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S U M M A R Y
Although volume 3-D modelling solutions has become widespread in recent time, thin sheet
approximation of Earth’s conductivity distribution can still serve as a useful tool when quasi-
3-D conductivity structures in the heterogeneous subsurface are investigated and the available
database of observations is limited to long-period electromagnetic induction data from large-
scale deep sounding arrays. We present results of stochastic Monte Carlo Markov Chains
(MCMC) inversion of long-period induction arrows based on the Bayesian statistics strategy.

We concentrated on the different methodological aspects of MCMC for Gibbs sampling and
for adaptive Metropolis algorithm together with convergence of these methods. The results
are presented on a case study from the transition zone between the Bohemian Massif and the
West Carpathians where a phantom effect caused by superposition of the prominent SW–NE
trending Carpathian Conductivity Anomaly and NW–SE trending anomalous structure related
to the fault system at the eastern boundary of the Bohemian Massif appears.

Key words: Europe; Geomagnetic induction; Magnetotellurics; Inverse theory; Numerical
modelling.

1 I N T RO D U C T I O N

In some regions, information on crustal electrical structures on a
regional scale is available mainly from long-period geomagnetic
transfer functions, or induction arrows. In a number of areas, tar-
geted geomagnetic studies based on data from specially designed
simultaneously recording magnetometer arrays were carried out
(see reviews by Lilley 1975; Alabi 1983).

Over several past decades, the region of Central and Eastern
Europe has been covered more or less uniformly by a large collection
of long-period induction arrows which helped in tracing boundaries
of large-scale tectonic units and blocks over the area (e.g. Praus &
Pěčová 1995).

As a result of electromagnetic investigations at the eastern margin
of the Variscan Bohemian Massif and its contact with the Alpine–
Carpathian orogenic system, long-period induction arrows were
collected extensively for more than 20 yr since 1960s, and maps
of these arrows were used to trace boundaries of regional tectonic
units and blocks (Praus & Pěčová 1995). Induction arrows over
broad frequency ranges have still provided important interpreta-
tion parameters in a number of recent electromagnetic induction
experiments in the region. Deep electrical conductivity structure
at the contact zone between the Variscan Bohemian Massif and
the Alpine Western Carpathians is mainly known from long-period

electromagnetic induction investigations. In the past, magnetotel-
luric (MT) experiments and geomagnetic depth soundings (GDS)
in the area of interest were limited by technical parameters of anal-
ogous instrumentation and now, they are limited due to ubiquitous
high-level industrial noise all over the area. Only recently, new MT
data have been collected in the area, partly with commercial moti-
vation (Vozár 2005; Bezák et al. 2014). Long-period geomagnetic
induction data at periods of the order of thousands of seconds, with
penetration depths starting at several tens of kilometres, cannot re-
cover conductivity structure beneath the studied region in detail.
Another difficulty is their low sensitivity with respect to the vertical
conductivity distribution of the layered background. However, they
make it possible to model regional lateral conductivity anomalies in
the lover crust and upper mantle. In such conditions, a quasi-3-D thin
sheet approximation of crustal conductivity structures (e.g. Vasseur
& Weidelt 1977) can be a helpful modelling technique which can
help to smartly avoid difficulties of time and memory-consuming
full 3-D solutions. At present time, two methods of inversion of ge-
omagnetic induction data for integrated conductivity (conductance)
in a thin sheet are known. One is based on the non-linear conjugate
gradient method (Wang & Lilley 2002) and the other on a Bayesian
strategy with Monte Carlo Markov Chains (MCMC) used as a tool to
carry out a stochastic sampling (Grandis et al. 2002, 2013; Grandis
& Menvielle 2015).
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In this work, we present results of a case study of the conductivity
distribution at the transition zone between the Bohemian Massif and
the West Carpathians using the MCMC method.

2 G E O L O G I C A L S E T T I N G

The transition from the Bohemian Massif to the West Carpathians
is located in the junction zone of complexes originated from various
tectonogeneses. The Cadomian units formed by mid-neoproterozoic
to early Cambrian tectonic events (about 750–550 Ma) at the edge
of the ancient Gondwana continent (Linnemann et al. 2007) and ex-
posed only in fragments and the Variscides (Hercynides) originating
from collision of the Gondwana and the Laurussia, which culmi-
nated through Late Devonian to Permian (380–280 Ma, Franke
2000) are overprinted by the Alpine orogenic phase—the prod-
uct of Mesozoic (145–65 Ma) and Cenozoic (to-recent) collision
between Eurasia with northward migrating African, Arabian and
Indian plates). The main geological units of the former Czechoslo-
vakia covered by the experimental electromagnetic (EM) data are
displayed in a schematic map in Fig. 1. The Bohemian Massif
(BM) represents the easternmost fragment of the European Her-
cynian (Variscan) realm occupying Bohemia and the western part
of Moravia. It is built of several roughly SW–NE trending inde-
pendent regional units separated by sutures detected by the deep
seismic profiling results, gravity, geomagnetic and heat flow data
(Suk et al. 1984). This fault pattern is intersected by the second-
order NW–SE trending fault system creating a complicated blocky
structure. The West Carpathians (WCP) belong to the Carpathian
orogenic belt which was formed by the young Alpine folding pro-
cesses and represent the northeast branch of the European Alpine
orogeny. At the southwest, their boundary with the Eastern Alps
is formed by the Danube Valley. Their northern boundary with the
East European Platform is formed by an accretionary wedge of the
Outer Carpathians flysch nappes. Apart from the Alps with their
typical collisional structure, the movement in the Carpathians had
an oblique character, with invasion of the terranes known as Tisza-
Dacia and ALCAPA to the backarc space, docking and rotation, the
fan-shaped collisional front and features characteristic for subduc-
tion observed in the Eastern Carpathians (Vrancea zone – Alasonati
Tasarova et al. 2009).

The West Carpathians consist of two belts—the Inner and the
Outer (Flysch) Carpathians divided by the Pieniny Klippen Belt
(PKB). This very narrow subvertical stripe of intensely deformed
rocks represents the deep-seated contact of the West Carpathians
with the consolidated European Platform units (e.g. Stránik et al.
1993 or Hrušecký et al. 2006). The basement of both the Bohemian
Massif and the West Carpathians is formed by the Cadomian com-
plexes which appear as an independent unit known as the Bruno-
vistulicum (BV) between them (Dudek 1980; Suk 1995) and is
assumed to be a promontory of the African terrane.

North of the Carpathian Chain the transition from the Palaeozoic
western terranes and the Precambrian East European Platform is
formed by the Trans-European Suture Zone (TESZ) assumed to rep-
resent a Caledonian deformation front. A significant part of TESZ is
represented by a system of faults of the Teisseyre–Tornquist Zone
(TTZ, e.g. Grad et al. 1999). This significant boundary stretches
from the Baltic Sea in the northwest to the Black Sea in the south-
east hidden beneath the Eastern Carpathians and is characterized by
the Moho depth increase from 30 km beneath the Variscan terranes
to 45 km beneath the East European Platform, as well as by the heat

flow difference between relatively cold Precambrian Craton and the
Western Europe with relatively high heat flow.

3 G E O M A G N E T I C I N D U C T I O N DATA

3.1 Experimental data

Experimental magnetic field variations data at 150 temporary sta-
tions has been recorded with analogous equipment in cooperation
with Slovak and Polish colleagues in 1970s and 1980s (e.g. Praus &
Pěčová 1991). The study polygon covers an area of about 500 km x
250 km in the east and north directions respectively between 15◦ and
23◦ east longitudes and 48◦ and 50.5◦ north latitudes. As a result
of data processing and analysis single-station geomagnetic trans-
fer functions have been estimated within the interval of periods of
1200–5840 s. They are components of the geomagnetic induction
arrows Tx and Ty relating the horizontal (Hx, Hy) and vertical (Hz)
magnetic field at each single site as functions of period and location
(Wiese 1962)

Hz (r, T ) = Tx (r, T ) Hx (r, T ) + Ty (r, T ) Hy (r, T ) ,

The vertical magnetic field component at the Earth’s surface
is purely secondary if a uniform plane wave is assumed a source
field. The vertical magnetic field thus indicates existence of lateral
inhomogeneities in the crustal electrical conductivity distribution.
Above a 2-D geoelectrical structure the induction arrows are per-
pendicular to the anomalous structure axis and according to the
Wiese (1962) definition they point out from conductive zones to-
wards a resistive medium. In this way, reversals of the induction
arrows can help to map zones of anomalous induction which can be
related somehow to shear zones, fault systems, important tectonic
boundaries or zones of recent tectonic activation. As an example,
the real and imaginary induction arrows at the period of T = 3840
s are presented in Fig. 2.

