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Abstract

The generation of ductile shear zones is essential for the formation of tec-

tonic plate boundaries, such as subduction or strike-slip zones. However, the

primary mechanism of ductile strain localization is still contentious. We study

here the spontaneous generation of ductile shear zones by thermal softening using

thermo-mechanical numerical simulations for linear and power-law viscous flow

in one-dimension (1D), 2D and 3D. All models are velocity-driven. The 1D model

exhibits bulk simple shear whereas the 2D and 3D models exhibit bulk pure shear.

The initial conditions include a small temperature perturbation in otherwise homo-

geneous material. We use a series of 1D simulations to determine a new analytical

formula which predicts the temperature evolution inside the shear zone. This tem-

perature prediction requires knowledge of only the boundary velocity, flow law

and thermal parameters, but no a priori information about the shear zone itself,

such as thickness, stress and strain rate. The prediction is valid for 1D, 2D and

3D shear zones in bulk pure and simple shear. The results show that shear heating

dominates over conductive cooling if the relative temperature increase is > 50 ◦C.
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The temperature variation induced by the shear zone is nearly one order of mag-

nitude wider than the corresponding finite strain variation so that no significant

temperature variation occurs between shear zone and wall rock. Applying typi-

cal flow laws for lithospheric rocks shows that shear zone generation by thermal

softening occurs for typical plate tectonic velocities of few cm.yr−1 or strain rates

between 10−16 and 10−14 s−1. Shear stresses larger than 200 MPa can already

cause strain localization. The results indicate that thermal softening is a feasible

mechanism for spontaneous ductile shear zone generation in the lithosphere and

may be one of the primary mechanisms of lithospheric strain localization.

Keywords: Ductile shear zone, thermal softening, strain localization, shear

heating, localization criterion, subduction initiation

1. Introduction1

The spontaneous generation of shear zones in ductile rocks is fundamental2

for the formation of tectonic plate boundaries, such as subduction and strike slip3

zones, or the generation of tectonic nappes during orogenic wedge formation.4

We refer here to spontaneous generation of a shear zone when the fundamen-5

tal shear zone parameters, such as thickness, shear stress and strain rate, are not6

a priori prescribed by the natural or model configuration. We refer to ductile7

deformation when the deformation behaviour is described mathematically by a8

relation between stress and strain rate, such as by flow laws for diffusion, dislo-9

cation or Peierls creep (i.e. low temperature plasticity). The conversion of dis-10

sipative work into heat, the related local temperature increase and the associated11

decrease of temperature dependent rock viscosities has frequently been suggested12

as a cause of spontaneous strain localization and shear zone formation in the litho-13
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sphere (Yuen et al., 1978; Regenauer-Lieb and Yuen, 1998; Leloup et al., 1999;14

Kaus and Podladchikov, 2006; Takeuchi and Fialko, 2012; Thielmann and Kaus,15

2012; Duretz et al., 2015; Jaquet et al., 2015; Moore and Parsons, 2015). We16

refer here to this thermally controlled strain localization mechanism as thermal17

softening. Despite its fundamental thermo-mechanical feasibility (Hersey, 1936;18

Brinkman, 1951; Gruntfest, 1963), shear heating and thermal softening is still19

contentious as important softening mechanism causing strain localization in duc-20

tile rock (Regenauer-Lieb et al., 2001; Platt and Behr, 2011; Bercovici and Ricard,21

2012; Ghazian and Buiter, 2013; Gueydan et al., 2014; Platt, 2015). This is, for22

example, different from physics-based models of friction in rock where essen-23

tially all potential processes causing significant friction weakening are considered24

to be related to shear heating, such as ”flash heating”, thermal pressurization or25

temperature controlled chemical/phase changes, including melting and formation26

of pseudotachylites (Sibson, 1975; Fialko and Khazan, 2005; Brown and Fialko,27

2012; Aharonov and Scholz, 2018). For ductile strain localization, proposed al-28

ternative mechanisms not related to shear heating are, for example, grain size re-29

duction (Bercovici and Ricard, 2012; Platt, 2015), reaction-weakening caused by30

infiltration of fluids along precursor brittle faults (White and Knipe, 1978; Manck-31

telow and Pennacchioni, 2005) or fabric development in rock with significant me-32

chanical heterogeneities (Montési, 2013). Out of the different mechanisms pro-33

posed for ductile strain localization, shear heating and thermal softening (1) must34

occur in nature since dissipative deformation generates heat and rock viscosity35

is temperature dependent and (2) requires the least assumptions since no knowl-36

edge concerning grain size reduction and growth, fluid flow, reaction kinetics or37

mechanical heterogeneities required for fabric evolution is needed. Hence, ther-38
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mal softening as mechanism itself is actually not contentious, but whether thermal39

softening alone can be significant enough to generate shear zones in ductile rock40

under natural conditions is debated, as well as its relative importance compared to41

other localization mechanisms.42

A long-lived argument against the significance of thermal softening during43

ductile deformation in the lithosphere is that many natural shear zones with thick-44

ness ranging from hundreds of meters to several kilometers do not indicate a45

sharp change in temperature between the little-deformed wall rock and the highly-46

deformed shear zone. This argument persists, despite the fact that several thermo-47

mechanical studies have shown that even if a shear zone is caused by thermal48

softening, there are only small temperature gradients between the shear zone and49

the wall rock (e.g., Yuen et al. 1978; Takeuchi and Fialko 2012; Schmalholz and50

Duretz 2015; Mako and Caddick 2018). Another argument against the importance51

of thermal softening is that the required shear stresses or the required strain rates52

are too large for typical lithospheric deformation conditions (e.g. Platt, 2015).53

To test the validity of the above arguments against thermal softening and to54

quantify thermal softening, we use a thermo-mechanical numerical model of duc-55

tile rock deformation based on the conservation equations of continuum mechan-56

ics and apply constitutive equations for ductile creep. We perform a scaling anal-57

ysis with results of a one-dimensional (1D) model for which simple shearing is58

controlled by a boundary velocity and strain localization can be triggered by a59

temperature, hence viscosity, perturbation in the model center. We apply a temper-60

ature perturbation because such perturbation diffuses away if shear heating is not61

efficient. In contrast, a viscosity perturbation (i.e. perturbation of material proper-62

ties) would remain even if shear heating is insufficient and would, hence, always63
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generate a shear zone in the 1D model, with a thickness of the initial viscosity64

perturbation. The model configuration is based on the model of Yuen et al. (1978)65

because for this configuration ”No a priori assumption about slip-zone width or66

shear-stress magnitude is necessary; the thermal-mechanical structure of the slip67

zone evolves in time and all its characteristics are self consistently determined”68

