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A Bayesian scheme combining simulated pollutant concentrations with measured ones.

• Bias correction for high-resolution air quality modeling.

• Enhanced concentration estimates of air quality monitoring network.

• Spatially resolved concentration estimates around urban monitoring sites.

Introduction

In large cities, air quality is often monitored by ground station networks measuring pollutant concentrations. Several types of areas are sampled: traffic, residential, etc. The spatial representativeness of these measurements is limited to a small area around the station, especially in dense urban areas: emissions from various sources, as well as air flow channeling in street canyons, result in sharp horizontal gradients of pollutant concentrations [START_REF] Harrison | Urban atmospheric chemistry: a very special case for study[END_REF]. The need for high-resolution gridded estimates of pollutant concentrations over big cities has grown in recent years, together with the increasing awareness of the harmful health effects of atmospheric pollution. Various approaches have been developed to address the spatial distribution of pollutant concentration around monitoring sites. These approaches use real-time measurements from local networks and expand them in space and/or time based on additional relevant information such as land-use, weather conditions, and topography. They may be divided mainly into first-principle geophysical modeling and statistical ones. Atmospheric pollutant dispersion models describe the physical and chemical processes that govern the emission, transport, mixing, chemical reaction and deposition of pollutants. High-resolution models, such as the Particulate Micro Swift Spray (PMSS) air quality model integrated into the ARIA City modeling platform (http://www.aria.fr/aria_city.php), provide realistic spatial distributions of pollutant concentrations. However, they suffer from large biases due to uncertainties on the emissions and on the parameterizations of the complex atmospheric processes governing urban air quality. Statistical approaches include land-use regression [START_REF] Janssen | Land use to characterize spatial representativeness of air quality monitoring stations and its relevance for model validation[END_REF][START_REF] Son | Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters[END_REF], kriging interpolation schemes [START_REF] Beauchamp | Dealing with non-stationarity through explanatory variables in kriging-based air quality maps[END_REF][START_REF] Wu | A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability[END_REF], Martin et al. 2012), methods for assimilation of measurements in models such as Kalman filtering [START_REF] A N U S C R I P T A C C E P T E D Accepted Manuscript 23 Hanea | Data assimilation of ground-level ozone in Europe with a Kalman filter and chemistry transport model[END_REF] or 4D variational assimilation algorithms [START_REF] Elbern | Ozone episode analysis by four-dimensional variational chemistry data assimilation[END_REF]) and Bayesian models [START_REF] Beloconi | Bayesian geostatistical modelling of PM10 and PM2.5 surface level concentrations in Europe using high-resolution satellite-derived products[END_REF]. The scope of this study is thus to improve NO X and PM 10 pollutant concentrations simulated with the PMSS high-resolution air quality model over and in the vicinity of the monitoring stations of the AIRPARIF local air quality agency in Paris, France (https://www.airparif.asso.fr). To spatially expand the measurement around monitoring stations, we use the concept of "representativeness areas" defined in our previous work [START_REF] Rodriguez | On the spatial representativeness of NO X and PM 10 monitoring-sites in Paris, France[END_REF]. These areas consist of points where concentration levels are similar and time variations correlated to those at the monitoring site's location. In practice, they are defined by applying criteria thresholds on the Normalized Root Mean Square Error (NRMSE) and on the correlation coefficient between simulated concentrations over all the pixels around the monitoring sites and simulated concentration at the monitoring site's location. Frequentist or Bayesian statistical approaches may be used. In both approaches, the purpose is to determine as accurately as possible an unknown parameter θ. Here, the unknown parameter θ is the concentration in the so-called "representativeness M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 3 area" of an AIRPARIF monitoring site, i.e. at the vicinity of a station. In the frequentist setting, the unknown parameter θ is pre-assigned to a fixed single value. A statistical procedure is chosen to establish a confidence interval from any set of data collected in the same conditions, under the same model. It ensures the probability of this random interval to cover the fixed value θ, i.e. the reliability of the chosen statistical procedure. Then, the confidence interval is calculated from the available data as a random draw from this estimation procedure. All the information is contained in data. The frequentist procedure assumes a reproducible experience and a large data set. Frequentists claim that this is an objective way of reasoning. Within the Bayesian paradigm, the unknown parameter θ is considered uncertain. What is known about θ is represented by a random variable conditioned upon the available information. The major issue is to quantify the uncertainty from all available data [START_REF] Boreux | Pratique du calcul bayésien, Statistique et probabilités appliquées[END_REF]. One of the most significant differences between frequentist and Bayesian approaches is the choice of a "prior" [START_REF] O'hagan | The Bayesian approach to statistics[END_REF]. Prior characterizes our expert knowledge by giving suggestions on an unknown parameter θ (as a distribution of θ values) before observing data and is subjective since it reflects a personal probabilistic judgment. In recent years, Bayesian statistics have become a standard methodology in environmental science, it has been used to improve spatial predictions of pollutant concentration by Pirani et al., 2018[START_REF] Amin | Bayesian Extreme for Modeling High PM10 Concentration in Johor[END_REF], Millan et al., 2009[START_REF] Sahu | A Bayesian Kriged Kalman Model for Short-Term Forecasting of Air Pollution Levels[END_REF], among others, and deposition (Cowles et al., 2003). In this study, we propose a Bayesian model that updates the distribution of current and past ground station measurements with the high-resolution output of the PMSS model (3x3m 2 ) within the city of Paris for ten days over the period of March 2016. In Section 2, the AIRPARIF air quality network and PMSS model simulations are presented. Then, representativeness areas, as obtained in [START_REF] Rodriguez | On the spatial representativeness of NO X and PM 10 monitoring-sites in Paris, France[END_REF], are summarized, and the Bayesian framework is described. Section 3 gathers results: first, the pollutant concentrations at the monitoring site locations (Sect. 3.1) and then, concentrations within representativeness areas (Sect. 3.2). Conclusions are given in section 4.