3.2 Two major zones of anomalous induction

Analysis of the induction arrows distribution made it possible to
distinguish two major geomagnetic induction anomalies in the tran-
sition from the Bohemian Massif to the West Carpathians:

(1) The West Carpathian Anomaly, WCA – has been a well-known
phenomenon since late 1950s (Wiese 1962) characterized by clear
180◦ reversals of the induction arrows above the central part of the
conductivity anomaly. The anomaly axis runs along the Carpathi-
ans chain at the external side of the Inner and Outer Carpathians
boundary (corresponding to PKB, Figs 1 and 2). The induction
arrows are perpendicular to the anomaly strike and vanish above
the axis what suggests a 2-D character of the WCA. The ampli-
tudes of the arrows located to the south of the zero line are larger
(by 25–50 per cent) than those located to the north of the anomaly.
The presence of highly conductive structures beneath the orogeny
generating the anomaly can have various explanations. Hot min-
eral waters in fracture systems or fluid migration in shear zones
related to important tectonic boundaries can play their role in the
anomaly genesis (Ádám & Pospı́šil 1984; Jankowski et al. 1984,
1991; Hvoždara & Vozár, 2004, 2008). Association with metamor-
phosed carbon-bearing layers or graphitization zones is discussed
in Glover & Vine (1992, 1995) or Źytko (1997).

(2) The Eastern Bohemian Massif Anomaly, EBMA – the anoma-
lous zone on the eastern margin of the BM has a different char-
acter compared to the WCA. The induction arrows orientation
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Figure 1. Simplified geology of the Central Europe in the vicinity of Czech, Slovak republic and Poland.

Figure 2. Real and imaginary experimental induction arrows in studied area for period 3840 s; WCA, the West Carpathian Anomaly axis; EBMA, the Eastern
Bohemian Massif Anomaly axis.

is nearly or fully parallel to the SW–NE strike of the anomaly
and their reversals are weakly manifested (Petr et al. 1987).
The mentioned features clearly indicate a three-dimensionality of
the anomaly and corresponding conductivity distribution beneath
the zone. The anomaly source seems to be connected with the

processes related to the collision and submerging of the BM be-
neath the Carpathians although, discussions about induction pro-
cesses, physical and geological mechanisms generating specific 3-D
character of the anomaly still remain speculative (e.g. Kováčiková
et al. 2005).
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3.3 Previous modelling results

First estimates of the anomalies source depths using the line current
approach suggested the depth of the WCA source at 18–27 km
(Pěčová 1982) and similarly, the EBMA source at 17–26 km (Pěčova
& Praus 1996). Jankowski et al. (1985) estimated the WCA source
depth using the method of separation of fields into external and
internal components and obtained the depths reaching 16 km. The
analysis of equivalent current systems made it possible to locate the
top of the anomaly source at the depth of about 15 km in the WCA
area and at 10 km in the case of the EBMA (Červ et al. 1997).

In the 2-D joint forward modelling applied by Jankowski et al.
(1991) for interpretation of both MT apparent resistivities and
phases and induction arrows from the Polish part of the Carpathi-
ans, the WCA source was situated at depths less than 10 km and
assumed to be related to sediments filling the Carpathian Foredeep.
Another regional electrical model along the N–S profile across the
High Tatra Mts in the WCP was suggested by Ernst et al. (1997)
who also localized the WCA body with the resistivity of the order
of 1 �m to depths between 8 and 16 km.

A 2-D inversion of the Carpathian data from the Polish–Slovak
section of the WCA was first used by Červ & Pek (1981), and it ba-
sically confirmed the results obtained previously by fitting the data
via forward simulations along N–S profiles crossing the northern
segment of the WCA. The model of the conductivity distribution
along the Deep Seismic Profile (DSS) No VI, traversing the BM,
BV and WCP from NW to SE, based on MT results and on induc-
tion arrows, was presented in (Červ et al. 1984), and refined later
in (Červ et al. 2001) by inverting the data using the 2-D REBOCC
inversion procedure (Siripunvaraporn & Egbert 2000). The first
rough attempt to apply the MCMC procedure to the magnetovari-
ational data from the BM-to-WCP transition zone was introduced
in Grandis et al. (2013). Our models were calculated with substan-
tially longer Markov chains and more detailed grid of cells resulting
in better convergence, less scattered mean conductances, and con-
sequently in more precise resolution of the regional geology. We
compare the latest 2-D models across the West Carpathians with
our thin sheet model in Section 7 (Fig. 9c).

4 T H I N S H E E T A P P ROX I M AT I O N

The subsequent technique of inversion of the experimental induc-
tion arrows for a laterally non-uniform conductance is based on a
thin sheet approximation. The sheet model is a quasi-3-D approx-
imation of the electromagnetic induction problem for sufficiently
long periods of the field. This model is a suitable approximation if
the conductivity anomalies may be assumed to be concentrated in
a layer of a finite thickness which is much less than the penetration
depth of the electromagnetic field. In such a case, the modelling
of the data is weakly sensitive to the vertical changes in the con-
ductivity distribution, and primarily aims at revealing large-scale
lateral conductivity contrasts rather than at providing a complete
3-D conductivity distribution in the subsurface.

Within the context of regional electromagnetic induction studies,
comprehensive theories of the 3-D thin sheet model were published
in classical papers by Vasseur & Weidelt (1977), Dawson & Weaver
(1979), McKirdy et al. (1985), Singer & Fainberg (1999) and others.
Models consist of a laterally non-uniform thin sheet situated at the
surface or buried in a 1-D normal layered model. The real 3-D con-
ductivity σ (x, y, z) in the sheet is reduced to a 2-D distribution of the
integrated conductivity, or conductance, S(x, y) = ∫σ (x, y, z) dz,
where the integration goes over the thickness of the sheet.

Building up on the thin sheet theory by Price (1949), Vasseur
& Weidelt (1977) showed that the horizontal electric fields inside
the anomalous domain of the thin sheet can be obtained by solving
linear integral equations with kernels given by a product of the
electric Green’s tensor of the normal model and the anomalous sheet
conductance. With the anomalous electric fields known throughout
the anomalous sheet domain, the electric and magnetic fields can
be computed anywhere in the model by simple integrations.

Multisheet models have been also studied, for example by Robert-
son (1988), Fainberg et al. (1993) and Engels et al. 2002.

5 B AY E S I A N M O N T E C A R L O S O LU T I O N
O F T H E I N V E R S E P RO B L E M

As modelling of the geomagnetic induction data available in a nar-
row period band only can face substantial uncertainties, quantifying
the conductance estimates as well as their uncertainties in a crustal
sheet model may be of primary interest to studies on lateral conduc-
tance variations. In what follows, we use a Bayesian probabilistic
approach to assessing the anomalous conductance distribution in
a regional thin sheet model, essentially in the form presented by
Grandis et al. (2002), but with more attention paid to sampling
alternatives, effects of a prior selection and the convergence. Al-
though computationally demanding for this type of a problem, the
Bayesian approach shows some advantages over common determin-
istic minimization procedures for non-linear objective functions. In
particular, estimation of parameters and their uncertainties is solved
as a single problem of determining the posterior probability of the
conductance parameters corresponding to the experimental mag-
netic response data. MCMC technique represents a computationally
realizable way to simulate samples from the posterior probability
distribution of model parameters conditioned on the experimental
observations, which represent a most general solution to the inverse
problem of the geomagnetic induction.

5.1 Bayesian approach in the inverse problem

The Bayesian formulation of the inverse problem allows for a joint
treatment of the experimental data together with the estimation of
the model parameters and their uncertainties, and determination of
the posterior probability of the conductance model conditioned on
the recorded data. It is governed by the Bayes theorem (see, e.g.
Gelman et al. 2004, or, in the induction problem context, Grandis
et al. 2002),

Prob (S | Tobs,S) = Prob (Tobs | S,S) × Prob (S |S)

Prob (Tobs,S)
, (1)

where S are the model parameters, specifically logarithms of the
sheet conductances, S = (s1, . . . , sN ) = (logS1, . . . , logSN ), Tobs

is a vector of components of the observed induction arrows, Tobs =
(T obs

1 , . . . , T obs
M ), and S symbolizes the class of models considered

for the approximation of the conductivity structure. The integers N
and M are, respectively, the number of model parameters (number
of cells in the thin sheet model) and the total number of the data
items (number of all components of the experimental induction
arrows over all observation sites and all periods considered).

The posterior probability density function, Prob (S | Tobs,S), in
(1) represents a solution to the inverse problem. From this function,
point estimates for the model parameters can be evaluated, and their
credibility intervals assessed. Common point estimators are the
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posterior mean, posterior mode (maximum a posteriori, or MAP
estimate), or posterior median.

