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Abstract 

Some of Titan’s small northern hemisphere lakes show raised rampart features (which are 

distinct from raised rims), and appear as SAR-bright mound-like annuli extending away 

from the lake for up to tens of kilometers from the shoreline. We investigate the infrared 

and microwave characteristics of these features using Cassini Visual and Infrared 

Mapping Spectrometer (VIMS) and RADAR data. A spectral comparative analysis is 

performed among the lakes, their ramparts, and the surrounding regions. We overcome 

the profound difference in spatial resolution between VIMS and SAR data by using a 

method that provides overlays between the spectral images and SAR, thus enabling the 

correct selection of VIMS pixels. The surface properties of the selected areas are obtained 

using a radiative transfer analysis on the selected VIMS pixels, in addition to emissivity 

obtained from the RADAR in radiometry mode. Analysis of these combined and co-
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registered data  provides constraints for the formation mechanism(s) of raised ramparts. 

The results show that the emissivity of the raised ramparts is close to that of Titan’s 

labyrinthic terrains and to that of empty lake floors in the northern polar regions. This is 

confirmed by the VIMS analysis that also shows that the infrared spectral response of the 

raised ramparts is very similar to that of some empty lake floors. This suggests that both 

areas are made from or are covered by a similar material. In addition, two out of the eight 

lakes with raised ramparts show spectral differences at three specific wavelengths, 1.6, 

2.0, and 5.0 μm, between the ramparts and the surrounding terrain. We hypothesize that 

this could be due to some component, or mixture of components in the ramparts that is 

less absorbent at these specific wavelengths, or it could be an effect of different grain 

sizes. These observations provide first insights into the possible mechanisms leading to 

the formation of the raised ramparts that are discussed here.  

 

1. Context and observations 

 
Cassini observations of Titan have revealed ~650  polar lakes (lacus) and seas (mare), 

with more than 200 being empty and more than 300 filled or partially filled (e.g., Stofan 

et al., 2007; Hayes et al., 2008; Hayes, 2016; Birch et al., 2017). Modeling, supported by 

Cassini data, suggest the liquid composition to be a mixture of methane/ethane with the 

contribution of dissolved nitrogen (e.g., Sagan and Dermott, 1982; Lunine et al., 1983; 

Brown et al., 2008; Mastroguiseppe et al., 2014; 2018). The northern seas, Ligeia Mare, 

Kraken Mare, and Punga Mare, form the largest liquid-filled bodies on Titan, along with 

the largest lakes Jingpo, Hammar, and Ontario Lacus. These largest liquid bodies are all 

characterized as liquid-filled broad depressions (Hayes et al., 2018).  

Most of Titan’s smaller lakes are characterized as sharp-edged depressions (SEDs), 

which appear either empty or filled, and have been extensively discussed in Hayes 

(2016), Hayes et al. (2018), and Birch et al. (2018). These studies showed that the SEDs 

have relatively flat floors, significant depths (up to 600 m), and are partly or wholly 

encircled by narrow (typically ~1 km or less extending from the lake edge), hundred-

meter-high, rims. SEDs also show no evidence of inflow or outflow channels at the 

resolution of the Cassini RADAR (Elachi et al., 2004) in SAR mode (Hayes et al., 2008; 

2016; Hayes, 2016; Michaelides et al., 2016; Birch et al.; 2018), which varies but is 

always >300 m. A small subset of the north polar SEDs (<10) also show raised rampart 

features (Fig. 1; 2). Rampart features are defined as SAR-bright mound-like annuli 

extending away from the lake for up to tens of kilometers from the shoreline (see Fig. 1). 

Unlike the narrow, steep, raised rims, these broad SAR-bright ramparts completely 

encompass their host lake. As discussed extensively in previous work (Hayes, 2016; 

Hayes et al., 2017; Birch et al., 2018), lake formation, in general, remains an open 

problem. The formation of the ramparts around a subset of the lakes is similarly 

unconstrained. As these lakes are unique among Titan’s many polar lakes, these ramparts 

may yield important clues to the formation of Titan’s lakes more generally.   
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Figure 1. Right: T16 SAR image of Viedma Lacus. Cyan arrows denote portions of the 

perimeter of the rampart feature, a SAR-bright apron that encloses nearly the entire lake. 