(Yuen et al., 1978). These model features are essential to study spontaneous gen-69

eration of shear zones in homogeneous material. Yuen et al. (1978) considered70

linear viscous flow laws only whereas we also consider power-law viscous flow71

laws to apply our results to lithospheric dislocation creep flow laws which exhibit72

power-law stress exponents typically between 2 and 4 (Table 1).73

The aims of our study are to (1) quantify the temperature increase required for74

spontaneous shear zone generation, (2) quantify the relation between the width of75

the temperature variation across the shear zone and the width of the corresponding76

finite strain variation, (3) quantify stresses, velocities and strain rates required77

for shear zone generation, (4) derive an analytical formula which predicts the78

temperature inside a shear zone without a priori knowledge of the thickness, stress79

and strain rate of the shear zone, (5) compare the 1D model for bulk simple shear80

with 2D and 3D models for bulk pure shear and (6) evaluate the importance of81

thermal softening for ductile strain localization in the lithosphere.82

2. Mathematical and numerical model83

2.1. Governing system of equations84

We assume incompressible viscous deformation in the absence of gravity and85

inertial forces. The governing system of equations is86
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−∂vi
∂xi

= 0 (1)

−δij
∂P

∂xi
+
∂τij
∂xj

= 0 (2)

ρcp
∂T

∂t
− ∂

∂xi

(
λ
∂T

∂xi

)
− τij ε̇ij = 0 (3)

τij = 2µeff ε̇ij (4)

µeff(ε̇II, T ) = A−
1
n ε̇

1
n
−1

II exp

(
Q

nRT

)
(5)

where equation (1), (2) and (3) are the equations for conservation of mass, linear87

momentum and energy, respectively, equation (4) is the creep flow law (constitu-88

tive equation) and equation (5) states the effective viscosity. The indices i and j89

correspond to coordinate axes 1, 2 and 3 and repeated indices imply summation.90

In equation (3) we assume that all dissipative work is converted to heat (so-called91

Taylor-Quinney coefficient is 1.0) since we do not consider grain size reduction92

which consumes typically only a minor fraction of the dissipative work (Herwegh93

et al., 2014; Thielmann et al., 2015). xi are the components of the spatial coordi-94

nates [m], t is the time [s], vi are components of the velocity vector [m.s−1], δij is95

the Kronecker delta, τij are components of the deviatoric stress tensor [Pa], ρ is96

density [kg.m−3], cp is heat capacity at constant pressure [J.K−1], T is tempera-97

ture [K], λ is thermal conductivity [W.K−1.m−1], µeff is effective viscosity [Pa.s],98

ε̇ij are components of the deviatoric strain rate tensor [s−1], ε̇II is the square root99

of the second invariant of the strain rate tensor [s−1], n is the power law exponent100

[ ], A is the pre-exponential factor [Pan.s−1], Q is activation energy [J.mol−1] and101

R is the universal gas constant [J.mol−1.K−1].102

6



Initial and boundary conditions are

T (
√
xixi > r, t = 0) = T0 and T (

√
xixi ≤ r, t = 0) = T0 + ∆T0 (6)

qi(xi = [0 or Li], t) = 0 (7)

vi(xj = 0, t) = 0 and vi(xj = Lj, t) = ∆vi (8)

where T0 is initial temperature [K], ∆T0 is the value of the intial temperature103

perturbation [K], qi are components of the heat flux vector [W.m−2], Li is the total104

size of the model domain [m] in the different spatial directions and ∆vi is the far-105

field velocity difference [m.s−1] in the different spatial directions. The material106

parameters are homogenous and the initial temperature is constant except a small107

temperature perturbation, ∆T0, in a region around the model centre, xi = 0, whose108

size is specified with radius r (eq. 6, Fig.1). This thermal perturbation mimics any109

kind of small variation of strength or thermal properties which are always present110

in natural rocks. The model is thermally insulated (eq. 7). For simple shear111

type deformation the model is kinematically driven by constant far-field boundary112

velocities (eq. 8). For pure shear type deformation in 2D and 3D only velocities113

normal to the boundaries are defined (i.e. i = j for eq. 8), otherwise free slip114

boundary conditions are used, so shear stresses are zero at the boundaries.115

2.2. Numerical method116

The system of non-linear equations (Eq. 1-5) is discretized on a regular Carte-117

sian staggered grid. The problem is solved by a pseudo-transient iteration or118

relaxation scheme (Versteeg and Malalasekra, 2007; Duretz et al., 2019). The119

thermo-mechanical equations are recasted in the following form:120
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dP

dω
=
∂vi
∂xi

,

dvi
dω

=
∂τij
∂xj
− ∂P

∂xi
,

dT

dω
= ρcp

∂T

∂t
− ∂

∂xi

(
λ
∂T

∂xi

)
− τij ε̇ij.

(9)

where dP
dω

, dvi
dω

and dT
dω

are derivatives of pressure, velocities and temperature with121

respect to pseudo time ω. We consider here incompressible deformation in the ab-122

sence of inertia which corresponds to the equations when the pseudo-time deriva-123

tives have vanished. These pseudo-transient derivatives allow for an iterative solve124

of the non-linear system of equations. At each physical time step, an explicit inte-125

gration of the non-linear equation is carried out until the pseudo time derivatives126

vanish and steady state is achieved. A fully implicit solution of the heat equation127

is obtained by evaluating the heat flux and shear heating term at each pseudo-128

transient iteration. The evaluation of temperature and strain rate dependent vis-129

cosity is embedded within the pseudo transient iteration cycle. The pseudo tran-130

sient algorithm is easily extendable to 2D and 3D configurations and is also well131

suited for vectorized parallel computations (see e.g. Omlin, 2016).132

2.3. 1D, 2D and 3D model configurations133

The 1D model domain extends orthogonally across the shear zone and veloc-134

ities are orthogonal to the model domain. The 1D model is driven by a velocity135

difference at the two model boundaries which imposes a bulk simple shear de-136

formation (Fig. 1a). To test whether results of the 1D model are applicable to137

2D and 3D shear zones, we perform also 2D and 3D numerical simulations for138

bulk pure shear. For the 3D model shortening occurs in one horizontal direction139
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and extension in the vertical direction while the bulk extension in the second hor-140

izontal dimension is zero (Fig. 1c). The initial temperature perturbation has the141

shape of a quarter circle in the 2D model (Fig. 1b) and one eight of a sphere in142

the 3D model (Fig. 1c). To compare the 2D and 3D results with the 1D results we143

record the temperature and shear velocities along a profile line, with coordinates144

x′, which is orthogonal to the 2D and 3D shear zones. These results are directly145

comparable with the results of the corresponding 1D model (Fig. 1).146

3. Fundamental features of 1D shear zone evolution147

There are two end-member solutions of the numerical model: (1) The velocity148

field converges to homogeneous simple shear in the entire model domain, there is149

no strain localization and the temperature increases homogeneously in the model150

domain due to bulk shear heating. (2) The temperature increases locally in the151

model center, which causes strain localization and the generation of a shear zone152

that is much thinner than the model domain. We show in the following fundamen-153

tal features of solution (2) for representative simulations.154

For simulations with linear viscosity the temperature increases in the shear155

zone during a transient stage and then reaches a constant temperature (Fig. 2a), in156

agreement with Fleitout and Froidevaux (1980). This temperature is independent157

on the initial temperature perturbation and model width (Fig. 2a). For simula-158

tions with power-law viscous flow laws the temperature also increases in the shear159

zone during a transient stage and then reaches a quasi-constant temperature (Fig.160