5.2 Likelihood and prior

The first fundamental term on the right-hand side of (1), the like-
lihood, Prob (Tobs | S,S), represents the probability of obtaining
the observed induction arrows giving a particular set of values for
the cell conductances. If the true conductance distribution in the
sheet is Strue, and it generates data Ttrue, then the observations, Tobs,
will be realizations of the true data disturbed by random noise. If
we further assume that the noise is a Gaussian process with zero
mean and with standard deviations of δT obs

j , j ∈ {1, . . . , M} for
the individual observations, the probability density function for the
observation vector Tobs is given by

Prob (Tobs | Strue,S) = 1

(2π )M/2 ∏M
j=1 δT obs

j

× exp

⎡
⎣−1

2

M∑
j = 1

(T obs
j − Tj

(
Strue

)
)
2

(δT obs
j )

2

⎤
⎦

∝ exp

[
−1

2
�

(
Strue

)]
, (2)

where

�
(
Strue

) =
M∑

j=1

(T obs
j − Tj

(
Strue

)
)
2

(δT obs
j )

2

is the common expression for the data versus model χ 2-misfit with
residuals normalized by the data variances. If an arbitrary conduc-
tance array S, rather than Strue, is used in the likelihood formula (2),
the likelihood function makes it possible to rank different conduc-
tance models according to their probability to produce the particular
set of observations, Tobs. Other than the Gaussian noise assumption
can be made in (2), for example a Laplacian biexponential noise
model could be used which better captures observations with an
excessive amount of outliers.

The prior probability Prob (S |S) in the general eq. (1) represents
the available, or assumed, information about the sheet cell con-
ductances prior to the observed data, where S corresponds to the
assumptions made on the a priori conductivity model. In our spe-
cific case, S corresponds to a class of thin sheet models embedded
in a particular normal layered structure specified in Section 4.

At first, we did not consider any specific a priori information
about the cell conductances, and used identical constant (flat) priors
for each log-conductance. The constant prior all over the theo-
retically infinite range of the cell log-conductances, si = logSi ∈
(−∞, +∞), i = 1 . . . , N , is improper since it does not inte-
grate to 1 for any finite prior probability value. Nevertheless, the
posterior density is a proper distribution if likelihood (2) is consid-
ered, and the stochastic inverse problem is then regular. Moreover,
the cell-conductances are often in practice constrained to lie within
some reasonable physical bounds, Smin ≤ Si ≤ Smax, i = 1, . . . , N ,
which then implies the prior distribution to be of the following form,

Prob (S |S) = 1

(smax − smin)N

N∏
i = 1

�(si | smin, smax)

∝
N∏

i = 1

�(si | smin, smax), (3)

where �(x | a, b) is a box function which is equal to one for
a < x < b and zero otherwise. This only slightly informative prior
assumption is the same as that used by Grandis et al. (2002, 2013),
and is proper and integrates to 1 over the finite conductance support.
In practical computations, the lower and upper conductance bounds
were mostly chosen Smin = 1 ÷ 10 siemens and Smax = 8 ÷ 30
ksiemens in various runs.

One of the advantages of the Bayesian strategy is that it intro-
duces priors bearing more information about the model parameters
into formula (1) if such a priori structural information is at dis-
posal. Regularizing priors are commonly used in Bayesian inverse
problems. We can, for example, favour models that are closer to the
chosen normal conductance, Snorm, by assuming a priori that the
cell log-conductances follow Gaussian distribution with the mean
snorm

i = logSnorm
i , i = 1, . . . , N , and a standard deviation of 1/

√
λ,

where λ characterizes the prior belief in how close, or distant, the
cell conductances are from the normal conductance value adopted.
Then, the prior will read

Prob (S |S) =
N∏

i=1

Ni

(
snorm, λ−1/2

)

=
(

λ

2π

)N/2

exp

[
−λ

2

N∑
i = 1

(si − snorm)2

]
, (4)

and may be further truncated, similarly to (3), to the physical con-
ductance bounds, smin and smax.

If (4) is combined with the likelihood (2), induced by the Gaussian
noise model, the posterior will be

Prob (S | Tobs,S) ∝ λN/2exp

[
−1

2

(
� (S) + λ| |S − Snorm| |2)] , (5)

Looking at the exponent in (5), we can see that, for a fixed λ,
maximizing the posterior probability is equivalent to minimizing
the target �reg(S) = �(S) + λ||S − Snorm||2, which corresponds to
the standard formulation of the Tikhonov regularized inverse prob-
lem for a minimum norm solution with respect to Snorm. Instead of
(4), alternative priors can be also defined and used in the Bayesian
analysis, which favour different structural features of the conduc-
tance model, for example smoothness, minimum total variation,
minimum support or minimum gradient support (e.g. Portniaguine
& Zhdanov 1999) of the anomalies in the inhomogeneous domain
of the thin sheet.

As our prior knowledge as to the degree of the structural pe-
nalization in (5) is poor in most cases, the regularization weight,
λ in (5), is often included into the Bayesian analysis as an addi-
tional variable parameter with a vague prior (hyperparameter). An
easier, but largely less general way is to adopt a fixed value of the
hyperparameter λ in (5) a priori from other considerations.

5.3 Sampling from the posterior by MCMC

Analytical solutions to the Bayesian inverse problem (1) are rarely
possible, and are mostly limited to the simplest statistical models.
Application of the Bayesian strategy to non-linear multidimensional
models can be based on various approximate approaches, for exam-
ple, the target probability distributions can be replaced by simpler
standard probability densities (Gaussians or their mixtures) or rep-
resentative samples from the posterior probability can be generated
numerically (by Monte Carlo simulation procedures).

In this work, simulation of samples from the posterior proba-
bility of thin sheet conductance models based on the experimental
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induction arrows is carried out using the Monte Carlo method with
Markov chains. Details of the MCMC method can be found, for
example, in Gelfand et al. (2004) or, practically applied in the elec-
tromagnetic induction studies, in Grandis et al. (1999, 2002). In
the MCMC method, an ergodic Markov chain with the limit prob-
ability distribution equal to the target posterior probability (1) is
constructed and then a particular sample from that Markov chain
is obtained and processed. If stabilized and converged, it is approx-
imately distributed according to eq. (1) and makes it possible to
carry out probabilistic inference on the model parameters and their
uncertainties.

5.3.1 Gibbs sampling

MCMC procedure serves as a frame for the generation and con-
struction of the Markov chains. In this study, we first applied a
technique suggested by Grandis et al. (2002) who used the clas-
sical Gibbs sampling procedure (see, e.g. Geman & Geman 1984;
Grandis et al. 1999; Gelman et al. 2004, for a more theoretical
background). The Gibbs sampler generates a Markov chain itera-
tively on a component-by-component basis in the following way.
The procedure starts from the latest kth element of the chain (S(k)).
It successively scans the individual components of the vector S.
For each component si, the value is updated from the following
univariate conditional probability density

s(k+1)
i ∼ Prob (si | s(k+1)

1 , . . . , s(k+1)
i−1︸ ︷︷ ︸

updated values

, s(k)
i+1, . . . , s(k)

N︸ ︷︷ ︸
not updated values

,S) ,

i = 1, . . . , N . (6)

The whole iteration step terminates if all N components of the pa-
rameter vector have been updated. Subsequently, the Gibbs sampler
transfers to its new state S(k+1). After the posterior probability den-
sity function is approximated by a sufficient number of chain states,
marginal probabilitity distributions of the individual model parame-
ters can be visualized by parameter histograms. Summary statistics
can be easily obtained by approximately calculating Bayesian in-
tegrals from the posterior sample, and both the model parameters
and their uncertainties can be assessed by evaluating sample means,
variances, quantile estimates, credible intervals, etc.

Since the conditional probabilities in (6) are not elementary dis-
tributions which could be sampled directly from, Grandis et al.
(1999, 2002) treated the problem as a discrete probability problem
by postulating that the cell conductances achieve values from only
a set of discrete conductance levels within the admissible conduc-
tance range. This is essentially identical with the application of the
Griddy-Gibbs sampler suggested by Ritter & Tanner (1992) who
evaluate the intractable distribution on the right-hand side of eq. (6)
at a finite series of points, form an approximate cumulative distribu-
tion function (CDF) and, finally, draw a realization of the parameter
by using the inverse CDF method. The choice of the approximation
grid is fully in user’s hands, but it should capture the shape of the
true probability distribution sufficiently well to lead to correct re-
sults. The likelihood function (2) is evaluated for each parameter at
each of the grid points, what can be extremely time consuming if
difficult forward solutions are involved and/or vast domains of the
parameter space with low likelihood are to be sampled.