Yellow arrows denote portions of the raised rim. Top Left: Zoom into the raised rim 

portion of the lake perimeter, denoted by the white box in the right image. The rim 

appears eroded in multiple sections; Bottom Left: Conceptual model of a lake with a 

rampart and rim (not to scale). Rims are confined to within a few kms of the lake, and 

form higher slopes, while ramparts enclose the lake and form broader (up to 10’s of kms) 

mounds. 

 

The Cassini flybys T16 (July, 2006), T19 (October, 2006), T91 (May, 2013), and T92 

(July, 2013) made RADAR observations in SAR mode of portions of the region where 

five of Titan’s northern lakes feature raised ramparts. Figure 2A shows SAR data of a 

number of those filled and empty lakes with raised ramparts; Fig. 2B shows their 

topography overlain on SAR, annotated with mapped terrain contacts; and Fig. 2C shows 

their emissivity overlain on SAR. The digital terrain model (DTM) was generated from 

the overlap of the T16 and T19 SAR observations (Kirk et al., 2007; Malaska et al., 

2014).  

In this study, we focus on eight lakes. Five filled lakes with raised ramparts are 

shown in Figs. 2D and 2E for which we have detailed views of their topography, multiple 

SAR and radiometry images, and high resolution Visual and Infrared Mapping 

Spectrometer (VIMS) observations (Brown et al., 2004). Their ramparts surround the 

lakes, and are 200–300 m above the surrounding terrain. Depending on the lake, they 

extend outward from 3 to 30 km away from the lake perimeter. The ramparts are not 

equidistant from entire shorelines, but are coincident with radar-brighter areas 

surrounding the lakes. The vertical resolution (~150 m; Corlies et al., 2017) of the DTM, 

however, is such that the high backscatter areas surrounding some lakes do not always 

appear elevated. We also study three empty lakes for comparison (Fig. 2F).  

The selection of these five lakes was made based on the availability of high-

resolution VIMS data for which quality SAR data exist; VIMS cube 1764550739 was 

acquired above the five selected lakes during flyby T96 in December 2013. 
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For the analysis of the three empty lakes, we use VIMS cube #1767299935 (T97, 

January 2014). The selected VIMS cubes were compatible with our plane-parallel 

radiative transfer (RT) approximation (Hirtzig et al., 2013; Solomonidou et al., 2014; 

2016; 2018) used for the analysis of VIMS data, as they have adequate resolution for the 

selection of separate pixels for the lakes, ramparts, and surroundings (Table 1); and also 

have both incidence (i) and emission (e) angles lower than 60°.  

Furthermore, this analysis and application of the RT code on Cassini VIMS data has 

been performed in several previous publications (e.g. Solomonidou et al., 2016; Brossier 

et al., 2018; Lopes et al., 2018) while in Solomonidou et al. (2018) the code was 

successfully applied to higher latitudes compared to previous studies. Hence, in 

Solomonidou et al. (2018) the proper application of the plane-parellel code for high 

latitude areas (for example North Afekan area at ~ 60°N and Poritrin Planitia at ~50°N), 

with favorable geometrical conditions and small emission angles, was tested and verified.  

 
Figure 2. Filled lakes with a subset that show ramparts and empty lakes: (A) SAR; (B) 
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DTM overlain on SAR, annotated with mapped terrain contacts. White solid (for filled 

lake) and white dashed (for empty lakes) rectangules correspond to zoomed areas shown 

in D, E, & F; (C) Emissivity overlain on SAR, annotated with mapped terrain contacts 

(for B and C, blue and yellow outlines indicate filled and empty lakes respectively); (D, 

E) Detailed view of topography and SAR, ramparts marked with red lines; (F) SAR 

image of empty lakes (marked with yellow). 

 

Table 1. Regions of Interest (RoI) for the lakes (filled and empty; including names when 

available), their ramparts, and surrounding areas, size of areas, and coordinates. The 

VIMS cube used to study the filled lakes (1764550739) was acquired on flyby T96 

(December 2013), with i: 59º, e: 16º, α (phase angle): 53º and spatial scale of 4.9 

km/pixel. The VIMS cube for the empty lakes (1767299935) was acquired on flyby T97 

(January 2014), with i: 55º, e: 6º, α: 56º and spatial scale of 21 km/pixel. The SAR image 

in use is from flyby T19 (October 2006). In our VIMS analysis we used one pixel for 

every region of interest which corresponds to a surface area of 24 km
2 

for the filled lakes 

and 462 km
2 

for the empty lakes. 