2b). In contrast to the linear viscous model the temperature in the shear zone161

does not reach a strictly-constant value, but the temperature is slightly increas-162

ing with ongoing deformation, referred to here as quasi-constant (Fig. 2b). This163
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quasi-constant temperature is also independent on the initial temperature pertur-164

bation and the model width (Fig. 2b). For such quasi-constant temperature in the165

shear zone center, shear heating must be locally balanced by thermal conduction166

(Eq. 3). Fleitout and Froidevaux (1980) showed that constant boundary velocities167

guarantee that this balance is always reached. Hence, velocity-driven shearing168

of a dominantly viscous medium does not lead to a thermal runaway for which169

temperatures would increase exponentially, in an unbounded way.170

The presented model results correspond to simulations with significant shear171

localization in the model center and show that a modest temperature rise of 100172

oC can result in shear localization due to thermal softening (Fig. 2a and b).173

The shear stress is spatially constant in the 1D model at each instant of time,174

it is largest at the onset of deformation and decreases with time due to progressive175

temperature increase due to shear heating (Fig. 2c). When the maximal temper-176

ature reaches a quasi-constant value then also the stress reaches a quasi-constant177

value.178

The characteristic width of the temperature variation across the shear zone, re-179

ferred to here as thermal thickness, is not prescribed a priori but controlled by the180

thermo-mechanical process (Duretz et al., 2014, 2015). After the maximal tem-181

perature has reached its (quasi-)constant value, the thermal thickness is increasing182

proportional with the square root of time due to thermal conduction (Fig. 3a). In183

the following, we distinguish between the thermal thickness and the finite strain184

thickness that is determined by the width of the finite strain profile (Fig. 4a). The185

thermal thickness is defined as the width of the temperature profile at this temper-186

ature, which is half between the maximal temperature in the shear zone center and187

the minimal ambient temperature far away from the shear zone (Fig. 3a). During188
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the transient stage of temperature increase the thermal thickness is typically de-189

creasing (Fig. 3b). The thermal thickness evolution is essentially unaffected by190

the initial temperature perturbation and model size, similar to the evolution of the191

maximum temperature (Fig. 3b).192

The temperature profile is significantly wider than the corresponding finite193

strain (γ) profile across the shear zone (Fig. 4a), which agrees with results of194

Takeuchi and Fialko (2012) for strike slip zones and of Schmalholz and Duretz195

(2015) for thrust-type shear zones. γ is calculated by time integration of the shear196

strain rates. The finite strain thickness is measured in the same way as the thermal197

thickness, that is, the width of the γ-profile at the value of γ half between the198

maximum value and the far-field value at the model boundary (Fig. 4a). The199

ratio of thermal to finite strain thickness increases during the transient phase of200

temperature increase. Once the temperature has reached its (quasi-)constant value201

this ratio converges towards a constant value. This shows that the finite strain and202

thermal thickness are linked, both are controlled by thermal conduction. After the203

transient phase, the thermal thickness is nearly one order of magnitude (factor 6 to204

8) larger than the finite strain thickness (Fig. 4b). The example presented in figure205

4a shows that a significant decrease of γ from ca. 17, in the shear zone center, to206

1 is associated with only a minor temperature decrease from ca. 800 oC to 760 oC207

(i.e. only a 20% decrease).208

4. Predictive scaling relationships and localization criterion209

We performed a series of 1D numerical simulations with a geologically appli-210

cable range for all independent model parameters: ∆v, A, ρ, cp, λ, T0, n and Q.211

For each parameter we used several representative values which were evenly dis-212
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tributed within the chosen range (e.g.: n = {1, 2, 3, 5, 6}). To test the usefulness of213

several different sets of independent scales, we performed these simulations using214

the dimensional form of equations (4), (5) and (9). We run 1D simulations with all215

parameter combinations and recorded characteristic parameter values (e.g.: Tmax,216

µmin) in regular intervals during shear zone evolution. We recorded data from217

more than 45’000 simulation stages (i.e. at specific times) from ca. 2’000 simula-218

tions.219

4.1. Thermal thickness of shear zones220

All simulations show that shear zones are widening proportional to the square221

root of time (Fig. 3) and that widening is controlled by heat conduction. Two fun-222

damental types of conductive heat transfer between shear zone and surrounding223

region can be distinguished: (1) If there is no significant shear heating, then the224

initially higher temperature in the model center is decreasing with respect to the225

far-field temperature during shearing and the temperature evolution in the model226

can be approximated with an analytical solution for Gaussian cooling of an initial227

Dirac delta temperature profile (Fig. 5a). The spatial and temporal evolution of228

temperature can then be described by the equation:229

∆T (x, t) =
1√

4πκt
exp

(
− x2

4κt

)
(10)

If the maximum temperature is in the model center, at x = 0, then the half230

width of the temperature profile is given by the value of x for which ∆T (x, t) =231

0.5 ∆Tmax(t):232
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∆Tmax(t)

2
=

1

2
√

4πκt
=

1√
4πκt

exp

(
− x2

4κt

)
→ (11)

0.5 = exp

(
− x2

4κt

)
→ x =

√
−4 ln(0.5)κt ≈ 1.67

√
κt (12)

The corresponding full width of the Gaussian temperature profile, WG is then:233

WG ≈ 3.34
√
κt⇐⇒ WG/

√
κt ≈ 3.34 (13)

(2) If there is significant shear heating, then the temperature in the model234

center reaches a (quasi-)constant value after a transient period (Fig. 2a and b). The235

temperature evolution in model can then be described with a half space heating236

model in which the temperature is kept constant at one side, representing the shear237

zone center, and the far-field temperature is the initial temperature at the model238

boundary. The analytical solution for the temperature evolution for such scenario239

quantifies the heating of a half-space, representing the region adjacent to the shear240

zone and is given by an error function solution (Fig. 5a):241

∆T (x, t) = ∆Tmax erfc

(
x

2
√
κt

)
(14)

If the maximum temperature is in the model center, at x = 0, then the half width of242

the temperature profile is given by the value of x for which ∆T (x, t) = 0.5 ∆Tmax(t):243

∆Tmax

2
= ∆Tmax erfc

(
x

2
√
κt

)
→ 0.5 = erfc

(
x

2
√
κt

)
(15)

Using the approximation erfc(0.48) ≈ 0.5 yields:244

0.48 ≈ x

2
√
κt
→ x ≈ 0.96

√
κt (16)