Data and methods

As in [START_REF] Rodriguez | On the spatial representativeness of NO X and PM 10 monitoring-sites in Paris, France[END_REF], a simulation set of ten non-consecutives days in March 2016 are used. During this period (March 2 -21), a high-pressure episode occurred, characterized by strong atmospheric stability and the accumulation of PM 10 within the boundary layer. It resulted in a sharp rise in PM 10 concentration on March 11. The effect of this synoptic-scale episode is less pronounced for NO X than for PM 10 . Indeed, in highly urbanized areas, the spatial and temporal variability of pollutant concentration is more driven by traffic patterns for NO X than for PM 10 . We note that the contribution of the traffic sector to the total emission concentrations is two times higher for NO X than for PM 10 in the Paris area (56% vs. 28% AIRPARIF, 2012). In the close proximity to roads, the NO X emissions decrease much higher for NO X [START_REF] Pasquier | Considering criteria related to spatial variabilities for the assessment of air pollution from traffic[END_REF]. Data from eight local monitoring stations from the AIRPARIF network have been collected for the same period.
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Surface measurements

The location of AIRPARIF monitoring sites have been chosen to sample various urban landscapes in Paris. They are classified as "traffic" or "urban background" depending on their proximity (or not) to the street network. A thorough description of the AIRPARIF network can be found on the agency's website (https://www.airparif.asso.fr/en/stations/index). Data from three traffic-oriented and five urban background monitoring stations are used in this study as listed in Table1.

Traffic monitoring stations are located on sidewalks along roads and on major crossroads, whereas urban background monitors are located on low emission areas such as parks, pedestrian squares, schoolyards, and leisure parks. All traffic monitors measure both NO X and PM 10 , whereas PM 10 is measured only at two out of five urban background sites. These measurements are considered as reference, or "ground truth" of pollutant concentration, assuming that the measurement error is negligible. 2.2 Numerical air quality simulations NO X and PM 10 concentrations were simulated using the high-resolution model PMSS, in a 12×10 km 2 grid covering the city of Paris. The model set-up is the same as in [START_REF] Rodriguez | On the spatial representativeness of NO X and PM 10 monitoring-sites in Paris, France[END_REF].