RoI Size Coordinate (centroid) 

Filled 

Lake#1 (Viedma Lacus) ~600 km
2 69.86ºN, 133.73ºW 

Rampart#1 ~250 km
2
 72.86°N, 124.95°W 

Surrounding#1 N/A* 72.64°N, 121.29°W 

Lake#2 (Phewa Lacus) ~40 km
2
 72.32°N, 123.94°W 

Rampart#2 ~30 km
2
 72.22°N, 124.07°W 

Surrounding#2 N/A* 72.64°N, 121.29°W 

Lake#3 ~11 km
2
 72.51°N, 123.4°W 

Rampart#3 ~70 km
2
 72.6°N, 123.65°W 

Surrounding#3 N/A* 73.4°N, 124.2°W 

Lake#4 ~50 km
2
 73.55°N, 124.68°W 

Rampart#4 ~250 km
2
 73.41°N, 124.44°W 

Surrounding#4 N/A* 73.42°N, 123.17°W 

Lake#5 ~35 km
2
 74.33°N, 123.9°W 

Rampart#5 ~350 km
2
 74.22°N, 124.01°W 

Surrounding#5 N/A* 74.16°N, 121.89°W 

Empty 

Lake#6 ~670 km
2
 68.48°N, 131.94°W 

Lake#7 ~480 km
2
 69.79°N, 135.13°W 

Lake#8 ~520 km
2
 69.85°N, 133.75°W 

*(use of 1 pixel selected from the entire surrounding area) 
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2. Process and method of analysis 

 
2.1 VIMS and SAR overlapping  

 
To maximize the information we can obtain from the Cassini VIMS and SAR data, 

we overlayed the SAR and VIMS images. This allows us to extract the morphological 

information from SAR images and the spectral information from VIMS data. These data, 

however, have very different resolutions. To address this we used the SAR images to 

determine the fraction of an individual VIMS pixel that contains each unit type (lake, 

rampart, surrounding), and assume linear spectral mixing. More details of this method are 

described in Solomonidou et al. (2018).  The same technique was used by Bonnefoy et al. 

(2016) to isolate VIMS spectra of Titan’s equatorial dunes. 

Figure 3a shows the portion of the SAR image that corresponds to the VIMS cube 

(Fig. 3b). Figures 3c and 3d show the SAR and VIMS overlay on RGB (R: 2.03 μm, G: 

SAR, B: SAR for 3c; R: 1.28 μm, G: SAR, B: 2.03 μm for 3d) and Fig. 3e shows the map 

projection and resolution matching of VIMS at 2.03 μm over the original SAR resolution. 

The map and resolution matching were done by upsampling the original VIMS at 2.03 

μm image and moving its pixels, using cubic convolution interpolation, to match the SAR 

resolution and map projection. Figures 3f1–f5 show the pixel selections of the RoIs 

described in Table 1 (lakes, ramparts, surroundings). We used the same method for the 

selection of pixels for the empty lakes. 

 

 
Figure 3. Steps of selection of pixels for the regions of interest for the 5 filled lakes: SAR 

portion (a) based on the full VIMS cube (b); combination of (a) and (b) using VIMS map 

projection and resolution matching with cubic convolution at 2.03 μm (c: R: 2.03 μm, G: 

SAR, B: SAR; and d: 1.28 μm, G: SAR, B: 2.03 μm), over the original VIMS cube (e). 

Pixel selection for lakes (blue), ramparts (red), and surroundings (green) #1-5 (Table 1).  

 

In the following discussion, one should always keep in mind the penetration depths 

of VIMS and RADAR. VIMS observations sense only the top surface layer, on the order 

of tens of microns, whereas RADAR can penetrate on the order of 10s of cms into the 

surface, depending upon the material properties of the surface and close sub-surface. 
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2.2 VIMS analysis 

 

To derive spectral information for the lakes of interest, we analyzed the VIMS data 

using specific tools. VIMS has 256 IR bands, but there are ‘methane windows’, where the 

methane absorption is minimal, and thus the surface can be observed. Windows are 

centered at 0.93, 1.08, 1.27, 1.59, 2.03, 2.69–2.79, and 5.00 μm (e.g., Soderblom et al., 

2007). For our analysis, we use a radiative transfer (RT) code. To reproduce a VIMS 

spectrum, we estimate the atmospheric contribution to the VIMS data, and extract 

meaningful surface information through radiative transfer calculations, in which we use 