The corresponding full width of such temperature profile, WE, is then:245

WE ≈ 1.92
√
κt⇐⇒ WE/

√
κt ≈ 1.92 (17)
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If thermal evolution during shearing is dominated by conductive cooling, then246

the width of the temperature across the shear zone will grow according to WG,247

and according to WE if thermal evolution is dominated by shear heating. We248

plotted the dimensionless widths, scaled by
√
κt, of the numerically calculated249

temperature profiles versus the maximal temperature difference (i.e. maximum250

temperature in the shear zone center minus initial temperature, ∆T) recorded in251

the numerical simulations (Fig. 5b). For insignificant shear heating, ∆T < ca. 20252

oC, the temperature profile is widening according to WG (Fig. 5b). For significant253

shear heating, ∆T > ca. 100 oC, the temperature profile is widening according to254

WE (Fig. 5b). Between 20 and 100 oC for ∆T there is a transition zone where255

the thicknesses are in between WE and WG. The boundary between the two heat256

transfer domains occurs at ∆T ≈ 40 oC. The results, hence, indicate that a temper-257

ature increase of at least 40 oC in the shear zone is required so that shear heating258

dominates the heat transfer across the shear zone.259

4.2. Maximum temperature of shear zones260

After a transient phase the temperature in the shear zone is (quasi-)constant.261

For such quasi steady state, heat production and conduction are essentially bal-262

anced in the shear zone, that is:263

0 ≈ ρcp
∂T

∂t

∣∣∣∣
x=0

= λ
∂2T

∂x2

∣∣∣∣
x=0

+ µ

(
∂v

∂x

)2
∣∣∣∣∣
x=0

. (18)

For this quasi steady state, we want to determine a scaling relationship between264

the term representing diffusion (with λ in Eqn. 18) and the term representing shear265

heating (with µ). Such relationship can be of the form:266

λTc ≈ a µcv
2
c (19)
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where the subscripts c indicate a characteristic value of the corresponding param-267

eter, and a is a proportionality constant. The characteristic length scale has been268

dropped because it has the same power in both terms for diffusion and heat pro-269

duction (right side of Eqn. 18). Because the quasi steady state occurs only in the270

shear zone center, it is reasonable to chose characteristic values that are represen-271

tative for this location. There are several formally correct and reasonable choices272

for the characteristic values, but after testing the scaling relationship (19) with273

the numerical results, we found that Tc = RT 2
max/Q, vc = ∆v and µc = µmin274

provides the best fit. Tmax and µmin are always the maximal temperature and min-275

imum viscosity, respectively, in the shear zone center. Based on equation (19) and276

these characteristic values, Tmax can be predicted with:277

Tmax ≈
∆v

e

√
µminQ

λR
(20)

where e ≈ 2.72 is the Euler number, and e−1 is the proportionality constant a (Fig.278

6a). All parameters in this formula correspond to a specific time during shear279

zone evolution. Equation 20 is useful in applications where a shear zone viscosity280

(µmin as a function of Tmax and ε̇IImax or τII) can be constrained, for example, for281

rock deformation experiments. For most natural shear zones viscosities cannot282

be easily constrained. This is because, for example, for power-law viscous flow283

knowledge of the strain rate is required to determine the effective viscosity. We284

approximate the strain rate by the ratio of ∆v/
√
κt assuming that

√
κt provides a285

representative value for the shear zone thickness. Using then the dataset from all286

the 1D simulations we determine a formula to fit the shear zone viscosity:287

µmin ≈ 1.28
e2λQ

∆v2n2R

[
ln

(
∆v2nR

λQ
A−

1
n

{
∆v√
κt

} 1
n
−1
)

+ 1.1

]−2

. (21)
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For n = 1 the term with the approximate strain rate disappears. If we substitute288

the approximation of the shear zone viscosity in equation (20) we get:289

Tmax ≈ −1.13
Q

nR

[
ln

(
∆v2nR

λQ
A−

1
n

{
∆v√
κt

} 1
n
−1
)

+ 1.1

]−1

(22)

Crosschecking with the numerical results provides the minus sign for taking the290

square root of µmin in Eqn. 20. Equation 22 predicts the maximum temperature291

in all numerically simulated shear zones with a maximal error of < 50 oC and292

with a root mean square error of only 20 oC (Fig. 6b). The prediction of Tmax293

using equation (22) does not require any a priori knowledge of the shear zone294

thickness, the stress, the strain rate and the effective viscosity in the shear zone.295

The great advantage of equation (22) is, hence, that Tmax inside a shear zone can be296

estimated exclusively with flow law parameters (n, A and Q), thermal parameters297

(λ and cp), the density (ρ), the applied boundary velocity difference (∆v) and the298

duration (t) of shearing.299

4.3. Localization criteria300

A possible criterion for shear localization is that shear heating must dominate301

the heat transfer between shear zone and the surroundings. Based on the results302

discussed in the previous section we suggest Tmax − T0 > 50 oC as localization303

criterion. An alternative criterion can be derived by separating the variables and304

the constant e in equation (20) and squaring both sides, which yields:305

∆v2µminQ

λRT 2
max

≈ e2 (23)

If the maximum temperature is replaced by the smaller initial temperature, T0, and306

the minimum viscosity by the larger initial viscosity, µ0, then a modified criterion307
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for shear localization is:308

Br1 =
∆v2µ0Q

λRT 2
0

> e2 (24)

The dimensionless number on the left hand side is a particular version of the309

Brinkman number (Br1). Several authors suggested different versions of the310

Brinkman number as criterion of shear localization, based on scaling analyses311

(e.g. Brinkman 1951; Gruntfest 1963; Yuen et al. 1978; Brun and Cobbold 1980).312

Another typical version of the Brinkman number (Br2) is Br1 divided by the Ar-313

rhenius exponent (Q/RT0). The corresponding localization criterion is then:314

Br2 =
∆v2µ0

λT0

> 1 (25)

We plotted the values of both Br1 and Br2 versus the viscosity decrease in the315

shear zone center (µmin/µ0) for all simulations. Both numbers are proportional to316

the viscosity decrease (Fig. 6c), hence they are useful criteria for strain localiza-317

tion. We prefer using the criterion Tmax − T0 > 50 oC due to its simplicity, or318

the criterion based on Br1 because it has been directly derived from the analytical319

formula (eq. 20).320

5. Comparison of 1D, 2D and 3D shear zones321

Equations 20 and 22 for predicting the temperature in the shear zone are based322

on a 1D model, which is driven by far-field simple shear. We apply this prediction323

to shear zones that develop in 2D and 3D models, which are driven by far-field324

pure shear, in order to test the general applicability of the temperature prediction325

(Fig. 7). The rate of temperature increase in the shear zone is the largest for the326

