hydrodynamic approximations. Indeed, accord-
ing to every closure assumption of a polynomial expansion method must recover this level of description.Levermore (1995),
Thus, we determine the condition of realizability for U \ (1, that is the velocity moment subspace used in ac

si
, c

s
2)T

hydrodynamic approximation. This condition is obviously a restriction of the exact criterion that corresponds to the 16
moment approximation. In fact, the exact condition for the positivity and deÐnition of the matrix M should have been
calculated for U \ (1, & Simon But in such a case, M would be much too large (withc

si
, c

si
c
sj
, c

sM
2 c

si
, c

sA
2 c

si
)T (Reed 1975).

16 ] 16 elements) to give a useful criterion. So we restrain our analysis, following the advice of Levermore (1995).
The matrix corresponding to a 16 moment approximation is then

o
s

0 0 0 2p
sM

] p
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0 p
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s12 p
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s
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For a symmetric and diagonalizable matrix such as a condition equivalent to its positivity is that all the determinants ofM16,the submatrices must be positive. But for such an approximation, the moment realizability is not easy to evaluate. In
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one-dimensional Ñows and the matrix (see is(q
s1 \ q

s2 \ p
s12 \ p

s13 \ p
s23 \ 0, p

s33 \ p
sA

, p
s11 \ p

s22 \ p
sM

), M16 eq. [25])
easier to analyze. We Ðnd as a condition for the moment realizability in one-dimensional Ñows

o
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2 ] p
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2 ] 3o
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2
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q
s32

p
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[ 0 . (26)

This condition is a more general criterion than the hyperbolicity condition. In this case, the limitation on the normalized heat
Ñux depends on both temperature and heat-Ñux anisotropies. It is signiÐcant if we compare it to the equivalent conditions
determined for a bi-Maxwellian model, which we present in the following section.

4. DISCUSSION

Only the equations of the heat-Ñux vectors (eqs. and are di†erent from those in the model of & Schunk[14] [15]) Demars
In our model, and depend on the heat Ñuxes and This property is a direct consequence of the zeroth-order(1979). l

s
A l

s
M q

s
A q

s3M .
nonequilibrium distribution function bringing a heat Ñux, whereas the bi-Maxwellian approximation of and does notl

s
A l

s
M

take into account the asymmetric character of the microscopic nonequilibrium state. The new expression of the velocity
moment is In this expression, the new term is derived from the suprathermal long tail ofSc

sA
4 T Sc

sA
4 TMax ] (q

s3A /o
s
)4@3. (q

s3A /o
s
)4@3

the microscopic state.
The consequence of this new truncation of the generalized approach is to modify the equations of the heat-Ñux vector

related to the direction of the magnetic Ðeld by the introduction of heat-Ñux gradients and nonlinear terms. The one-
dimensional system of transport equations is a good illustration of this fact. In contrast to the equivalent equation obtained
by & Schunk in the equation for (see the variations of and as a function of the positionDemars (1979), q

s3M eq. [21]), n
s
, q

s3A , T
sAz along the magnetic Ðeld are taken into account. In the equation for the spatial gradient of in the direction z of theq

s3A , n
smagnetic Ðeld does not appear in the equivalent equation of the bi-Maxwellian approach & Schunk and the(Demars 1979),

multiplier to the spatial gradient of is modiÐed. In consequence, the equations of the heat-Ñux vector in the direction of theq
s3Amagnetic Ðeld are more strongly coupled to the other equations than with a bi-Maxwellian approximation. The Monte Carlo

simulations Barakat, & Schunk show correlated temperature and heat-Ñux proÐles with larger tem-(Barghouthy, 1993)
perature and heat-Ñux anisotropies than with a bi-Maxwellian model. Moreover, they show large gradients of the heat Ñux in
the transitional regions, which are then better accounted for thanks to the heat-Ñux gradients of equations and On(20) (21).
the other hand, a good estimate of the pressure anisotropy, which depends on a good estimate of the heat Ñuxes, is important
to accurately reproduce the important e†ects of the mirror force (Spitzer 1952).

We are able to evaluate the greater accuracy of the truncation of the system using the realizability method that we present
in If we apply this analysis to the bi-Maxwellian model for one species and for one-dimensional Ñows, we Ðnd the° 3.2.
following conditions :

o
s
[ 0 , p

sM
[ 0 , p

sA
[ 0 , and 2p

sM
2 ] p

sA
2 [ 2o

s
q
s32

p
sA

[ 0 . (27)

If we compare to the conditions obtained for a similar application deÐned in we can establish thatequation (27) equation (26),
the moment realizability provides a more restrictive condition on the velocity moments for a bi-Maxwellian polynomial
expansion than for a generalized model. This is a consequence of the asymmetric character of the observed VDF, which is
better taken into account with the new term in(q

s3A /o
s
)4@3 equation (26).

In order to justify the interest of a greater coupling between the transport equations, we use the hyperbolicity condition as
applied by Cordier to a 16 moment bi-Maxwellian model. The mathematical description of this method is(1994a, 1994b)
presented in For the same assumptions as used previously, Cordier found the condition° 3.1.

o q
s3A o\ 0.91o

s
w

sA
3 . (28)

Once again, we note that the generalized model generates a less restrictive condition (see Indeed, two phaseeq. [24]).
velocities are associated with an unstable wave in when for a generalized model. As shown byq

s3A o q
s3A o[ 2.00o

s
w

sA
3

et al. this limit derives from the same criterion as those for a 16 moment bi-Maxwellian model.Palmadesso (1988),
These necessary conditions (see eqs. and consist of a limitation of the normalized heat Ñux by the[24], [26], [28], [27])

free-streaming Ñux, the parallel energy brought by particles whose velocity is the thermal velocity. We propose that these
moment equations can accurately describe the nonequilibrium states that may correspond to high values of the heat Ñux, and
could therefore describe the particle nonequilibrium states from collisional to collisionless regions. Indeed, the Navier-Stokes
equations, which are well adapted to the description of the collisional regions, are included in the generalized model.