Huygens’s inputs and other parameters that simulate Titan’s conditions. Full descriptions 

of the Huygens’s and Titan’s inputs, in addition to details on the methodology and 

several applications on Titan’s surface regions, can be found in Solomonidou et al. (2014; 

2016; 2018). In brief, our RT code, before extracting the surface albedo from the 

aforementioned methane windows, first isolates the atmospheric contributions from the 

deep wings and bands of methane absorption. We then adjust the single scattering albedo 

and phase function as derived by the Huygens Descent Imager/Spectral Radiometer 

(DISR) (aerosol model by Tomasko et al., 2008, adapted as in Hirtzig et al., 2013) and 

derive the associated extinction by shifting the vertical profile used as a reference, so that 

the code fits the methane bands, wings, and windows. Thereafter, we can estimate the 

haze contribution to the data and derive the surface albedos in the windows for the 

various regions of interest (Fig. 3f1–f5) in order to compare them. Caution is exercised, 

however, when using this model (or similar models) for times or locations that are 

significantly offset from the Huygens’s landing site and time. For that reason, our current 

analysis is focused in the intercomparison of pixels from one datacube which has very 

similar observational geometries thoughout its pixels and the atmospheric conditions are 

expected to be somehow homogeneous. The same applies for the datacube that includes 

the empty lakes which has very similar observational geometries as the one with the filled 

lakes, as shown in Table 1. In addition, we are taking into account a number of 

uncertainties at the 3σ level including the aerosol phase function, the aerosol vertical 

distribution, the aerosol forced single scattering albedo, the error due to the CH4 vertical 

concentration profile, the CH4 linelist, and the CH4 far wing profile. Finally, we average 

multiple spectra in order to enhance the signal-to-noise ratio without affecting radically 

the average gain in signal.    

 

 

2.3 Emissivity analysis 

 

In its passive mode, the Cassini RADAR operated as a radiometer at 2.2-cm 

wavelength (Janssen et al., 2009; 2016). It measured the thermal emission from the 

surface, which depends on the surface’s physical temperature (and is well known in the 

case of Titan, e.g., Jennings et al., 2016) and emissivity at 2.2 cm. Passive radiometry 

observations were always acquired concurrently to active radar measurements (the 

opposite is not true), thus where there is a SAR image there are also radiometry data.  

However, the spatial resolution of the radiometry observations is much coarser than 

that of SAR images; it is limited by the real aperture of the radar antenna, which typically 

has ~10 km footprints during Titan flybys. The selected ramparts are at most a few tens 
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of km wide, therefore the estimate of their emissivity is not straightforward and we rely 

on a method already used for estimating the emissivity of Titan’s crater rims (Werynski 

et al., 2019). This method accounts for the filling factor of the radiometry footprint by the 

feature of interest for each observation. A 100% filling factor means that the entire 

radiometry footprint is filled with the feature. However, such a factor is not often reached 

for small features. Therefore, for each observation, we have computed the percentage of 

areal coverage of the radiometry footprint by the raised rampart and the emissivity of the 

rampart is extrapolated for a filling factor of 100%, assuming a linear mixture of two 

types of terrain. 

Figure 4 illustrates this approach as applied to the raised rampart #5. The estimated 

emissivity of this rampart is 0.936 0.008, ~1.5% lower than the surrounding terrain 

(0.949 0.004). The error bar is computed using Monte Carlo simulations with 1000 

iterations and assuming errors are Gaussian and centered, and given with 2-sigma times 

the relative error on the datapoints (0.85%). The calibration of the radiometry 

observations is described in detail by Janssen et al. (2016); the net uncertainty in the 

absolute emissivity is, including the relative error of 0.85%, estimated to be 1.2%. 

 

 
Figure 4. Left: Outlines of the raised rampart #5 (black) and of the lake it surrounds 

(blue) and radiometry footprints overlapping the rampart. Radiometry observations are 

from Titan flybys T16, T19, and T126 (April 22, 2017). Right: Emissivity of the raised 

rampart area as a function of the areal filling factor by the rampart of each radiometry 

footprint and associated linear fit (solid line) with its 95% confidence interval (dashed 

grey lines).The estimated emissivity value of the raised rampart #5 corresponds to the 

value given by the linear fit for a filling factor of 100%. 