1D model and the smallest for the 3D model. This is because in the 1D model the327

initial thermal perturbation is at the position of the future shear zone whereas in328
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the 2D (Fig. 7d to f) and 3D (Fig. 7a to c) models the initial thermal perturbation329

is present only in a fraction of the future shear zones. Also, the background tem-330

perature increase due to bulk shear heating of the model domain is the largest in331

the 3D and the smallest in the 1D model (Fig. 7g to i). Nevertheless, equation 22332

(associated with the 1D results) accurately predicts the temperature inside the 2D333

and 3D shear zones after the transient stage of temperature increase. The results334

also confirm that the initial temperature perturbation applied in the 1D model has335

no impact on the maximum temperature in the shear zone because the temperature336

of the 2D and 3D shear zones are unaffected by the initial thermal perturbation. A337

comparison of profiles of the velocities parallel to the 1D, 2D and 3D shear zones338

shows that the thickness of the shear zones are essentially identical. Therefore,339

1D, 2D and 3D shear zones caused by thermal softening under both far-field pure340

and simple shear exhibit the same thermo-mechanical characteristics.341

6. Application to dislocation creep flow laws342

We apply equation 22 to predict the maximum temperature in shear zones us-343

ing typical flow laws for rock-forming minerals relevant to the lithosphere. Equa-344

tion (22) depends on the duration of deformation. The typical, observed time scale345

of deformation varies as a function of shear velocity. To make the results for dif-346

ferent velocities comparable we assume a characteristic shear strain of 20, which347

is the ratio of displacement and shear zone thickness (Wγ). As a first order esti-348

mate we use one tenth (Fig 4b) of the characteristic thermal width WT = 2
√
κt349

(Fig. 5b) as a shear zone width. With these relationships we can determine a350

representative characteristic time of the deformation to reach a shear strain of 20:351

20 = γc =
tc∆v

0.2
√
κtc

→ tc =

(
0.2

γc

√
κ

∆v

)2

(26)
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which yields tc ≈ 5 Ma for a velocity of ≈ 1 cm.yr−1.352

For typical plate tectonic velocities in the order of few centimeters per year,353

the flow laws for wet and dry olivine, and dry plagioclase are associated with max-354

imum temperatures between 500 and 700 oC (Fig. 8). Such temperatures correlate355

well with typical temperatures of highly sheared basement nappes outcropping in356

orogens such as the Alps. Typical metamorphic peak temperature ranges between357

500 and 650 oC (Keller et al., 2005; Manzotti et al., 2018) and reach up to 800358

oC in the Lepontine dome (Nagel, 2008). Takeuchi and Fialko (2012) provided a359

thorough study of the temperature anomalies around the San Andreas strike-slip360

fault. They used heat flow and surface deformation measurements to constrain361

their models. They conclude that a temperature increase of 160 to 375 oC, depen-362

dent on rheology, is expected at 20 km depth for a 4 cm.yr−1 long term average363

velocity difference. These values are in a good agreement with our prediction for364

dry anorthite and olivine and wet olivine flow laws. Flow laws for wet quartzite365

and Westerly granite provide maximal temperatures< 300 oC in the same velocity366

range (Fig. 8).367

A recent study of Chu et al. (2017) provides well constrained information368

about the duration of deformation and maximal temperature of eclogite shear369

zones of the Taconic orogenic belt (New England). The eclogite bodies are hosted370

in feldspar rich felsic paragneiss. The authors conclude that the P -T history of371

the shear zones can be best explained by shear heating. Using the known dis-372

placement, related to the known deformation time, the shear velocities can be373

constrained to be between 25 - 70 cm.yr−1. For the inferred velocity range the374

applicable flow law for dry anorthite yields a good fit (Fig. 8).375

Rocks that are commonly considered to result from significant shear heating376
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are pseudotachylites. They are often associated to earthquakes, having typically377

slip velocities on the order of a m.s−1 (Bizzarri, 2012). Such fast deformation378

processes are commonly considered to be dominated by frictional deformation379

and, hence, frictional heating. However, recent progress in understanding of380

the physics of friction suggests viscous creep on grain contacts and asperities381

as the mechanism for velocity weakening of the friction coefficient, reported at382

high shear-velocity (≈ 1 m.s−1) rock deformation experiments for various rock383

types (Aharonov and Scholz, 2018). Moreover, a recent experimental study of384

high shear-velocity (≈ 1 m.s−1) deformation of calcite reports that such fast385

shear deformation is characterized by an initial frictional deformation followed386

by (quasi) steady-state viscous creep (Pozzi et al., 2018). In these experiments387

most of the strain is generated by (quasi) steady-state viscous creep. Since the388

(quasi) steady-state temperature developing in our models is path independent389

(Fig. 2), we can apply our viscous model result to estimate the temperatures in390

such small-scale and high-velocity shear zones regardless of which deformation391

mechanism dominates initially. To test the model-based temperature estimations392

we consider natural pseudotachylites from Corsica (Andersen et al., 2008). The393

reported peak metamorphic temperature is at least 1750 oC. There are no reported394

constraints on shear velocities and, therefore, we apply peak slip velocities of 4395

m.s−1 (that is typical for seismic events with a displacement around 1 m), as an396

upper limit (Bizzarri, 2012). To estimate a lower bound, we use the width of the397

main pseudotachylite vein (W = 1.23 cm), the displacement (d = 1 m, yield-398

ing γc = d/W ≈ 80) along it and the scaling relationship between characteristic399

width of shear zones and the duration of deformation (eq. 16). Reordering equa-400

tion (16) yields t = W 2/(1.922κ) ≈ 41 s (assuming κ ≈ 10−6 m2.s−1). Using401
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this estimate of duration we can estimate the slip velocity v = d/t ≈ 0.02 [m.s−1].402

As such estimates have typically an order of magnitude uncertainty we take a five403

times lower value as a lower velocity bound (i.e. 4 mm.s−1). Within this wide ve-404

locity range, the predicted temperatures for most flow laws agree with the reported405

peak temperature (Fig. 8). Clearly, there are many uncertainties and simplifica-406

tions related to this temperature estimate, but this estimate nevertheless indicates407

that peak temperatures reported for the considered pseudotachylites potentially408

could have been generated in viscous shear zones for typical slip velocities, in the409

order of 1 m.s−1.410

Whether shear heating causes shear localization depends on the initial temper-411

ature of the rock because localization will not occur if the ambient rock temper-412

ature at the onset of shearing is larger than the predicted maximum temperature.413