The model has thirty-five vertical layers from the ground up to an altitude of 800 m. The thickness of the surface layer is two meters and increases with the altitude (Moussafir et al., 2015). The model simulates the turbulent flow around the buildings and pollutant dispersion through a three-meters horizontal resolution grid. Emission fluxes from urban sources are taken from the AIRPARIF inventory. Boundary conditions are taken from the CHIMERE chemistry-transport model [START_REF] Mailler | CHIMERE-2017: From urban to hemispheric chemistry-transport modeling[END_REF] At each monitor, simulated concentrations are compared to measurements for both pollutants. PMSS simulations are in a very good agreement with PM 10 measurements, both for traffic and urban background sites, with a correlation coefficient (R 2 ) equal to 0.83 and 0.92 respectively, and a root mean squared error (RMSE) equal to 9.57 µg/m 3 and 6.21 µg/m 3 respectively [START_REF] Rodriguez | On the spatial representativeness of NO X and PM 10 monitoring-sites in Paris, France[END_REF]. Model performance is not as good for NO X with an R 2 value of 0.65 and 0.45, and RMSE of 81.57 µg/m 3 and 21.12 µg/m 3 for traffic and urban background sites, respectively. Fig. 1 shows scatter plots of concentrations at the ELYS monitoring station. The PMSS model fails to represent NO X concentration maxima. As discussed in [START_REF] Rodriguez | On the spatial representativeness of NO X and PM 10 monitoring-sites in Paris, France[END_REF], this may be due to the simple chemical mechanism of the PMSS model that fails to represent the concentration of the highly reactive pollutants such as NO and/or to uncertainties in the NO X emission derived by the HEAVEN traffic emission modeling chain. Note that the error for NO 2 is smaller than for NO for traffic stations (RMSE(NO 2 )=21.9 µg/m 3 vs RMSE(NO)=72.3 µg/m 3 ). A similar result is obtained for urban background stations. The model is not always able to represent the high concentration levels during pollution episodes at the studied monitoring sites in Paris due to omissions in emission sources, errors in the meteorological predictions, or inaccuracy of the parameterization. However, it still provides realistic dispersion patterns of pollutant according to other studies during specific measurements campaigns in wind tunnel and read field experiment [START_REF] Trini Castelli | Validation of a Lagrangian particle dispersion model with wind tunnel and field experiments in urban environment[END_REF] and for academic project [START_REF] Hanna | Comparisons of JU2003 observations with four diagnostic urban wind flow and Lagrangian particle dispersion models[END_REF]. To perform this study, we assume that the model captures the 

Spatial representativeness areas

PMSS simulations were used in [START_REF] Rodriguez | On the spatial representativeness of NO X and PM 10 monitoring-sites in Paris, France[END_REF] to determine representativeness areas around the AIRPARIF monitoring sites. The daily spatial representativeness area around a monitoring site was defined as the ensemble of adjacent pixels where the pollutant concentration is (1) strongly correlated with the concentration at the pixel of the station;

(2) has a low statistical error (Normalized Root Mean Squared Error) with respect to the concentration at the pixel of the monitoring station. Correlation coefficient and NRMSE thresholds selection are based on an analysis over the 10-day with a step of 0.05 for both criteria. For each threshold, a score is estimated by counting the number of days on which the size of the selected area including the monitoring site is comprised between 300 m 2 and 400×10 3 m 2 . The maximum score for each site is 10. Finally, a total score is calculated from all stations for the 10 days and reported as the percentage of success. In the case where two different combinations of criteria thresholds give the same score (percentage of success), the retained combination is the more restrictive (i.e. the higher correlation coefficient and/or the lowest NRMSE value). The retained thresholds for PM10 are more restrictive than for NOX. This is due to the higher spatial variability of NOX concentrations, which requires less restrictive thresholds in order to retain areas large enough to get beyond the pseudo-station. This method is applied independently each day of the simulation to select the representative pixels. A representativeness probability is assigned to each pixel, depending on the frequency (i.e. number of days out of ten) at which each pixel is selected. An example of representativeness areas around the monitoring site of "Avenue des Champs-Elysées" is given in Fig. 2. This monitoring station is located on the sidewalk of a wide urban boulevard. NO X most representative area includes the sidewalk where the instrument is located along a distance of 500 m (yellow to red color, indicating that this area is selected at least 7 days), whereas the dark blue area shows street portions which have been selected only one day. The much larger PM 10 area among the most probable representative ones (yellow to red, 7 days at least) includes both sidewalks along a distance of 700 m (boulevard portion including the station) as well as a 400-meters segment of sidewalk in northwestern direction from the station. 2.4 The Bayesian framework