 

 

3. Results 
 

Surface albedo RoI comparisons for the filled lakes  

 

Using our radiative transfer code, we simulate the VIMS observations, varying the 

haze opacity (scaled to the DISR value inferred at the Huygens landing site (HLS)) to 

minimize the difference. From these simulations, we derive the haze opacity for each 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 9 

observation, with typical uncertainties of ±15%. This ±15% uncertainty in the haze 

opacity simulation for each observation is based on systematic uncertainties that 

dominate the error budget due to the far-wing profiles, the CH4 linelists, the haze 

extinction fit and the vertical concentration, as well as the calibration and the data 

intrinsic noise. The nominal haze contributions to the VIMS spectra we study here are 

constantly +50% of the DISR haze value at HLS for all RoIs. This is consistent with 

observations and already indicated in the analysis of other Cassini datasets (i.e. CIRS 

data) during the 2006-2014 period which have shown persisting increased haze opacity at 

higher northern latitudes during the winter and spring season as compared to the equator 

(Jennings et al., 2012; Coustenis et al., 2013; 2016; Vinatier et al., 2015). 
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Figure 5. Surface albedo absolute differences (i.e., subtracted values) between the filled 

lakes, the ramparts, and the surroundings (#1–5 as in Table 1) and the surface albedo 

extracted from the Huygens landing site that is used as ‘ground truth’. 

 

We find that two of the five filled lakes have surface albedo differences among 

the three RoIs (lake, rampart, surrounding) (Table 1) (Fig. 5). The other three lakes (#3–

5), however, show no significant difference between the observed albedos of the different 

RoIs, which was expected as their size or location in the VIMS image made it difficult to 

accurately select the correct VIMS pixel. The ‘blue box’ selection shown in Figs. 3f4–f5 

corresponds to the lake, which possibly includes terrain from the adjacent area of rampart 

(red box). In figure 3f3, it is obvious that the blue rectangle that marks the selection of 

the lake area does not correspond to a dark feature as one would expect and as appears to 

occur in the rest of the tested areas. Lake #3 is the smallest in size among our analyzed 

lakes (Table 1). This, in addition to the pixel grid of the datacube in use, seems to provide 

a ‘lake’ pixel that includes a large portion of the adjacent brighter rampart area, making 

the average spectra of the pixel increase in brightness. This problem was overcome 

thanks to the high resolution of the datacube in use, the size, and the location of lakes #1 

and #2, which enabled the accurate selection of RoIs. 

As expected for both lakes #1 and #2, the albedo of the ‘lake’ pixel is lower at 

every wavelength compared to the other two RoIs. The ‘rampart’ surface albedo has 

significantly lower albedo than the ‘surrounding’ albedo at 1.6, 2, and 5 μm for lake #1 

and marginally lower albedo at 2 μm and 5 μm for lake #2.  

 

Surface albedo RoI Comparison with the empty lakes  

 

Following the comparative surface albedo analysis from the filled lakes’ RoIs, we 

performed an equivalent analysis between the ramparts of the filled lakes (lakes #1 and 

#2, Fig. 6a) and the lake floors of nearby empty lakes (#6–8, Table 1, Fig. 6b).    
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Figure 6. Surface albedo absolute differences (with respect to the HLS albedo) for the 

ramparts of the filled lakes (a) and the floors of the empty lakes (b).  

 

The results (Fig. 6) show that the spectral response of the raised ramparts is very 

similar to that of the bottom of the empty lakes. This is consistent with both areas being 

made of, or covered by, similar material. The nominal haze contribution to the data 

ranges from +65% to +80% of the DISR haze value at the HLS for the empty lakes, and 

is within the ±15% expected uncertainty. A rational next step would be to compare these 

albedos from the lake and empty lake RoIs with the results of our recent study 

(Solomonidou et al., 2018), where we extracted the surface albedos of the major 

geomorphological units of Titan’s mid-latitudes, such as mountains, labyrinths, different 

types of plains, dunes, and more. However, the difference in the atmospheric conditions 

(and haze opacity, particularly in the lower atmosphere) between the equator and the 

polar regions renders such a comparison extremely difficult and the associated errors 

would be considerable (Coustenis et al., 2010). We prefer to offer an inter-comparison 

between topical regions studied within the same geometry and atmospheric conditions, so 

as to avoid having to take into account systematic errors and focusing only on relative 

errors. 

 
Microwave emissivity 

 

Table 2 summarizes the results of the emissivity analysis for the four investigated 

ramparts (the raised rampart #2 was too small to be characterized). The four features 

display very similar emissivities with an average value of ~0.94.  