We consider typical lithospheric geotherms and temperatures for the upper crust414

between 200 and 400 oC, for the lower crust between 400 and 600 oC and for the415

mantle lithosphere > 600 oC. For typical plate tectonic velocities, we calculate416

the predicted maximum temperature for different initial temperatures represent-417

ing the ambient temperature at the onset of deformation (Fig. 9a). The tempera-418

ture difference, ∆T , between predicted maximal temperature and initial, ambient,419

temperature indicates the intensity of shear heating and, hence, shear localiza-420

tion by thermal softening. Shear heating is significant for ∆T > 50 oC since for421

such values of ∆T the heat transfer between shear zone and wall rock is domi-422

nated by shear heating (Fig. 5b). For plate tectonic velocities of a few cm.yr−1,423

shear heating is always important in all three lithospheric units (Fig. 9a). As ex-424

pected, for the same velocity shear heating is always more intense in the upper425

and colder regions of the lithospheric units. For example, for a velocity difference426
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of 3 cm.yr−1 the expected temperature increase in a lower crust made of ca. 400427

oC hot anorthite is between 100 and 150 oC (Fig. 9a).428

Shear heating is even more important if we consider a thinned thermally re-429

laxed continental lithosphere, for example, at a passive continental margin. This430

is because the temperatures at the top of the lower crust and mantle lithosphere431

are colder than for a normal continental lithosphere (Fig. 9b).432

We also analyze the initial stresses for configurations for which shear heating433

and strain localization is significant (Fig. 9c and d). We consider scenarios for434

which ∆T > 50 oC and for which initial shear stresses, τxy, are < 1 GPa (Fig.435

9c and d). The initial shear stresses are the largest stresses during shear zone436

formation since stress magnitudes decrease during shear zone formation due to437

thermal softening (Fig. 2c). We assume a velocity difference of 3 cm.yr−1 and438

vary initial bulk strain rates by varying the 1D model size, L. For flow laws of439

wet anorthite shear heating is significant for ambient temperatures between 380440

and 470 oC and for strain rates, ε̇, between 10−16 and 10−13 s−1. For example, for441

typical tectonic strain rates ε̇ = 10−15 s−1 shear localization by thermal softening442

is significant for shear stresses between 200 and 400 MPa for ambient temperature443

between 420 and 470 oC (Fig. 9c). For dry olivine and for ε̇ = 10−15 s−1 thermal444

softening is significant for shear stresses between 200 and 400 MPa for ambient445

temperature between 540 and 570 oC (Fig. 9d).446

Our results indicate that the shortening of a tectonic plate, for example around447

a thinned passive continental margin, can likely generate significant shear heat-448

ing and associated spontaneous shear zone generation by thermal softening. Such449

shear zone generation can take place in the ductile regime without reaching a450

brittle-plastic yield stress. Ductile strain localization by thermal softening could451
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cause the generation of subduction zones, which is supported by numerical simu-452

lations (e.g. Thielmann and Kaus 2012).453

7. Discussion454

7.1. Localization criterion and Brinkman number455

We already suggested the use of Tmax − T0 > 50oC or Br1 > e2 as localiza-456

tion criterion. Different versions of the Brinkman number (e.g. Brinkman 1951;457

Gruntfest 1963; Yuen et al. 1978; Brun and Cobbold 1980) have been proposed458

and are also known under different names, for example, Gruntfest number (Gr).459

Using the relations ∆v = ε̇0L and τ0 = µ0ε̇0, several Brinkman numbers can be460

formulated:461

Br2 =
∆v2µ0

λT0

=
∆v2µ0

λT0

L2

L2
=
ε̇20µ0L

2

λT0

=
ε̇0τ0L

2

λT0

=
τ 2

0L
2

µ0λT0

= Gr (27)

The right-most version with the square of the stress is often termed Gruntfest462

number, Gr. All parameters with the subscript 0 are initial, bulk values before463

the occurrence of strain localization or shear zone formation. The parameter L464

is the model size and not the thickness of the shear zone. The same exercises465

can be repeated by dividing equation (27) with the dimensionless Arrhenius term466

Q/RT0, and it would result in several forms of Br1 (equation 24). A particular467

localization criterion would be468

Q

RT0

L2ε̇0τ0

λT0

> e2, (28)

which is identical to the criterion of Karato (2008), if e2 on the right hand side469

is replaced by 1. The different versions of the Brinkman number are useful for470

different deformation scenarios. For example, if the deformation is driven by471

23



an applied shear stress, then the version with the square of the stress, i.e. Gr,472

is useful. If the thickness of the shear zone is a priori defined by the model473

or experimental configuration, then a version including L is useful whereby L474

then represents the pre-defined shear zone thickness. In general, for kinematically475

driven models, we prefer versions without any length scale L, because the model476

size does not affect the shear zone evolution (Fig. 2a and 2b).477

Our results show the applicability of three different localization criteria. As478

example, we use Br2 > 1 (Fig. 6c). Applying a typical plate tectonic velocity479

of 3 cm.yr−1, an effective viscosity of 2 × 1023 Pa.s, a thermal conductivity of 3480

W.m−1K−1 and an ambient temperature of 500 oC (773 K) yields Br2 ≈ 78. Our481

results show that for this value of Br2 shear zone generation by thermal softening482

can occur (Fig. 6c). Using a typical tectonic strain rate of 10−15 s−1, and the ap-483

plied effective viscosity of 2×1023 Pa.s generates a shear stress of 400 MPa, which484

is a feasible flow stress for the upper and colder regions of the mantle lithosphere485

or the lower crust. Indeed, the spontaneous generation of km-scale shear zones486

by thermal softening was demonstrated in 2D thermo-mechanical simulations of487

lithospheric shortening for viscoelastoplastic rheology (Jaquet et al., 2017; Jaquet488

and Schmalholz, 2017).489

Here, we do not consider viscoelastic effects. However, it was shown that elas-490

ticity can significantly impact thermally-induced strain localisation (Regenauer-491

Lieb and Yuen, 1998; Duretz et al., 2015; Jaquet et al., 2015) so that strain local-492

ization can be even more significant than predicted by our localization criteria.493

7.2. Shear zone thickness494

A ductile shear zone is commonly observable in the field, or experiment, by the495

significant variation of finite strain across the shear zone. The width of the varia-496
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tion of finite strain across the shear zone is nearly one order of magnitude smaller497

than the corresponding width of the temperature variation (Fig. 4b). For signifi-498

cant shear heating the finite strain thickness, Wγ , is ca. 2
√
κt/7 (Figs. 4b and 5b).499

We assume that the observable width of a shear zone is determined by values of500

finite strain > 1. Based on Fig. 4a this observable thickness is approximately 2 to501

3 times thicker than Wγ . Assuming a typical thermal diffusivity of 10−6 m2.s−1
502

yields Wγ = ca. 1.5 km and, hence, an observable thickness of 3 to 4.5 km for a503

shear zone which is active for 1 Ma. For a shear zone which is active for 4 Ma504

Wγ = ca. 3 km and the observable thickness is 6 to 9 km. Since Wγ only depends505

on time and is independent on the applied shear velocity it can be applied to any506

shear velocity and displacement. For example, a shear displacement of 100 km507

for a shear velocity of 2.5 cm.yr−1 requires 4 Ma, for which the observable thick-508

ness is 6 to 9 km. A shear zone with such thickness, velocity and displacement509

is likely typical for major lithospheric shear zones related to subduction zones.510