Model formulation

The goal of this study is to improve the PMSS pollutant simulations at, and around, each AIRPARIF station by using past and current station measurements. The Where "#|%& is the posterior distribution, "%|#& is the likelihood, "#& prior distribution, "%& a constant of normalization that we can omit to formulate Bayes'rule by saying that the posterior is proportional to the prior times the likelihood. The distribution of NO X and PM 10 concentrations are close to log-normal (Fig. 4a). Neperian logarithm concentrations (Fig. 4b) are used instead of concentrations in order to use normal distributions, which are convenient to get an explicit posterior distribution, following the a posteriori formula of the conjugate normal model (O'Hagan, 2008) (Eq.3). + ,-=/0 2 ,-./0 > ' ?
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Where + /-./0 and 2 /-./0 > are respectively the mean and variance of the prior log concentration at the monitoring site's location, % is the Neperian logarithm of the initial PMSS simulated concentration at a given pixel, $ , + and % > are respectively the slope, the intercept, and the variance of the residuals of the linear regression model used as likelihood function (see Section 2.4.2). At the end of the processing, the mean and standard deviation of the posterior distribution of NO X and PM 10 concentration are obtained by applying a log-normal transformation to the model output. Fig. 5 shows an example of the application of Bayes'rule for NOx log-concentration with concentration expressed in µg/m 3 at the OPERA monitoring station at 3 PM on March 2th. It is shown that the initial belief (prior) lies within a value ranging between 4.8 and 6 (Neperian logarithm concentration) with a maximum weight of 5.4. The likelihood values range between 4.4 and 5.3 with a maximal weight of 4.9. The posterior distribution is the combination between prior and likelihood. It is a peaky distribution centered around 5, which appears as a compromise between likelihood and prior information. In this case, data (likelihood) are more informative than the prior because the variance of the prior distribution is high. The posterior mean properly fits the AIRPARIF measurements whereas the PMSS mean initial simulated concentration was biased, at 5.2. 

Finding the optimal probabilistic model at the monitor location

A major challenge when using Bayesian statistics is to properly choose the prior distribution [θ] and the likelihood function [Y|θ].

Prior distribution [θ]

The prior is a distribution of possible values of the unknown parameter θ. It describes the expert knowledge before the observation. In the present case, to build a prior, we must answer the question: which data classification is the best source of information, to predict hourly NO X and PM 10 concentration during the ten days of March 2016 at any monitoring station location? NO X and PM 10 concentrations in the center of Paris are strongly correlated to traffic emissions. They also depend on meteorological conditions responsible for their transport and mixing. Consequently, two priors are tested, both based on data collected at the AIRPARIF station in past years: (1) the first one based on traffic variations, by classifying concentration data along three classes: working days, Saturdays, Sundays and public holidays; (2) the second one based on weather conditions, by distinguishing low and high-pressure days, as well as fast-flow situations. Because of the high spatial and temporal variability within the studied domain, different priors for each station and time of the day must be considered. AIRPARIF monitoring stations have been operating starting from different years: 2006 for PA13, PA12, PA07 and ELYS stations, 2011 for OPERA and PA04C, 2010 for HAUS and 2014 for PA15L. Fig. 6 shows daily mean profiles of NO X concentration based on ten years of data (2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015) at the ELYS monitoring station. The diurnal cycle of mean concentrations is marked with a morning and afternoon peak corresponding to rush hours during working days. During Saturday, Sunday and public holidays, the night peak is more marked than the morning peak which is also shifted later on. The prior with weather classification (not shown) gives similar results for PM 10, but does not work properly for NO X . The prior classification which best predicts NO X and PM 10 hourly concentrations for the ten days in March 2016 is, therefore, a classification per day-of-week. 