5.3.2 Sampling by single component adaptive metropolis (SCAM)

As an alternative to the Gibbs sampler, we have also applied the
simplified component-wise adaptive Metropolis algorithm for the

multidimensional MCMC. This sampling method was suggested
by Haario et al. (2003, 2005) who applied it for upper atmosphere
studies. Contrary to the Gibbs sampling, individual components
si in SCAM are updated using an adaptive Metropolis rule. For
this, first a proposal draw is made from a normal distribution of the
parameter centred at its current value, with a data adaptive variance,
specifically

s̃(k+1)
i ∼ N

(
si | s(k)

i , μ
(

Var(k)
i + ε

))
, (7)

where Var(k)
i is the variance of the i th log-conductance, si , estimated

from the previous steps of the sampler, the experimentally selected
multiplicative constant μ optimizes the rejection-to-acceptance ra-
tio of the Metropolis algorithm, and ε is a small regularizing con-
stant.

The Metropolis acceptance decision consists of accepting appro-
priate s(k+1)

i = s̃(k+1)
i , with the probability

π (accept)

= min

{
1,

Prob (s̃(k+1)
i | s(k+1)

1 , . . . , s(k+1)
i−1 , s(k)

i+1, . . . , s(k)
N ,S)

Prob (s(k)
i | s(k+1)

1 , . . . , s(k+1)
i−1 , s(k)

i+1, . . . , s(k)
N ,S)

}
(8)

while rejection of the proposal keeps the old parameter value
s(k+1)

i = s(k)
i with the probability (1 − π accept). SCAM operates

with longer history of the chain for adapting the variances in (7).
The chain thus does not depend solely on its latest state, and ev-
idently has not Markovian character. Nevertheless, according to
Haario et al. (2003), the algorithm converges to the target posterior
(1) under very general assumptions. The adaptive variance in (7)
controls a quasi-optimality of the acceptance-to-rejection ratio for
updating the model parameters in the chain evolution, and regulates
the convergence of the chain. In our runs, we have mostly selected
μ = 2.4 as was suggested by Haario et al. (2003).

The adaptive Metropolis procedure needs only one forward so-
lution per component and per iteration, and is thus cheaper per iter-
ation than the Gibbs sampler. We have observed, however, that the
autocorrelation time of the model log-conductances in the SCAM
chains is generally longer than that for chains generated by the
Gibbs sampler under analogous conditions. Hence, obtaining mutu-
ally independent samples from the posterior distribution by SCAM
costs more iterations than by the Gibbs sampler.

6 S T O C H A S T I C I N V E R S I O N F O R T H E
T H I N S H E E T C O N D U C TA N C E F RO M
T H E B M / W C P T R A N S I T I O N Z O N E

6.1 Parameters of the thin sheet

The thin sheet approach is limited by the specific modelling condi-
tions related to the studied periods, penetration depths of the EM
field, the depth and scale of the anomalous structure and embedding
medium, and, the applicability of the thin sheet theory should be
checked first. Penetration depth for period 1000 s for typical conti-
nental crustal section with the resistivity ρ = 10 �m should not be
less than about 50 km (z p = √

10ρT /2π ≈ 50 km) what is relevant
to studies of anomalous structures localized in the Earth’s crust.
As a multisheet version of the MCMC technique is not available at
present, a single sheet placed at the Earth’s surface integrates all
anomalous structures at crustal depths in the presented model.

The size of square cells d , which discretize the anomalous sub-
domain of the sheet, should satisfy the requirement dσμSmax � 1
(Bruton 1994; Schmucker 1995). For the shortest applied period
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MCMC thin sheet inversion of EM data 1989

in our study Tmin = 1200 s and Smax = 5000 S, the size of the
cells should be less than 30 km, Therefore, typical size of cells of
20–25 km in our models fully fits to the requirements mentioned
above.

The embedding rocks beneath the thin sheet differ significantly
in the BM region and the WCP, therefore, the simplified normal 1D
section is introduced. The top 100 km occupied by a weak conductor
with the resistivity varying between several hundreds and 3000 �m
are underlain by more conductive asthenosphere with resistivities
varying between 100 and 500 �m in our models. According to 3-D
modelling results incorporating seismic data (Praus et al. 1990), a
possible effect of the astenospheric layer topography is insignificant
for the period range of thousands of seconds and the resistivity
exceeding 10 �m.

6.2 Inverse problem setting for the reconstruction of the
thin sheet conductance

For the numerical experiments with the MCMC inversion of the
long-period geomagnetic response data covering the BM-BV-WCP
area, we have chosen the following particular parameters of the thin
sheet and of experimental data models. They are, in principle, in
accord with the earlier thin sheet model discussion in Section 4.

(i) The conductive sheet is situated at the surface of the model.
The anomalous domain of the sheet contains 21(Northward) × 30
(Eastward) square tiles with uniform size 25 × 25 km2, covering
thus a region of about 500 (N) × 750 (E) km2. This gives in
total 630 variable parameters (log-conductances in the sheet cells)
for the inversion. The normal conductance of the sheet outside the
anomalous domain was chosen to be 400 siemens.

(ii) The normal background model consists of two layers cov-
ered by a uniform thin sheet. Parameters of the layered medium
are: 100 km and 3000 �m for the top layer, and 300 �m for the
resistivity of the uniform basement. The basement is used to simu-
late the asthenospheric layer. The topography of the asthenosphere
was disregarded. The layered model is overlain by a uniform infi-
nite thin sheet with the conductance of 400 siemens. The influence
of the normal conductance on the inversion was tested for several
different values, specifically 300, 400, 800 and 1500 siemens. The
final average models showed very similar configurations of conduc-
tive/resistive domains throughout the region in all cases. However,
the fit to the experimental data was improving if the normal con-
ductance was increasing, especially at sites with extreme induction
arrows in the Carpathian region. Here, we present results for the nor-
mal conductance of 400 siemens which was considered realistic as
an average for central Europe (see 2-D models in Fig. 9). The effect
of the distance of the sheet domain covered by experimental data
to the external boundary of the anomalous sheet domain was also
tested in the inversion experiments. In most calculations we consid-
ered the distance from the data domain to the external boundary to
be about 150 km. If we extended the anomalous region by additional
150 km in all directions, the effect on the induction arrows in the
data domain was practically negligible, but the computation time
increased dramatically.

(iii) Before the inversion, components of the 150 experimental
induction arrows were interpolated via a kriging procedure (Davis
2002) into the centres of the sheet cells. In this way, the data were
also smoothed slightly and effects of inhomogeneities with higher
spatial frequencies (i.e. those due to distorting structures of a subcell
size) were partly reduced. As reliable data errors were not available
for the original experimental transfer functions, we assumed that the

data are contamined with Gaussian errors with zero mean and the
standard deviation of 0.03. This is a reasonable choice considering
the relative errors of apparent resistivities and phases as indicated
in Gabás & Marcuello (2003). The resulting inversion model may a
bit depend in some parts on the selection of the interpolation type.
Dependence on the method of interpolation will decrease with the
decreasing size of the grid.

(iv) In our long period case (T > 1200 s), the spatial pattern of
the experimental induction arrows is very similar across the periods
up to 5760 s (e.g. Červ et al. 2001). It means that the induction effect
is largely due to the same conductivity distribution, and different
periods sense largely the same structures at depth. We mostly used
the data for the period T = 3840 s for various MCMC test runs to
keep the computation times in reasonable limits, and only at the end
we tested the final model by inverting all the three periods available,
1920, 3840 and 5760 s, simultaneously.

6.3 Numerical MCMC experiments for the thin sheet
conductance

In our numerical experiments, we applied the Gibbs and SCAM sim-
ulation procedures to the thin sheet geomagnetic induction inverse
problem, and have focused on several issues that are only marginally
addressed in the pioneering studies by Grandis et al. (2002, 2013).
Specifically, we try to present a comparison of the two different sam-
pling approaches, study the convergence properties of the MCMC
procedures for the thin sheet conductance problem, analyse the ef-
fect of introducing various regularizing priors on the final outputs,
show the sampling-based uncertainty characteristics of the inverse
solution.

6.3.1 Gibbs and SCAM sampling experiments

In the first experiment, we ran the Gibbs and SCAM samplers
without any regularizing prior used, and then with the minimum
norm regularizing prior (6), with Snorm = 400 siemens, or snorm =
2.602. For the Griddy–Gibbs sampling, the conductance of each of
the 630 variable cells could assume one of 18 predefined values
from the interval of 10–8000 siemens, while the interval of the
conductances allowed in the SCAM routine was slightly broader,
between 1 and 104 siemens.