Such thickness relation only applies to depth levels in the lithosphere for which511

thermal softening controls the strain localization. These durations of shear zone512

activity and corresponding predicted shear zone thicknesses agree also with those513

formed by thermal softening in 2D thermo-mechanical numerical simulations of514

lithospheric shortening (Jaquet and Schmalholz 2017; Jaquet et al. 2017). Based515

on the same relationship we expect sub-mm thickness for all shear zones that have516

been active for less than a few seconds.517

If natural shear zones would have been formed by thermal softening with mod-518

erate temperature increase of 75 to 150 oC, then there would be no significant tem-519

perature variation between the shear zone and its wall rock because natural shear520

zones are observable due to the significant finite strain variation. This difference521
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between finite strain and temperature variation explains why many ductile shear522

zones do not exhibit a significant observable temperature variation. The lack of a523

sharp and observable temperature variation, for example expressed by variation in524

metamorphic grade, is not a sufficient argument against the importance of shear525

heating and thermal softening.526

7.3. Thermal softening and grain size reduction527

There is still ongoing dispute concerning the primary mechanism of ductile528

strain localization in the lithosphere. Alternative to thermal softening, grain size529

reduction in combination with mechanisms, such as pinning, that prohibit grain530

growth (generally referred to as damage) is often proposed as primary strain local-531

ization mechanism. Clearly, in nature both mechanisms act simultaneously. We532

argue that thermal softening is a suitable mechanism for spontaneous strain local-533

ization in essentially homogeneous material whereby only minor heterogeneities534

can trigger strain localization. Grain size reduction can assist thermal softening535

and grain size reduction is likely a mechanism that is important during progressive536

shear zone evolution and can decrease the widening rate of the finite strain profile537

due to heat conduction. For example, Thielmann et al. (2015) studied numerically538

the formation of shear zones by thermal runaway using a combined approach of539

thermal softening and grain size reduction. They showed that grain size reduction540

reduces the stress required for thermal runaway and hence assists ductile shear541

zone formation by thermal softening. Currently, different grain size evolution542

models are applied, for example, Thielmann et al. (2015) apply the so-called pa-543

leowattmeter model in which grain size is a function of flow stress, strain rate and544

temperature, whereas Platt (2015) applies a piezometer in which grain size de-545

pends on flow stress only. To reliably quantify the impact of grain size evolution546
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better constrained grain size evolution models for various rock types are needed.547

8. Conclusions548

A ductile shear zone which is generated spontaneously by thermal softening549

during a velocity-driven bulk deformation exhibits the following fundamental fea-550

tures: (1) After a transient period of temperature increase the temperature in the551

shear zone remains constant for linear viscous flow and quasi-constant for power-552

law viscous flow. (2) The shear stress in the shear zone is largest at the onset of553

shear zone formation and subsequently decreases towards a (quasi-)constant value554

associated with the establishment of a (quasi-)constant temperature. (3) The width555

of temperature variation across the shear zone is 6 to 8 times wider than the varia-556

tion of the corresponding finite strain. Therefore, the shear zone does not exhibit a557

sharp, and hence easily observable, temperature variation between highly-strained558

shear zone and little-strained wall rock. (4) The shear zone is continuously widen-559

ing during shearing due to thermal conduction between shear zone and wall rock.560

(5) Shear heating starts to dominate the heat transfer between shear zone and wall561

rock once the temperature increase in the shear zone is > ca. 50 oC.562

Different versions of the Brinkman number can predict the onset of shear zone563

generation by thermal softening. However, the Brinkman number cannot quantify564

the temperature increase inside the shear zone and, hence, the intensity of ther-565

mal softening. We derived a new analytical formula that predicts the maximal566

temperature inside the shear zone. This temperature prediction requires only in-567

formation on the bulk deformation, such as far-field velocity, flow law and thermal568

parameters, and, therefore, no a priori knowledge of the shear zone itself, such as569

thickness, flow stress and strain rate. Temperature predictions across the scales of570
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geological velocities show first order agreement with several natural shear zones571

including Alpine basement nappes, eclogite shear zones and pseudotachylites. We572

show with 1D, 2D and 3D numerical simulations that this temperature prediction573

is valid for shear zone generation under both bulk simple and pure shear.574

Our results indicate that shear zone generation by thermal softening likely oc-575

curs during lithosphere deformation in the continental lower crust and the mantle576

lithosphere for typical lithospheric velocities of few cm.yr−1 or bulk strain rates577

between 10−16 and 10−14 s−1. For these deformation conditions, shear stresses of578

few hundred MPa can already cause shear zone generation by thermal softening.579

Based on our results and their application to lithospheric flow laws and de-580

formation conditions, we argue that spontaneous shear zone generation by ther-581

mal softening is a feasible and likely the primary mechanism for spontaneous582

lithospheric scale shear zone generation. Thermal softening is probably a key583

constituent of subduction initiation, for example, at a thinned passive continental584

margin. Additional processes, such as grain size reduction, fabric development585

or fluid-related reactions can cause additional softening during progressive shear586

zone evolution and likely intensify the strain localization.587
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Lithology A [Pa−(n+r)s−1] n fH2O [Pa] r Aeff [Pa−ns−1] Q [J.mol−1] λ [W.K−1.m−1] ρ [kg.m−3]

Wet quartzite1 6.31× 10−42 4.0 3.7× 107 1 2.91× 10−32 1.35× 105 2.5 2700

Westerly granite2 3.17× 10−26 3.3 - 0 1.67× 10−24 1.87× 105 2.5 2700

Wet albite3 2.51× 10−15 3.0 - 0 9.04× 10−14 3.32× 105 2.2 2900

Wet anorthite3 3.98× 10−16 3.0 - 0 1.43× 10−14 3.56× 105 2.2 2900

Dry anorthite3 5.01× 10−6 3.0 - 0 1.80× 10−4 6.56× 105 2.2 2900

Wet olivine4 5.68× 10−27 3.5 109 1.2 2.40× 10−14 4.80× 105 3.0 3400

Dry olivine4 1.10× 10−16 3.5 - 0 7.37× 10−15 5.30× 105 3.0 3400

Table 1: Rheological and thermal parameters for the used lithologies. Aeff = FAfrH2Od
−p is an

effective pre-exponential factor (’A’ in the main text) that incorporates grain size (d) and water fu-

gacity (fH2O) dependence. In all cases we use dislocation creep therefore the grain size exponent

is p = 0. All of these flow laws describe stress and strain rate relationship in uniaxial compression

experiments. In order to convert them into strain rate dependent invariant forms we need to intro-

duce a geometry factor, which is F = 2n−13(n+1)/2 for all presented cases (see e.g. Gerya 2009).