 

Table 2. Emissivity results for four investigated ramparts 

Raised 

rampart 

Flybys with 

overlapping 

footprints 

Maximum 

filling factor  

Rampart 

emissivity 

Surrounding 

emissivity 

Rampart #1 T16, T19 52% 0.942 0.012 0.938 0.004 

Rampart #3 T16, T19 25% 0.926      0.959       

Rampart #4 T16, T19 79% 0.942       0.953       

Rampart #5 T16, T19, 

T126 

84% 0.936 0.009 0.949 0.003 

 

Figure 7 compares these values to the emissivity of the main geological units on 

Titan. The emissivity of raised ramparts is relatively high, consistent with a high degree 

of contamination of the surface/subsurface by organic materials. Low emissivity values 

suggest a higher abundance of water ice in the near-surface (Janssen et al., 2016). The 

emissivity of the raised ramparts falls between those of labyrinthic terrains and of empty 

basins, both of which may have formed via karstic dissolution (e.g., Malaska et al., 2010; 

Cornet et al., 2015; Birch et al., 2017; Hayes et al., 2017).  
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Figure 7: Scale of emissivities on Titan. The emissivity of the raised ramparts (this work) 

is compared to that of Titan’s seas (Le Gall et al., 2016), dune fields (Lopes et al., 2016), 

plains (Lopes et al., 2016), labyrinthic terrains (Lopes et al., 2016), hummocky terrains 

(Lopes et al., 2016), Xanadu (Janssen et al., 2009), empty basins (this work) and of two 

crater rims: the rims of the fresh crater Forseti and that of the old Santorini (Werynski et 

al., 2019).  

4. Implications and interpretations  

 
We have investigated five northern filled lake regions with raised ramparts and three 

empty lakes from a nearby region, extracting spectral and emissivity information from 

Cassini VIMS and RADAR data.  

After radiative transfer analysis of VIMS data, two out of five tested filled lake 

regions showed spectral differences at specific wavelengths (1.6, 2, and 5μm) between 

the lakes, their raised ramparts, and their surroundings. This suggests either a 

compositional or grain size difference between the raised ramparts and their 

surroundings. This result is consistent with the findings in Michaelides et al. (2016) who 

noted relative differences in dielectric constant and volumetric scattering behavior 

between empty lake basin floors and their surroundings. Relative differences in dielectric 

constant were attributed to differences in bulk material composition of the empty lake 

basin floors and their surroundings, while relative differences in volumetric scattering 

behavior were attributed to relative differences in porosity or surface saturation fraction. 

Furthermore, our analysis of the empty lakes showed that their floors present very similar 

spectral responses to those of the raised ramparts of the filled lakes, suggesting that both 

types of feature (empty lake floors and ramparts) are made of or coated by similar 

material.  

The emissivity of the raised ramparts is relatively high for the standards on Titan and 

is similar to that of the empty basins. This, combined with the VIMS results, suggests that 

the ramparts and the empty lake floors may have the same composition. The emissivity of 

the ramparts is also close to that of the labyrinth terrains and plains which points to a 

composition enriched in organics rather than water ice, and thus to a photochemical 

origin of the material the ramparts are made of (rather than derived from the primordial 

water ice crust). Additionally, the radar brightness of the raised rampart also point to a 

moderate to high contamination by organics. 

However, the lakes we examined in this work are just a small subset of all Titan’s 

lakes that, unlike the majority of lakes, show the unique feature of ramparts. Currently, a 

number of plausible theories for the formation of the ramparts have been suggested 
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(Wood et al., 2007; 2010, Malaska et al., 2014; Hayes, 2016; Birch et al., 2018; Hayes et 

al., 2018) including: ‘Eroded diapirs’, ‘Eroded spring mounds’, ‘Maars (calderas)’, 

‘Cryovolcanism’, ‘Impact Cratering’, ‘Evaporitive rim stone deposits’, and ‘Karst-

hardened post-deflation remnants’ (descriptions in Hayes, 2016; Birch et al., 2017). Two 

aforementioned hypotheses that might fit the rampart formation include the ‘Eroded 

spring mound’ mechanism (Hayes et al., 2017) in which the difference in elevation 

between the empty lake floors and the filled lakes is suggestive of a subsurface phreatic 

surface; and the karst-hardening post-deflation remnant hypothesis, where temporal 

variation of this phreatic surface would be consistent with the results of this current work 

(Fig. 8).  