The truncation of the normal prior (4) introduces a certain bias
to the final conductance distribution. In particular, large cell con-
ductances are eliminated, but this prevents thin sheet models with
physically unfeasible parameters to appear in the solution. In our
tests, we did not observe any damaging impact of the prior trunca-
tion on the MCMC convergence, which has been reported earlier,
especially when the truncation region has a small probability with
respect to the unconstrained posterior distribution (e.g. Kotecha &
Djuric 1999).

In experiments with the regularizing prior, we did not include
the regularization weight λ into the set of variable parameters, but
fixed it with the value of 1.0, which is close to the maximum of
the probability (7) found from several test runs with different λ ∈
(0.1100). To make the convergence monitoring meaningful, we ran
the chains for several thousands of iteration cycles for both the
Gibbs and SCAM algorithms. It was an extremely time-consuming
procedure, as one iteration of the Gibbs sampler, with the above
parameters and for one single period, needed, on average, 7–10 min
to compute on a PC workstation (Intel Core i7 950 CPU, 3.07 GHz,
6 GB RAM, Intel Visual Fortran Compiler XE 12.1 on Windows
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7 64 bit OS). Repeated MCMC runs were carried out to simulate
parallel chains and check the convergence of the MCMC process.

Visually, the MCMC convergence to the modus of the target pos-
terior (5) is very fast for our data set. Independently of the starting
model generated from the prior probability, the Markov chain seems
to forget its starting position and achieves values close to the max-
imum of (5) after a few iteration cycles only, typically 10–15 for
the Gibbs sampler and 30–40 for the SCAM. Because of interde-
pendencies of the model parameters (sheet cell log-conductances),
the convergence of the individual parameters is less straightforward,
and shows a more complex pattern which largely depends on the
position of the particular parameters with respect to the domain
covered by the experimental data.

In Fig. 3, we show typical traces of the log-conductances from
Markov chains, for both the Gibbs and SCAM samplers, in three
sheet cells of the model. The chains sampled from the posterior
probability density (5) with the regularizing minimum norm prior,
with Snorm = 400 siemens and λ = 1. Only single period data
were inverted at T = 3840 s.

The first two panels, Figs 3(a) and (b), show relatively good con-
vergence of the parameter subchains. The cell (N12, E24) in Fig. 3a
is located over a high-conductivity Carpathian anomaly and is well
surrounded by the experimental data sites (see Fig. 4 for the cell
position). The conductacnce histograms are sharp at that cell, giving
a mean conductance and lower and upper bounds of the 95 per cent
(equal tailed) credible interval of 2047, 650 and 8000 siemens, re-
spectively, for the Gibbs sampler. The respective values from the
SCAM sampler are 1634, 528 and 6133 siemens. The autocorrela-
tion plots of the log-conductance in this cell, shown in the bottom
subgraphs in Fig. 3, decrease steadily, but the subsequent samples
in the chain are far from independent. The decorrelation of the sam-
ples takes a relatively long time, specifically about 30 steps for the
Gibbs sampler and 33 steps for the SCAM, measured by the sin-

gle component integrated autocorrelation time, τa = 1 +
∞∑

k = 1
k ,

where k is the autocorrelation at lag k (Roberts & Rosenthal 2001).
The cell (N16, E27) in Fig. 3(b) is situated far from the data

sites, in the NE sector of the model, and its conductances along
the chain show fast walks all over the conductance range allowed.
The conductance value is not well constrained by the data, the
histograms are broad and their shape is primarily formed by the prior
conductance distribution (4). The mean conductance and the lower
and uper limits of the 95 per cent credible intervals are, respectively,
153, 10 and 6500 siemens from the Gibbs sample, and 102, 3.5 and
3470 siemens from the SCAM sample. The autocorrelation function
drops quickly to zero for both samplers and then oscillates randomly
around the zero level. Estimates of the autocorrelation times make
2 and 4 steps for the Gibbs and SCAM samples, respectively.

The last example, Fig. 3(c), shows the partial chain for the cell
(N11, E17) which is situated at the margin of the data domain
and is immediately surrounded by a single data point only. The
trace plots show long-period wave motions across the whole con-
ductance range, suggesting that both low and high conductances
in that particular sheet cell are allowed with practically the same
probability to explain the data. This is due to relatively high cross-
correlations, up to ±0.4 when estimated from the sample, between
the conductances of several cells in a close vicinity of that particu-
lar cell. The histograms are broad, with the mean, lower and upper
limits of the 95 per cent credible interval being 283, 20 and 3000
siemens from the Gibbs sample, and 190, 6.4 and 4302 siemens from
the SCAM sample. The SCAM histogram even indicates some bi-
modality of the conductance distribution, with the main peak at

about 200 siemens and a side peak at about 1000 siemens. The
autocorrelations decrease only slowly, and they are well above the
zero level even at the lag of 100, especially for the SCAM sample.
The sample estimates of the autocorrelation times are 29 and 88
steps for the Gibbs and SCAM samples, respectively.

Large autocorrelations indicate dependence of the samples in
the chain, reduce the amount of information the sample provides
with regard to the parameters, and decrease thus the accuracy of
the empirical estimates evaluated from the samples in the MCMC
chain. An effective sample size (ESS), Neff = Nchain /τa , is used to
estimate the effective number of independent samples in a chain of
the total length Nchain. By using the function effectiveSize from the
R-package ‘coda’ (Plummer et al. 2006), we calculated the ESS
estimates for the individual sheet log-conductances and present
them in Fig. 4 for both the Gibbs and SCAM generated sample
chains. The ESS estimates are normalized with respect to the total
chain length here, and the plots thus show the spatial distribution
of the inverse autocorrelation times, τ−1

a , throughout the anoma-
lous sheet domain �a . As the autocorrelations are generally larger
for the SCAM sample, the scale of the respective plot (Fig. 4,
right) is reduced by a factor of four. It is clearly seen that the
ESS is largely reduced, to even less than 5 per cent of the total
chain length, in and close to domains covered by the experimen-
tal data. The extreme cases in our MCMC runs, which eventually
control the efficiency of the chain as a whole, are τ−1

a = 0.018 (
Neff = 72 out of Nchain = 4000) from the Gibbs generated chain,
and τ−1

a = 0.008 ( Neff = 128 out of Nchain = 16 000) from the
SCAM chain.

6.3.2 Formal convergence diagnostics

Monitoring the parameter traceplots and autocorrelation functions
gives a basic visual impression about the MCMC chain behaviour
and allows for detecting obvious non-convergence of the MCMC
procedure. More formal quantitative procedures to monitor the
MCMC convergence have been proposed (see, e.g. Cowles & Carlin
1996, for a critical overview), though none of them is able to give
an ultimate answer to this question. The convergence of the MCMC
procedure to the target probability is theoretically guaranteed for
Markov chains of infinite length only. For finite chain sections, only
a violation of the stability of the statistical parameters along or
across the chains can be detected, that is only the non-convergence
of the chain(s) can be diagnosed, in fact.

In our tests, we have used two well-known convergence diagnos-
tics criteria, specifically those by Geweke (1992) and by Gelman
& Rubin (1992), as they are easy to summarize visually even for
multivariate chains. The Geweke diagnostics tests whether a single
chain has attained an equilibrium state by comparing the means of
the sampled values from two sections of the chain, one from the
beginning (usually the first 10 per cent of the chain length) and the
other from the end (usually the last 50 per cent of the chain length)
of the chain. It produces, for each of the model parameters, a Z
statistics calculated as the difference between the two means di-
vided by the asymptotic standard error of their difference. As the
number of iterations approaches infinity, the Z statistics approaches
the normal distributionN (0, 1) if the chain has converged. For prac-
tical computations, we have used the Geweke diagnostic routines
implemented in the R-packages ’coda’ (Plummer et al. 2006) and
’boa’ (Smith 2007).

The Gelman–Rubin diagnostics rely on parallel chains to test
whether they all converge to the same posterior distribution.
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Figure 3. Conductance traces (top), histograms (middle - grey histograms for normal prior) and autocorrelations (bottom) from partial Markov chains for three
sheet cells of the thin sheet model. See Fig. 4 for the cell positions.

Figure 4. Effective sample size (ESS) relative to the total length of the chain.

Gelman–Rubin evaluates the variance within several chains on the
one hand and the variance between those chains on the other hand.
By taking the ratio of those two values, it provides the so called
potential scale reduction factor (PSRF). PSRF that is significantly
greater than 1.0, typically greater than 1.1 or 1.2, indicates a notable
difference between the chains, and suggests that longer simulation is

needed. The PSRF is monitored for each model parameter individ-
ually, but a multivariate extension (MPSRF) has been also proposed
(Brooks & Gelman 1998).