Likelihood function [Y|θ]

The second challenge is the choice of the appropriate likelihood function. This is the probability distribution of the data (PMSS simulation) conditional to the unknown parameter θ (AIRPARIF measurements from the monitoring station), commonly used in most statistical approaches. Through this function, the knowledge about the pollutant concentrations (AIRPARIF measurements from the monitoring station during the studied period) is updated, based on new information (PMSS simulation). A simple linear regression of PMSS simulated concentrations vs. AIRPARIF measurements is used here as a probabilistic model. A strong constraint is imposed by the small size of our dataset (hourly concentrations during ten days) to define the appropriate classification method. We couple simulated and observed concentration data over time-slots so that at least fifteen points are used for the linear regression (Eq.1). For each station, different time frames are tested to group the hourly data. Time windows of 2, 3, 4, 6, 8 and 12 consecutive hours, and whole day are tested as shown in Table 3. A sensitivity analysis is performed for each type of likelihood and both proposed priors (traffic and weather conditions). NO X and PM 10 PMSS simulated concentration at the monitoring station's location are compared with AIRPARIF monitoring station measurements before and after the Bayesian updating. To evaluate the best configuration, we calculate a percentage of Root Mean Square Error (RMSE) difference in each case (Eq.4). For the most relevant choice, to complete this first evaluation approach, we also calculate a percentage of standard deviation difference.

% -./0 1233454674 ' ? 89:; <=>?@ A<6?BC<D EFG<>CD: -89:; CDC>C<8 1 89:; CDC>C<8 * 100 (Eq.4) is the root mean square error, 543 ?P1 is the PM 10 or NO X hourly concentration at the AIRPARIF monitoring site. For -./0 TNTPTU. , K$L ?P1 is the PM 10 or NO X hourly PMSS simulated concentration at the monitoring station location for the ten studied days. For -./0 UVPWX YU,W5TUN Z[\UPW , K$L ?P1 is the PM 10 or NO X hourly posterior mean concentration resulting from the Bayesian updating. Table 3 summarizes results of the sensitivity analysis, associating the previously chosen prior and the time frames tested to construct the likelihood function. The best data classification corresponds to the largest decrease of the %RMSE (the highest negative value), meaning that the Bayesian updating provides less biased concentration estimates compared to the initial PMSS simulation. Note that we only focus on the evaluation of the most probable concentration (posterior distribution mean). The overall best model performance is obtained when gathering the hourly data in 2-hours time frames. Data from all ten days corresponding to each 2-hours time frame are gathered to obtain twenty points for calculating the linear regression. 

Expanding the measured value within the representative area

We applied the previous Bayesian model, for each monitoring station and each hour of the day, to each pixel of the representativeness areas (see Section 2.3), by accounting for the probability of each pixel to belong to this area. The Bayesian model update is performed on every pixel within the representativeness area, using the initial PMSS simulated concentration at the given pixel and with the selected prior and likelihood function at the station (Section 2.4.2).

The fraction of the number of days, for which the pixel is selected to belong to the representativeness areas on the total number of days of the study, is used as weighting coefficient (Eq. 5). Thus, for pixels within a representativeness area selected ten days out of ten, we apply a weight equal to one. In this case, the concentration at the pixel is the posterior mean concentration at the given pixel (i.e. concentration after the Bayesian updating). For pixels selected only one day out of ten the final concentration will be calculated as the sum of 1/10 th of the posterior mean concentration at the pixel and 9/10 th of the initial PMSS simulated concentration at the pixel. ] VTNU. ' $ * ] UVPWX YU,W5TUN Z[\UPTN0 ?1 ! $1 * ] TNTPTU. (Eq5) where ] VTNU. is the new concentration estimate at the pixel, $ the weighting coefficient, ] UVPWX YU,W5TUN Z[\UPTN0 the enhanced concentration estimate at the pixel and ] TNTPTU. the PMSS simulated concentration at the pixel. We note here that the weighting coefficient used to expand the measured value in the representativeness areas depends on representativeness criteria statistics (daily correlation coefficient and NRMSE) calculated from the ten-day period of the study.