The evolution of the normalized heat Ñux in the solar wind from 0.3 to 1 AU measured by the Helios solar probe et(Marsch
al. is shown in This Ðgure displays the decrease of the normalized heat Ñux with heliocentric distance. This1982) Figure 2.
decrease could be explained by wave-particle interactions. could also explain the difficulties of & SchunkFigure 2 Demars

who used a 16 moment bi-Maxwellian model to simulate the solar wind. In that paper, they show that a singular point(1991),
in the parallel heat Ñux radial evolution appears around 0.4 AU. In the value of the normalized heat Ñux largelyFigure 2,
exceeds the limit deÐned by equations and (taking into account measurement errors in the normalized heat Ñux ;(27) (28)

et al.Marsch 1982).
The e†ect of the thermal force, a force that depends on the heat Ñux and appears in the velocity equation, needs to be

accurately determined. According to & Scudder the Spitzer law is not valid in the solar corona, and accordingDorelli (1996),
to & Schunk neither is the law deduced from the 16 moment bi-Maxwellian model. In the generalized model,Demars (1991),
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FIG. 2.ÈNormalized heat Ñux from 0.3 to 1 AU, obtained from the values of the macroscopic parameters determined by and et al.Marsch (1982) Marsch
from the Helios measurements. The solid line corresponds to the slow winds (300È400 km s~1) and the dashed line to the fast winds (600È700 km s~1).(1982)

the thermal force depends on more macroscopic parameter evolutions. This model should then be better adapted to model
and so determine the right e†ects of the thermal force in the acceleration processes, and so to explain why in theFigure 2
normalized heat Ñux is greater for fast winds than for slow winds.

In the polar wind, simulations predict that for all species the heat Ñux greatly exceeds the limiting value that guarantees the
hyperbolicity of the system of transport equations associated with a 16 moment bi-Maxwellian approximation (Robineau,
Blelly, & Fontanari Although estimated in the collisionless limit, these results show, as for the solar wind, the difficulties1996).
in modeling states far from local equilibrium with a bi-Maxwellian approximation.

5. CONCLUSION

In we analyzed the microscopic properties of a generalized moment approach to stellar atmosphere expansions, inPaper I,
particular to the solar and polar winds, the properties of which are now better known thanks to several probes (Helios 1 and 2,
Interplanetary Monitoring Platform (IMP) 8, Ulysses, and SOHO) or by Monte Carlo simulations. This second paper provides
the associated set of generalized transport equations, constructed using the method of andBurgers (1969) Tanenbaum (1967)
and previously used by & Schunk We have not given the corresponding collisional terms. Two levels ofDemars (1979).
approximation are considered. The 16 moment approximation can describe temperature and heat-Ñux anisotropies using the
same independent macroscopic parameters as the 16 moment bi-Maxwellian approximation of & Schunk theDemars (1979) ;
9 moment approximation is a simpler model, without pressure-tensor or heat-Ñux anisotropy. We also give the higher order
velocity moment closure assumptions for both approximations. Well adapted to describing thermalized state and temperature
anisotropy, a 16 moment bi-Maxwellian approximation is not able to model large heat-Ñux values. However, the heat-Ñux
radial dependence in the solar wind shows the importance of this parameter in describing the internal energetic state of the
protons. In order to be able to accurately reproduce the heat-Ñux evolution as measured by probes in the solar and polar
winds from collisional to collisionless regions, we have improved the moment approach.

A comparison with the bi-Maxwellian model is provided in order to illustrate this improvement. To this end, we use two
di†erent analyses of the system of equations : the hyperbolicity approach, which studies the well-posed nature of the set of
transport equations, and a realizability analysis, which evaluates the physical nature of the moment closure. Both analyses
show that the description of the heat Ñux in the transitional collisional region is improved.

Although it is mainly applied to the solar wind, the generalized moment approach can also model stellar atmosphere and
planetary wind expansions.

We thank S. Cordier, P.-L. Blelly, and A. Mangeney for helpful comments on this paper.

APPENDIX A

MATHEMATICAL OPERATIONS

A and B are tensors of dimension 2. The contracted product of two tensors is deÐned as

(A Æ B)
ij
\ A

ik
B

kj
,
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with the summation convention for equal component indices. The double contracted product of two tensors is deÐned as

A :B\ A
ik

B
ki

.

We also deÐne the products between a tensor A and a vector u by

(u Æ A)
i
\ u

k
A

ki
,

(A Â u)
ij
\ v

ilk
A

lj
u
k
,

where is equal to [1 or 1 when ilk is an even or odd permutation of 1, 2, 3, respectively, and equal to zero if two indices arev
ilkequal. With two vectors u and this product is deÐned as usual by¿,

(u Â v)
k
\ v

ijk
u
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j
.

The operations with a gradient $ are deÐned as
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,
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.

We have deÐned two operations with subscripts o and p as
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APPENDIX B

THE 9 MOMENT TRANSPORT EQUATIONS

The velocity moments used in a 9 moment approximation are the density andn
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The terms E* and are deÐned as for a 16 moment approach. The polynomial part of the velocity distribution function isT0given by
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where and are deÐned in the same way as for the 16 moment approximation (see andb
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eq. [4])
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In order to close the left-hand side of the transport equations, we need the expression of the velocity moments andP
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With these closure assumptions, we can determine the left-hand side of the transport equations. The continuity equation
(see is the same as for the 16 moment approximation.eq. [9])
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