We show plots of selected summary parameters along with the
convergence statistics for four MCMC experiments in Fig. 5. Specif-
ically, the columns of plots in Fig. 5 show, from top to bottom, the
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Figure 5. Summary models.

MAP and average conductance models, square roots of the sample
variances of the cell log-conductances, the Geweke Z -scores and
Gelman–Rubin PSRF factors obtained after 4050 iteration steps
of the Gibbs sampler (50 initial iterations discarded for burn-in)
and after 16 200 steps of the SCAM sampler (200 initial iterations
discarded). The results are shown for sampling without any regu-
larizing prior (except for the truncation of the conductance range,
columns 1 and 3) as well as for the minimum norm prior (4) with
Snorm = 400 siemens and λ = 1 (columns 2 and 4).

Contrary to standard non-stochastic minimization methods, non-
regularized models from stochastic sampling do not suffer exces-
sively from overfitting the data, since the noise effect is largely
cancelled due to the marginalization of the model variables and av-
eraging over a whole collection of individual models throughout the
stochastic sample. The plots in Fig. 3, columns 1 and 3, show, how-
ever, that the convergence of the non-regularized models is poor for
both the Gibbs and SCAM procedures. The Geweke’s Z -scores are
outside the range (−2, 2) in more than 20 per cent of cells which is
by far more than 5 per cent that would be acceptable if Z ∼ N (0, 1).
For the SCAM sampler in particular, the non-convergent cells tend
to form quasi-continuous large-scale clusters of poor convergence.

The Gelman–Rubin PSRF’s, evaluated from three parallel chains
starting from largely different conductance models, are unaccept-
ably high, indicating that the chains do not share statistically similar
sampling paths in the model space even after thousands of iteration
steps. The unstabilized chains produce largely different average and
MAP models and, especially the latter ones, show excessive granu-
larity.

6.3.3 Effect of regularizing priors

The MCMC convergence improves substantially if the regularizing
prior is used, as shown in Fig. 5 in columns 2 and 4. Geweke’s
Z -scores fall outside the range (−2, 2) in about 9 per cent of cases,
and Gelman-Rubin PSRF from three chains exceeds the 1.2 limit
in only one cell for the Gibbs sample, though the multivariate ver-
sion (MPSRF) of 1.27 for the Gibbs samples and of 1.40 for the
SCAM samples indicate that longer simulation runs would be still
needed. MAP and average models show largely the same conduc-
tance features, except in the model domains situated close to the
margin of the data region where large parameter correlations are
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expected, specifically in the NW and E parts of the sheet. Large
variances of the log-conductances in the non-regularized models
suggest that these models are largely overparametrized, especially
in the sheet areas that are far from the domain covered by the data.
The regularizing prior causes the parameter estimates to be biased to
some degree, but it reduces the variances evaluated from the chain
samples considerably.

Essentially the same conclusions can be obtained if other than
the minimum norm regularizing priors are used in (5). In Fig. 6,
we present MCMC results from the SCAM sampler for three alter-
native priors, specifically the minimum flatness prior (column 2),
minimum total variation prior (column 3) and minimum support for
anomalous conductance prior (column 4). Formally, application of
these priors is carried out by changing the sum in the exponent of
(6) to, respectively,

N∑
i=1

∑
j∈Vi

(si − s j )
2,

N∑
i=1

∑
j∈Vi

| si − s j | ,
N∑

i=1

(si − snorm)2

(si − snorm)2 + β2
,

where Vi is a vicinity of the i th sheet cell consisting of its four
immediate neighbours, and β is a small regularizing factor.

All the models presented in Figs 5 and 6 show the same basic
conductance features, specifically a continuous high conductance
anomaly along the West Carpathians Mts., a high conductance
anomaly all over the Sudetes tectonic zone in SW and S Poland,
and a conductance anomaly at the eastern margin of the Bohemian
Massif, which is well-developed in its southern part, close to the
border with Austria, but seems to be disrupted towards the NE.
The particular geometrical forms of the anomalies are less well
defined, especially in areas with insufficient data coverage where
the shapes of the anomalies are influenced by the prior densities
to a large degree. The most diffuse anomalies are produced by the
flatness prior (Fig. 6, column 2), while the minimum support prior
results in a high contrast segmentation of the conductance image
(Fig. 6, column 4). A few features in the models are arguable, and
may be potentially deemed artifacts due to the regularizing priors
or due to the particular spatial distribution of the experimental data.
Specifically, this may apply to the conductive bridge connecting the
Sudetes and Silesian anomalous zone with the Carpathian anomaly
in S Poland, as well as to the conductive connection between the
Carpathian anomaly and the anomaly at the SE margin of the Bo-
hemian Massif in S Moravia which lacks any geological justification
as a continuous feature (Červ et al. 2001).

6.3.4 Model uncertainty

Based on the estimated posterior probability distribution coming
from the MCMC samples, the most probable parameter values as
well as the corresponding uncertainty bounds can be determined.
In the Bayesian analysis, the posterior mean, or MAP or median,
and the posterior (co)variance, or posterior standard deviation, are
commonly used to summarize the distribution of the model param-
eters. For models obtained from our MCMC experiments with the
Gibbs and SCAM samplers and with different priors, these sum-
mary parameters are evaluated directly from the sample chains, and
are presented in the maps in Figs 5 and 6.

With samples from the MCMC approximation of the posterior
distribution available, Bayesian interval estimates of the model pa-
rameters are straightforward to obtain. To find an interval (s−

β , s+
β )

which contains the log-conductance si of the i th cell, i = 1, . . . , N ,
with probability β ∈ (0, 1), we have to find two points within the

admissible conductabce range such that∫ s+
β

s−
β

Prob (si | Tobs,S) d si = β. (9)

The Bayesian interval with probability β is called a β-credible
interval, and gives the degree of belief that the true value of si lies
within that interval. The credible interval (9) is not unique, and
an additional condition has to be imposed to constrain it. For ex-
ample, equi-tailed (central, symmetric) intervals are constrained by
requiring that the integrals over each tail of the probability func-
tion, that is, (smin, s−

β ) and (s+
β , smax), are the same and equal to

(1 − β)/2. The highest posterior density (HPD) intervals are also
frequently reported, which are the shortest intervals, containing the
most probable content, that meet condition (9).

Fig. 7(b) presents the mean model MG-MN-400 (Gibbs, average
model, min. norm prior, normal conductance 400S, see Fig. 5), along
with the lower and upper limits of symmetric 95 per cent-credible
intervals for the cell conductances in Figs 7(a) and (c), respectively.
The credible intervals are large. If induction arrows for only one pe-
riod are considered (T = 3840 s), we can constrain the conductance
to a range narrower than one order of magnitude in only 7 per cent
of the sheet cells with 95 per cent credibility (Fig. 7d). The same
applies to 18 per cent of sheet cells if data for three periods are in-
verted simultaneously, T = 1920, 3840, 5760 s (SCAM sampling
example, Fig. 7e). Clearly, the conductances are better constrained
mainly in the high conductance zones of the Carpathian anomaly
and partly also in Eastern Sudetes, at the northern margin of the data
domain. Inversion of data for three periods simultaneously provides
a sharper conductance image, indicating a significant conductance
increase also at the SE margin of the Bohemian Massif and in the
north of the Moravo-Silesian zone. These results are less reliable,
however, because of a fairly poor convergence of the MCMC pro-
cedure with the three-periods’ data set.

Bayesian interval estimates can also help in detecting zones with
significant deviations of the conductance from that of a reference
model. Fig. 7(f) indicates those regions of the sheet model which
differ, with high credibility of 95 per cent, from the normal con-
ductance Snorm = 400 S, introduced as a priori conductance value
through (4). It shows again a highly anomalous conductance along
the Carpathians

6.3.5 Data fit

For an individual log-conductance model S from the Markov chain,
its fitness to the experimental data is measured by the deviance
parameter defined by

D (S) = −2 log
[

Prob
(
Tobs| S,S

) ]
=

∑M

i=1

(
Ti (S) − T obs

i

δT obs
i

)2

, (10)

which has a form of a standard χ 2-misfit. A Bayesian measure of
model fit is defined as the posterior expectation of the deviance,
and is estimated as a mean deviance of models from the converged

section of the Markov chain, D̄ = K −1
K∑

i = 1
D(Si ), where K is

the number of models considered from the chain. Partial deviances
evaluated for individual data items or for selected data subsets can
be also monitored.