M A N U S C R I P T A C C E P T E D

Given the shortness of the time period and the random nature of meteorology, we expect to underestimate and/or misplace the daily variability of the concentration field. However, by taking the most probable representativeness area (representativeness area shared seven days on ten) instead of daily representativeness area, the uncertainty on daily representative area and thresholds effects are minimized. The methodology should be applied on longer study periods covering a larger variety of atmospheric conditions, to reduce uncertainties. Representativeness areas could then be defined based on dispersion pattern regimes. Alternative approaches include geostatistical kriging such as in [START_REF] Beauchamp | A necessary distinction between spatial representativeness of an air quality monitoring station and the delimitation of exceedance areas[END_REF].

Results

Pollutant concentration estimates at the monitoring site location

As shown in Table 3, concentration estimates by Bayesian updating present in almost all cases a lower RMSE than the initial PMSS simulated hourly concentrations. For both NO X and PM 10 pollutants, this improvement is higher for traffic stations (up to 72% decrease in RMSE at the OPERA monitor for NO X ) than for urban stations (31% at PA12 for NO X ). As shown in the histograms of Fig. 7, the distribution of the PMSS simulation bias with respect to the monitoring station is not normal (grey histograms). This suggests the presence of systematic errors in the PMSS simulation. Especially for traffic stations, and for both pollutants, we find extreme values, suggesting high model overestimation of the measured value. After the Bayesian updating, the bias distribution is closer to a normal distribution with errors centered around zero. This shows that the applied methodology is an efficient bias-correction method for the PMSS model. 