The rest of the parameters are: power law exponent (n), water fugacity exponent (r), activation

energy (Q), thermal conductivity (λ), density (ρ) and finally heat capacity is constant for all (cp =

1050 J.kg−1K−1). The sources of the rheological parameters are: 1Hirth et al. 2001, 2Carter and

Tsenn 1987, 3Rybacki and Dresen 2004,4Hirth and Kohlstedt 2003.
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Figure 1: Model configurations for 1D simple shear, and 2D and 3D pure shear bulk deformation.

In all models a thermal perturbation (red) is in the model center. Due to the symmetry of the

problem we solve the 2D and 3D models only for the positive coordinate region. To compare 1D

results with 2D and 3D results, the results of the 1D model are rotated so that they correspond to

the direction x′ in the 2D and 3D models which is orthogonal to the shear zone.
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Figure 2: Representative results of 1D shear zone models. Time evolution of maximum temper-

ature at the shear zone center for linear viscous (a) and power-law viscous (b) flow. Model (1) is

based on a dry anorthite diffusion creep flow law with Aeff = 0.14 Pa.s−1 (d = 0.3 mm) and Q =

467 kJ.mol−1, model (2) is based on a dry peridotite flow law (see Table 1). In both models we

applied 3 cm.yr−1 velocity difference. Different lines correspond to models with different model

size and initial perturbation (see legend, which applies to all three panels). After a transient stage

the maximum temperature converges to a constant (a) or (quasi-)constant (b) temperature. c) Shear

stress evolution for power law simulations, shown in panel b). The shear stress always decreases

with progressive shear zone evolution and converges to a quasi-constant value.
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Figure 3: a) Representative time evolution of a temperature profile during shear zone formation.

The model setup is equivalent with the one of the ∆T0 = 25 oC, and L = 1000 km from Fig.

2b and 2c. The dashed horizontal line indicates the thermal thickness which is measured at the

temperature which is half between the maximum and minimum temperature of the corresponding

profile. b) Evolution of thermal thickness for different representative simulations (same colors are

used in Fig. 2b and 2c). Each line shows the result of a simulation with different initial temperature

perturbation and model size. After a transient period, the thickness evolution for all simulations is

linearly increasing with the square root of time.
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Figure 4: a) Temperature and corresponding finite strain profile for a simulation with a dry olivine

flow law after 3.5 Myr. The model setup is equivalent with the one of the ∆T0 = 25 oC, and L =

1000 km from Fig. 2b and 2c. The temperature profile is significantly wider than the finite strain

profile. The thickness of both profiles is measured at the vertical value which is half between

the maximum and minimum value of the profile. b) Evolution of the ratio of thermal thickness

to corresponding finite strain thickness with progressive time for different model configurations

(colors are corresponding to Fig. 2b and 2c). After a transient stage the ratios approach values

between 6 and 8 showing that the temperature variation is nearly one order of magnitude wider

than the corresponding finite strain variation. For comparison, also the ratio of thermal thickness

to corresponding instantaneous strain rate thickness is displayed with gray dashed lines, because

this thickness ratio is constant and ca. 4 for all shown simulations.
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Figure 5: a) Representative temperature evolution for cooling of an initial Gaussian temperature

profile, left curves, and for heating for a constant temperature in the model center, right curves.

Lines for t1 to t4 display temperature profiles at progressive times. The dashed horizontal lines in-

dicate the half-width of a specific temperature profile. Horizontal x-coordinates and temperatures

are dimensionless and temperatures have been scaled so that the initial temperature is identical.

b) Plot of the dimensionless widths of temperature profiles determined from 1D numerical simu-

lations versus the corresponding temperature increase in the shear zone centre, ∆Tmax. The blue

and red horizontal lines indicate the theoretical dimensionless width for cooling of an initial Gaus-

sian temperature profile (equation 13) and for heating for a constant temperature in the shear zone

(equation 16), respectively. A value of ∆Tmax ≈ 40 oC indicates the transition between the two

types of heat transfer and for ∆Tmax > 40 oC shear heating (SH) is significant.
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Figure 6: a) Maximum temperature versus two different characteristic temperatures for all 1D

simulations. Red circles represent a choice of scales which generates a data collaps and the blue

crosses are an example of a scaling that generates a data scatter. The black line indicates a fit of

the data (see equation in panel) where e is the Euler number. b) Maximum temperature in the

shear zone from all numerical 1D simulations (Tmax) versus the maximum temperature predicted

with equation 22 (equation in label). c) Ratio of the minimum shear zone viscosity to the initial

viscosity versus two versions of Brinkman number, Br1 and Br2.



Figure 7: Comparison of temperature and velocity profiles across 1D, 2D and 3D shear zones. a)

to c) shows the temperature field for three stages of 3D shear zone formation. d) to f) shows the

temperature field for three stages of 2D shear zone formation. The profile lines indicated with

x′ in both 2D and 3D models are used for the comparison with the 1D model. g) to i) show 1D

temperature profile and the 2D and 3D profiles along the x′ profile for three different times. j) to

l) show the 1D velocity profile and the 2D and 3D profiles along the x′-profile for three different

times. The displayed velocity magnitudes are normal to the profile orientation and, hence, parallel

to the shear zone orientation.
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Figure 8: Predicted maximum temperature in shear zones across the scales. Four data points

are shown as possible applications. Three of them are direct observations, displayed with black,

while the gray is an indirect observation (see in section 6). Equation 22 is used for temperature

prediction versus the applied boundary velocities, ∆v, for different flow laws (see legend and

Table 1). The same constant finite shear strain, γc = 20, is assumed for all shear zones and the

corresponding duration of the deformation is calculated with equation 26. For pseudotachylites the

typical values of finite strain are higher. The expected temperature range for γc = 80 is indicated

by the light gray area. The quartzite flow laws are not displayed for high velocities because for

those the argument of the logarithm is approaching exp(−1.1) ≈ 0.3, where the prediction starts

to significantly deviate from the solution.



Figure 9: a) and b) show color plots of the temperature difference, ∆T , between the maximum

temperature predicted with equation (22) and the initial temperature, T0, corresponding to the am-

bient temperature at a certain depth in the lithosphere. ∆T is contoured for different values of

T0 and ∆V . ∆T is calculated for a deformation time of 1 Ma. The three regions in the color

plots correspond to three different flow laws, namely for Westerly granite (top region representing

upper crust), wet anorthite (middle region representing lower crust) and wet olivine (lower region

representing mantle lithosphere). c) and d) show color plots of the initial shear stress in 1D sim-

ulations as a function of T0 and applied bulk strain rate, ε̇xy . c) shows results for wet albite flow

law and d) for dry olivine. The applied velocity difference is 3 cm.yr−1 and bulk strain rates are

modified by changing the 1D model size. The red dashed horizontal line indicates the maximum

temperature, Tmax, from equation (22). To have significant shear localization, T0 must be at least

50 oC smaller than Tmax (see Fig. 5b). Only shear stresses < 1 GPa are displayed. The colored

regions in c) and d) indicate the ”window” in which shear zone generation by thermal softening is

feasible in the lower crust (c) and mantle lithosphere (d).