For the model from Fig. 5, column 2 (model with a minimum
norm prior, Sn = 400 S, λ = 1.0, 4000 iteration steps of the Gibbs
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Figure 6. Effect of various regularizing priors on the models.

sampler), we show partial mean deviances for the individual real
and imaginary induction arrows in, respectively, Figs 8(a) and (b),
along with the experimental arrows and those produced by the mean
conductance model. The mean deviances for the individual obser-
vation sites are relatively large especially in the eastern and central
southern parts of the anomalous sheet domain where the model
failed in fitting both the large induction arrows and their directional
variations simultaneously. Generally, the fit is slightly better for real
than for imaginary induction arrows (aggregate D̄Re = 441.0 for all
real data, while D̄Im = 487.1 for all imaginary data; for both cases,
number of the data items involved is MRe = MIm = M/2 = 184).
The deviance for the mean conductance model, estimated by av-
eraging the model parameters across the model samples in the
whole Markov chain, is D(S̄) = 867.0 (corresponding to a standard
RMS = √

867.0/368 = 1.53).

7 M E A N C O N D U C TA N C E M O D E L A N D
I T S R E L AT I O N T O T H E R E G I O NA L
G E O L O G Y

Interpretation of MCMC samples from narow-band long-period
geomagnetic data provides only a large-scale conductance model
that can generate the recorded transfer functions. The conductance
distribution calculated from the induction arrows observed at the
eastern margin of the Bohemian Massif (BM) and the transition

zone between the BM and the West Carpathians (WCP) allows
appropriate geological interpretation (Fig. 9).

First, the model provides detailed plausible image of the
Carpathian Conductivity Anomaly (CCA) along the whole
Carpathians Mts chain. The CCA is assumed to mark a collision
zone of two continental plates. Extensive evidence has been brought
together suggesting the enhanced conductivity is likely due to deep-
seated porous sediments saturated with strongly mineralized hot
waters (Jankowski et al. 1985, 2008 Hvoždara & Vozár 2004). Post-
Oligocene migration and formation of graphite films in porous rocks
and fault zones in the crystalline basement may be another reason
for the anomalously high conductivity (Źytko 1997), possibly acting
in parallel with the fluid mechanism (Hvoždara & Vozár 2004).

As regards the predicted properties of the anomaly in our model,
the CCA reaches its maximum width and conductance in the east.
This is consistent with an earlier report by Logvinov (2015) who
summarized the parameters of the CCA from MT interpretations
along a series of profiles across the Carpathians in eastern Slovakia
and western Ukraine. He reports an increase in the conductance of
the CCA from (4 − 5.5) × 103 S to (8.5 − 15.8) × 103 S from the
W to the E between longitudes 20◦E and 26◦E. The conductance rise
is accompanied with the CCA broadening from about 15–20 km to
30–45 km, and also with its coming up closer to the surface, from
about 18 km in the W to less than 8 km in the E. In Fig. 9, we
show the sketch of the principal fault systems across the studied
area (Mı́sař et al. 1983) together with a comparison of the sheet
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Figure 7. Top row: Mean model MG-MN-400 (b), and lower (a) and upper (c) limits of the symmetric 95 per cent-credible intervals for the log-conductances
in the sheet cells. Bottom row: (d) Cells with conductances constrained to a range narrower than one decade with 95 per cent credibility are indicated by full
colours, other cells are shown by tints of the original scale colours. Results from the inversion of induction arrows at one period, T = 3840 s. (e) The same
as (d), but from the inversion of induction arrows at 3 periods, T = 1920, 3840, 5760 s. (f) Conductances that differ with high probability of 95 per cent from
the normal conductance Snorm = 400 S. Results from the inversion of induction arrows at one period, T = 3840 s.

Figure 8. Maps of partial mean deviances for the individual real (panel
a, top) and imaginary (panel b, bottom) induction arrows for the model
MG-MN-400.

conductance from our model with the integrated conductivities,
down to 30 km, from 2D MT models below the PREPAN95 profile,
running roughly N–S along the 22◦E meridian (Ádám et al. 1997),
along the international deep seismic profile DSSVI (Červ et al.
2001), profile MT-15 (Bezák et al. 2014) as well as below the Tatra
Mts profile, deployed along the 19.7◦E meridian (Ernst et al. 1997).
The correspondence between those model results are satisfactory,

both as regards the position of the CCA and the estimates of its
conductance.

Two conspicuous conducting northward protrusions in the east-
ern section of the CCA appear systematically with high confidence
in all our models, at approximately 22◦E and 21.5◦E latitudes. Es-
pecially in the models with smoothing priors (Fig. 6), the latter
protrusion forms an arc-like conducting zone with a SE–NW trend
in southern Poland. These conductors most likely reflect the ap-
proaching TTZ from the NW, as also indicated by a distribution of
the largest singular values of the reconstructed horizontal magnetic
tensor across Poland by Neska et al. (2016). Continuation of these
conductive features to the south seems to be associated with the
Hornád fault zone representing the eastern boundary of the Central
Western Carpathians and associated with transtension and oblique
horizontal slip during recent past. Towards the west, weakening or
even a local interruption in the conductivity anomaly course is ob-
served approximately along 19.2◦E (Fig. 7 right-hand panel, Figs
9a, b) at the intersection of the anomaly with the N–S trending
Central Slovakia fault zone characterized by discontinuous fea-
tures in other geophysical fields as well and presumably associated
with strike-slip processes (Kováč & Hók 1993). Active strike-slip
faults are often accompanied by enhanced conductivity due to fluid
migration, although, impermeable resistive segments can exist in
such fault systems, controlling fluid hydrodynamics (reference –
e.g. Gleeson & Ingebritsen 2017). Further to the W/SW, the CCA
closely follows the inner boundary of the Outer Carpathians along
the Pieniny Klippen Belt as far as Little Carpathians Mts, west of
Bratislava in SW Slovakia.

A SW-ward continuation of the CCA is not confirmed, though
attempts were made in the past to trace the CCA beneath the Vienna
Basin in NE Austria (Ver"o et al. 1996). Our data set does not cover
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Figure 9. Comparison of conductances from our thin sheet model MG-MN-400 with those obtained along four MT MV-1 profiles situated within the data
domain; (a) map of principal fault systems across the studied area and graphite deposits (red stars): EL, Elba Lineament; OL, Odra Lineament; CSFS, Central
Slovakia Fault System; HF, Hornád Fault; PKB, Pieniny Klippen Belt; TTZ, Tornquist-Teisseyre tectonic zone; BM, Bohemian Massif; MO, Moldanubicum;
SU, Sudetic zone; VB, Viena Basin; BV, Brunovistulicum with the Moravian zone, WCP, The West Carpathians; red stars – graphite deposits according to
mindat.org data; (b) conductances from our thin sheet model MG-MN-400; (c) conductances from 2-D profile models within a layer 30 km thick shown by
grey filled plots while the thick black lines show conductances derived from our thin sheet model. In the central map (subfigure b), geographical positions of
the selected profiles are given.
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that region, and no other long period induction data are available
here. Our models suggest a moderately conducting zone connecting
the SW termination of the CCA and a strong conductor at the
SE margin of the Moldanubian zone of the Bohemian Massif, but
there is no reason for these two distinct anomalous zones to be
physically interconnected. We rather suppose that this conductive
‘bridge’ may be an artifact due to the lack of data to the south of
this region. Induction arrows in this area may be also affected by a
conducting filling of the Vienna basin, with up to 6 km of Neogene
sediments, or effects of graphitized zones which were interpreted
in the upper crust at the eastern termination of the Eastern Alps
in NE Austria/NW Hungary by Ádám et al. (2013), with model
conductances of up to several thousands of Siemens.

The induction anomaly running SW–NE along the eastern mar-
gin of the Bohemian Massif (Eastern Bohemian Massif Anomaly,
EBMA), and indicated primarily by rapid rotations and E–W asym-
metry of the induction arrows rather than by simple arrows reversals,
does not seem to be produced by a single quasi-linear conductor be-
neath the anomalous zone. The anomaly is clearly segmented and its
segments are separated by and offset along relatively low conduc-
tance NW–SE trending strips parallel to the Elbe Zone in Moravia.
A possible disruption and SE–NW dextral offset of this anomaly
was already hypothesized by Petr et al. (1987) purely from trac-
ing the line of close-to-zero real induction arrows. It is likely that
graphite smeared within the shear zones of the Moravian thrust
zone, a large scale shear zone separating the Moldanubian and
Moravian zones in the east of the Bohemian Massif, essentially
contributes to the enhanced conductance within this anomalous in-
duction zone, especially in its SW part. A coincidence of the zone
of the enhanced conductance with numerous graphite occurrences,
including graphite deposits of industrial significance (available at
http://www.mindat.org – the database run by the Hudson Institute
of Mineralogy, or in Duďa & Rejl 1997, Fig. 9a), lends support to
this hypothesis.