Pollutant concentration estimates in the representativeness areas

The same Bayesian model (same prior and likelihood) is applied to the pixels of the representativeness areas in the vicinity of the monitoring station to update NO X and PM 10 PMSS simulated concentrations. To account for the probability of each pixel to belong in the representativeness area, the weighting function is applied to the posterior distributions to provide the final concentration estimates (see Section 2.4.3). Maps of the differences between the updated concentration estimates and the initial PMSS simulation within the representativeness areas are shown in Fig. 8 for NO X and PM 10 pollutants respectively. For NO X , around traffic stations, a small number of pixels are modified, due to the small size of the representativeness area. Changes can be seen in larger areas around the urban stations. The change in PM 10 concentrations is smaller than in NO X concentrations with a maximal correction of about 15% for PM 10 vs. 50% for NO X . As mentioned in Section 2.2, this is most probably due to the better PMSS model performance for PM 10 than for NO X . Moreover, for NO X , around traffic stations, we only find small changes in the initial PMSS concentration (by 20-30% in average) whereas around urban background stations, up to 50% changes are observed on large areas for PA12 and PA04C. For PM 10 , the highest modification is obtained for PA15L with 15% change and around the three traffic stations within a small-sized area surrounding the station. Table4 shows results obtained within the most probable representativeness area around each monitoring station, i.e. the area selected at least seven days out of ten (see [START_REF] Rodriguez | On the spatial representativeness of NO X and PM 10 monitoring-sites in Paris, France[END_REF]. The results are given, as in Section 2.4.2, in terms of percentage decrease of the RMSE and standard deviation values between the updated concentration estimate and the initial PMSS simulated concentration with respect to the AIRPARIF measurement (Eq.4). RMSE and standard deviation shown in Table4 are spatially averaged across the pixels of the most probable representativeness areas. NO X concentrations after Bayesian updating are improved in all cases, with a maximal correction for the OPERA station (-46% for RMSE difference and -39% for the standard deviation difference). In this study, our main goals are (1) to improve NO X and PM 10 simulated concentrations over AIRPARIF monitoring stations and (2) to extend this enhanced concentration estimate within representative areas at the vicinity of the station. We show that the bias in the ten-day PMSS simulation with respect to the AIRPARIF measurements does not follow a normal distribution. Uncertainties due to the emission inventory, meteorological conditions and model parameterizations lead to systematic errors. Bayesian statistics is especially appropriate to handle model uncertainties and provide bias correction in such cases. The proposed Bayesian model combines PMSS model simulations with current and past surface pollutant concentration measurements of the AIRPARIF stations (3 traffic-stations, 2 and 5 urban background stations respectively for PM 10 and NO X ). Combination of these two sources of information results in PMSS model error reduction at the station location and provides a spatially resolved concentration estimate in the vicinity of the monitoring site. The most probable NO X and PM 10 concentrations at the monitoring station location are given by the Bayesian posterior distribution. A sensitivity analysis is performed to find the optimal probabilistic model at each station, and determine the parameters of the prior and likelihood distributions. Past hourly AIRPARIF pollutant concentration measurements are used to establish the prior distribution for each monitoring station. Two different data classifications, based either on the intensity of traffic circulation or meteorological conditions, are tested. The classification per weekday, accounting for traffic circulation appears more appropriate. The hourly data were grouped in several time frames for the linear regression in order to test different likelihood functions. The two-hour period likelihood is found to give the best results by reducing RMSE and standard deviation between simulated concentrations and AIRPARIF measurements. For example, at the OPERA crossroad site, a -72% difference in the RMSE is obtained for NO X concentrations. We spatially extend the updated concentration estimates within the representativeness areas of each monitoring site, by applying a weighting function that considers the probability of each pixel to belong to the area. We propose to estimate the updated concentration at each pixel, by taking a weighted average between the posterior mean concentration and the initial PMSS simulation at the given pixel. The fraction of the number of days for which the pixel is selected to belong to the representativeness areas on the total number of days of the study is used as the weighting coefficient. Results show that final NO X and PM 10 concentration estimates within the most probable representative area (pixels selected seven days among ten) are closer to AIRPARIF measurements than the initial PMSS simulation with a reduced error (decrease of % RMSE and of % standard deviation). Bias correction is larger for NO X concentrations than for PM 10 because the initial PMSS model error is smaller for PM 10 . Modifications are observed over larger areas around the urban stations than around traffic ones due to the size of the representativeness area. The Bayesian model developed in this study is an innovative and low computational cost method to spatially extend pollutant concentration measurements in the vicinity of the station. By providing low-bias high-resolution pollutant concentration estimates over urban areas, the method could contribute to a better assessment of human exposure to atmospheric pollution. This method should be further validated, by performing local measurements inside representativeness areas. Finally, longer PMSS simulations would increase the available dataset for the linear regression, leading to more robust likelihood functions. In particular, the impact of the specific air pollution episode with a sharp PM 10 increase in the whole region would be attenuated in favor of more general statistics reflecting the baseline conditions.

NO X traffic stations
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  Fig.1: Scatter plots of measured vs simulated hourly concentrations for NO X (a) and PM 10 (b) of Champs-Élysées avenue monitoring station during the ten days of March 2016. The black line represents Y=θ. The grey dotted line represents the linear regression between AIRPARIF measurements and PMSS simulations.

Fig. 2 :

 2 Fig.2: NO X (a) and PM 10 (b) representativeness areas cumulated over the 10 days of the study for ELYS monitoring site. The black cross indicates the location of the monitoring site.

  scheme of the Bayesian model applied at the monitoring station location is represented with the Directed Acyclic Graph (DAG) of Fig.3.

Fig. 4 :

 4 Fig.4: NO X prior mean concentration of Champs-Élysées avenue monitoring site over ten years (2006 to 2015) at 1 AM during Monday and Friday: (a) concentration and (b) Neperian logarithm concentration.

Fig. 5 :

 5 Fig.5: Example of Bayesian update of the NO X log-concentration at the Opera crossroad monitoring station at 3 PM on March 2, 2016.

  Fig.6: Daily profiles of mean concentration for NO X prior at the Champs-Élysées Avenue monitoring site. The magenta line represents working days data (Monday to Friday), the green line represents Saturday data and blue line Sunday and Public holidays data.