 
Figure 8. Scheme showing the three different phases of the ‘karst-hardened post-deflation 

remnant’ theory: accumulation, case hardening, and deflation that form the raised 

ramparts (green), on top of the crust (orange) after the lake liquid (blue) percolates into 

the subsurface.   

 

Further, the ramparts appear to always completely surround their host lakes. This is 

different from the raised rims, which in many cases, are eroded away in many places, 

with only a few remnant highs remaining (Birch et al., 2018). The consistent 

“completeness” of the ramparts suggest that they may be less degraded than the raised 

rims. 

This observation, combined with VIMS and radiometry analyses, provides an 

additional constraint on the formation mechanism of the rampart features that may help 

distinguish the many above hypotheses. Though the exact formation of either feature is 

not known, our results suggest two possible end-member formation scenarios. If the rims 

are made of weaker materials than the ramparts, we would conclude that the ramparts are 

comparatively old. Following the formation of the lake, a mechanism emplaces the 

rampart around the lake’s perimeter. Subsequently, the rim is emplaced on top of the 

rampart, though, being of weaker material, is not able to maintain its relief. The ramparts 

meanwhile, retain their morphology. This would be consistent with previous studies of 

Titan’s lakes, that suggest that rim formation is tied to the retreat of the lake perimeters 

via scarp retreat, and that the process may still be ongoing (Hayes et al., 2017).  

If the rims and ramparts are the same material, which is the same material as the floors 

of empty lakes, then the rims may be comparatively old. In this scenario, if the lake floors 

are representative of the bulk plains materials into which Titan’s lakes form (Birch et al., 
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2017), then after (or during) the formation and growth of the lake basin, residual material 

is also ‘constructed’ first into rim feature, and then later into the larger rampart features. 

This would also imply that the lakes with ramparts are among the youngest on Titan, 

where they have not yet had their rampart removed. For either scenario, however, the 

exact mechanism remains ambiguous, though the similar compositions of lake floors and 

the ramparts is consistent with formation via karst-hardening (Fig. 8). In this hypothesis, 

an evaporitic mineral may percolate in and cement the lakes immediate surroundings 

(sides and bottoms) and cause induration of these surrounding sediments. This hypothesis 

requires regional landscape deflation with removal of less resistant materials. After 

landscape deflation, the indurated sediments stand proud above the deflated terrain. Thus 

the ramparts could have a similar compositional makeup of the lake bottoms. 

Additionally, empty lake formation mechanisms could have both physical and chemical 

effects and the current dataset is not sufficient to differentiate the two effects. It is also 

possible that a combination of the two effects is occurring, with both chemical and 

physical manifestations during lake drying, as is seen in many salt pans on Earth. 

Even though several theories have been suggested, it is difficult to distinguish among 

the plausible mechanisms and provide a preferred model for the formation of the 

ramparts with the current data. The absence of full compositional interpretations and the 

limited resolution of the VIMS and RADAR data limits the detailed geological 

interpretation of these unique features and thus a specific material mixture for the regions 

cannot be defined neither can a complete interpretation on a formation mechanism be 

provided. Nevertheless, our analysis will eventually lead to the comparison and match of 

the extracted surface albedos with a number of materials expected to be present on the 

surface of Titan in a similar fashion as in Solomonidou et al. (2018) where we provided 

insights on the possible major constituents for various Titan geomorphological units 

around latitudes 60°S-60°N. We have not applied this analysis yet on Titan’s polar 

regions and specifically on the lakes in this study because the lakes involve a set of very 

different materials from the ones found in the mid-latitudes or dry land. We are working 

currently on such database enhancement and future interpretations and aim to present in a 

forthcoming publication the results.  

Our work provides new results that show that the raised ramparts exhibit spectral and 

emmisivity characteritics that are generally distinct from the surrounding terrain. The unit 

also presents many similarities to those of the floors of empty lakes. Both units are 

probably made or covered by the same material indicating a connection in their 

formation. Current and future work on the lakes and ramparts aim to interpret 

compositionally these areas and comprehend their different stages of formation and the 

interactions with the surroundings.   
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Highlights  

 Study regions of interest (RoIs) of Titan: north polar lakes with raised ramparts  

 Combine VIMS and RADAR data to infer albedo and emissivity of RoIs 

 Compare raised ramparts to other geological units of Titan 

 Provide constraints on formation mechanisms of the raised ramparts 
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