Further to the north, a strong anomalous conductivity feature in
the NE part of the Bohemian Massif may represent the main source
of relatively large, SW pointing induction arrows observed over the
whole area to the west of the EBMA. The anomaly is located in
SW Poland, and cannot be sufficiently constrained spatially due to
lacking induction data in the N of that region. Electromagnetic in-
duction measurements have been avoiding this area, mainly because
of a a high level of cultural noise due to heavy industry in the Sile-
sia region. The nearest long period induction arrows are available
only at latitudes greater than 51◦N, more than 100 km to the N of
the Czech–Polish border, and they are generally shorter than about
0.2 (at T = 1800 s, see, e.g. Jóźwiak 2012), indicating a general
decrease of the induction effect of the TESZ towards the south. This
general trend in the induction arrows also suggests that the S–SW
component of the arrows in the east of the Bohemian Massif, which
are up to 0.3 in magnitude, is not likely to be related to the regional
induction field of the TESZ. It is more likely that the anomalous
zone is related to some tectonic features of the Sudetes, which form
the NE margin of the Bohemian Massif of enormous geological
complexity. However, a more detailed identification of the anoma-
lous induction sources is not possible because of a considerable
spatial ambiguity in the interpretation of the position of the high
conductance zone, and also because of a peripheral position of our
induction data with respect to the Sudetes region.

The Sudetic region extends between two first-order WNW–ESE
trending fault zones, the Middle Odra Fault Zone in the NE and
the parallel Elbe Fault Zone in the SW (Aleksandrowski & Mazur
2002). The offset of the segments of the EBMA in Moravia and

sequences of low and high resistivity zones at the eastern margin
of the Bohemian Massif in the models in Fig. 9 follow roughly the
same direction. Though some influence of the profile arrangement
of the data in this area cannot be excluded, the large-scale quasi-
anisotropic structure seems to be required by the induction arrows.
Such domain would allow to explain the induction processes across
the whole transition zone between the BM and WCP and to generate
the relatively large induction arrows over the studied region. Simi-
lar hypothesis was already mentioned earlier by Kováčiková et al.
(2005) from results based on a unimodal induction thin sheet mod-
elling. The physical mechanism is similar to that of a segmented
mid-crustal conductor suggested by Eisel & Haak (1999) to ac-
count for persistent large long-period induction arrows in a regional
vicinity of the German Continental Deep Drilling site (KTB). If the
induction sources suggested above could be verified on a more de-
tailed scale, the regional induction processes at the eastern margin
of the BM may be controlled to a large degree by the NW–SE to
W–E orientation of tectonic structures parallel to the Elbe Zone and
further influenced by the SW–NE structures corresponding to the
tectonic trend of the transition zone to the Western Carpathians.

8 C O N C LU S I O N

We studied a stochastic MCMC simulation approach for a regional
conductance distribution from long-period geomagnetic induction
data (induction arrows). For induction data with periods longer than
1000 s the mathematical model for the crustal conductivity distri-
bution was simplified to a single thin sheet, in the sense of Vasseur
& Weidelt (1977), consisting of square tiles of variable conduc-
tance (depth integrated conductivity). The study was thus primarily
focused on revealing possible lateral configurations of large-scale
conducting zones that comply with the observed induction data. As
a study polygon, the transition zone from the Bohemian Massif and
the Polish Palaeozoic Platform to the West Carpathians in the Czech
Republic, Poland and Slovakia was selected, where units of two
main European orogenic cycles make contact, the Late Palaeozoic
Variscan cycle and the younger, Palaeogene and Neogene, Alpine
orogeny. The whole area was systematically covered by long-period
geomagnetic induction measurements in the 1970s and 1980s and
a collection of 150 induction arrows within the period range of
1200–5769 s was used as input data for the inversion.

MCMC procedure is used as a technique for the numerical solu-
tion of the inverse problem formulated in the Bayesian probabilistic
sense. An exact probabilistic model for the experimental data dis-
tribution is practically impossible to obtain for very old data sets,
and, therefore, a Gaussian model of the data error distributions
with a conservative choice of the standard deviations was adopted
for the likelihood function. As the inverse problem for the sheet
conductances is ill-posed, the models were tested with a number of
structural prior constraints. Introducing the priors has a regularizing
effect on the conductance models and improves the MCMC conver-
gence considerably, but, in some cases, structural features become
set off in the regularized models, especially along the periphery of
the experimental data domain, which may be, in fact, artifacts due
to lacking data.

The MCMC sampling was carried out by using two standard
algorithms, the Griddy–Gibbs sampler griddy92 and the SCAM al-
gorithm by Haario et al. (2005). The former algorithm is generally
slower than the SCAM, as it requires several forward solutions to be
evaluated at each internal sweep of the sampler. However, the Gibbs
procedure generates samples with shorter autocorrelation times,
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providing thus less dependent samples in a shorter time. Otherwise,
the sampling results are almost identical for both procedures. Both
the above algorithms operate componentwise on the conductances
of the sheet tiles during the internal sweeps of the sampling pro-
cedures. This allows us to speed up the internal forward solutions
in the MCMC procedure by reducing the number of iterations to
only a few steps in the solution of the thin sheet integral equations.
It is because the current magnetic field in the sheet is always a
good starting guess for the solution expected from a model with the
conductance changed in a single sheet cell only.

Although the MCMC can appear time-consuming and memory-
demanding, it provides the advantage of a probabilistic solution for
the inverse problem. The method allows the assessment of model
parameters with respect to their values and uncertainty ranges, for
instance in terms of parameter histograms, credibility intervals or
sample estimates of the parameter variance–covariance matrix. A
series of stochastic simulations show that the MCMC inverse tech-
nique allows calculation of medium-size thin sheet models con-
sisting of tens of cells along each horizontal axis with standard
computer equipment, though it becomes less so if full convergence,
in the sense of meeting formal MCMC convergence criteria, is
attempted. It was one of the objectives of this study to compare
long-chain MCMC results with those of short-chain, but fast, so-
lutions as presented earlier by Grandis et al. (2013). Short-chain,
clearly non-converged, solutions give models with generally unac-
ceptably large scatter of mean conductances in the individual sheet
cells, though patches of well constrained conductances arise in sheet
domains that are covered sufficiently well by the experimental data.
The largest uncertainty in the mean conductance estimates appears
at the periphery of the data domain where parameter correlations
lead to longer sampling times to explore the parameter space thor-
oughly enough. We thus conclude that a short-chain inference may
be a useful tool for an approximate tectonic zonation of the area cov-
ered by the thin sheet model according to conductance variations
on a large scale.

The conductance model calculated using the MCMC method pro-
vides a plausible geological interpretation of the induction arrows
recorded at the eastern margin of the Bohemian Massif and its tran-
sition to the West Carpathians. Above the Carpathian conductivity
anomaly, the model fits in detail the recorded data features. The
anomaly observed above the eastern slopes of the Bohemian Mas-
sif suggests an alternative interpretation explained by the NW–SE
to W–E trending conductance distribution, which could reflect the
fault systems trend of the area (Odra, Sudetic and Elbe fault zones),
modulated by structures of the SW–NE tectonic style at the contact
zone between the Bohemian Massif and West Carpathians. Never-
theless, a detailed identification of the tectonic structures causative
for the induction anomalies in the studied region is, hardly feasible
by relying only on the long-period geomagnetic responses.

The final model compares well with recent results of Jóźwiak
(2012) who suggested a large-scale crustal conductivity pattern
in Central Europe based on a formal transformation of induction
arrows, from a much larger European data collection than we have
used here, into horizontal magnetic tensors. Along with the TESZ,
the CCA is clearly one of the dominant conductance features in the
East-Central European region. Conductors above the eastern slopes
of the Bohemian Massif and in SW Poland are clearly identified in
Jóźwiak’s maps of the horizontal magnetic tensor invariants, though
they are expressed less intensely than in our conductance model in
Fig. 9. This may be partly due to a heavy smoothing of the magnetic
invariant maps over areas with only coarse data coverage in Jóźwiak
(2012).
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Ádám, A. et al., 1997. Electromagnetic induction profile (PREPAN95) from
the East European Platform (EEP) to the Pannonian Basin, Acta Geodaet.
Geophys. Hung., 32, 203–223.
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Duďa, R. & Rejl, L., 1997. Minerals (The Great Guide), Aventinum (in
Czech).

Dudek, A., 1980. The crystalline basement block of the Outer Carpathians
in Moravia: Brunovistulicum, Rozpr. Čs. Akad. Věd, Ř. mat. a př. věd,
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