  Fig.7: Distribution of the bias of initial PMSS simulated concentrations (grey) and of the posterior mean concentration (red), with respect to the monitoring station measurements.

  Fig.8: Percentage difference in PM 10 concentrations between the updated estimate and the initial PMSS simulation averaged over the ten days of the study. Crosses indicate the location of the monitoring sites.

  are also closer to the measured values after Bayesian updating within the most probable representativeness area by considering RMSE and standard deviation (Table4.b).

: Characteristic features of the study areas. Locations marked with an asterisk indicate the location of the monitoring site.

  

	Type	ID	Characteristic features	Pollutants
		station		
		HAUS	Bld Haussmann*, side roads	NO X , PM 10
	Traffic-oriented	OPERA	Crossroad*, road traffic	NO X , PM 10
	stations	ELYS	Champs-Élysées Avenue*: large	NO X , PM 10
			road bordered with trees, side roads	
		PA15L	Stadium* and leisure park,	NO X , PM 10
			"Boulevard Périphérique", traffic	
			road	
		PA12	Schoolyard*, railways, traffic road	NO X
	Urban background	PA13	Park*, traffic road, crossroad	NOX
	stations	PA04C	Place*, park, the Seine River, traffic	NO X , PM 10
			road	
		PA07	Square close to the Eiffel Tower*,	NO X
			Champ-de-Mars Garden, Seine	
			banks, the Seine River, Bridge	
	Table1			

Thresholds of representativeness criteria: correlation coefficient (!) and Normalized Root Mean Square Error (NRMSE) for NO X and PM 10

  Table2 shows the applied criteria thresholds to select representativeness areas.

	Pollutants	!	NRMSE
	NO X	0.7	0.45
	PM 10	0.75	0.3
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Table2:

RMSE and standard deviation (in brackets) difference between simulated and observed data before and after the Bayesian updating for several time frames of classification of the hourly data (per day, by 2,3,4,6,8 and 12-hours period for the ten days). [HAUS* -PM 10 results are averaged on 8/10 days, due to the lack of AIRPARIF measurements for two days].

  

				ACCEPTED MANUSCRIPT			
			(%)]							
		HAUS*	8.6	12%	-12%	-14%	-12%	-7%	-10%	-5%
			[23%]		[-13%]					
	Traffic	[30%] OPERA 10.5	-30%	[-49%] -38%	-36%	-36%	-37%	-34%	-32%
		ELYS	9.6	12%	-10%	-8%	-8%	-5%	-7%	-4%
			[19%]		[-8%]					
	Urban	PA04C	5.1	4%	-1%	3%	2%	5%	3%	5%
	a) NO X STATION backg round PA15L Table3: %	Initial RMSE [Initial [13%] 7.1 [21%]	19%	RMSE difference (%) [Standard deviation difference (%)] M [-8%] -8% [-19%] -3% -4% -4% 1% A N U S C R I P T 3%
	TYPE Traffic Urban backg round	standard deviation (%)] 60.0 [42%] 108.6 [50%] 67.8 [75%] 20.1 [24%] 16.6 [33%] 20.8 [35%] 25.5 A C C E P T E D ID Day 2h HAUS -49% -45% [-31%] OPERA -68% -72% [-67%] ELYS -27% -29% [-21%] PA12 -19% -31% [-35%] PA13 -13% -26% [-22%] PA04C -22% -30% [-31%] PA07 -27% -17%	3h -43% -71% -27% -27% -21% -25% -14%	4h -43% -70% -27% -27% -22% -25% -15%	6h -43% -69% -27% -26% -18% -28% -11%	8h -41% -69% -25% -21% -15% -21% -13%	12h -40% -67% -22% -20% -14% -21% -12%
			[36%]		[-12%]					
		PA15L	23.3	-17%	-26%	-22%	-25%	-12%	-19%	-13%
			[45%]		[-24%]					
	b) PM 10								
	STATION	Initial			RMSE difference (%)		
			RMSE		[Standard deviation difference (%)]	
			[Initial							
	TYPE	ID	standard deviation	Day	2h	3h	4h	6h	8h	12h
										14