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 12 
HIGHLIGHTS 13 

• A Bayesian scheme combining simulated pollutant concentrations with 14 
measured ones. 15 

• Bias correction for high-resolution air quality modeling. 16 
• Enhanced concentration estimates of air quality monitoring network. 17 
• Spatially resolved concentration estimates around urban monitoring sites.  18 

Abstract 19 
 20 
Air quality over cities is mainly monitored by in-situ surface measurements. However, 21 
these stations are too sparse to properly capture the inhomogeneity of pollutant 22 
concentrations over urban areas. The need for high-resolution concentration 23 
estimate has grown in recent years, together with the awareness of the harmful 24 
effects of air pollution. In this study, we develop a Bayesian scheme that combines 25 
the high-resolution (3×3 m2) Particulate Micro SWIFT SPRAY numerical air quality 26 
simulations (PMSS) with operational surface measurements. The goal is to improve 27 
NOX and PM10 PMSS concentrations estimates over monitoring stations and within 28 
their vicinity. For this purpose, we simulate pollutant concentrations over the city of 29 
Paris for ten days over the period of March 2016. The Bayesian model provides an 30 
enhanced estimate of pollutant concentration in space and time. At the monitoring 31 
stations location, these estimates are characterized by lower temporal dispersion 32 
compared to the simulated data. Within the vicinity of the monitor stations, enhanced 33 
concentration estimates are closer to observations. For NOX, the improvement is 34 
stronger and occurs in a larger area for urban background stations than for traffic 35 
stations. Overall, NOX improvement is higher than PM10 improvement. The initial 36 
PMSS model prediction is more biased for NOX than for PM10 due to large 37 
uncertainties in NOX emissions over the traffic network. 38 
 39 
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 43 

1 Introduction 44 
 45 
In large cities, air quality is often monitored by ground station networks measuring 46 
pollutant concentrations. Several types of areas are sampled: traffic, residential, etc. 47 
The spatial representativeness of these measurements is limited to a small area 48 
around the station, especially in dense urban areas: emissions from various sources, 49 
as well as air flow channeling in street canyons, result in sharp horizontal gradients 50 
of pollutant concentrations (Harrison, 2018). The need for high-resolution gridded 51 
estimates of pollutant concentrations over big cities has grown in recent years, 52 
together with the increasing awareness of the harmful health effects of atmospheric 53 
pollution.  54 
Various approaches have been developed to address the spatial distribution of 55 
pollutant concentration around monitoring sites. These approaches use real-time 56 
measurements from local networks and expand them in space and/or time based on 57 
additional relevant information such as land-use, weather conditions, and 58 
topography. They may be divided mainly into first-principle geophysical modeling 59 
and statistical ones. Atmospheric pollutant dispersion models describe the physical 60 
and chemical processes that govern the emission, transport, mixing, chemical 61 
reaction and deposition of pollutants. High-resolution models, such as the Particulate 62 
Micro Swift Spray (PMSS) air quality model integrated into the ARIA City modeling 63 
platform (http://www.aria.fr/aria_city.php), provide realistic spatial distributions of 64 
pollutant concentrations. However, they suffer from large biases due to uncertainties 65 
on the emissions and on the parameterizations of the complex atmospheric 66 
processes governing urban air quality. Statistical approaches include land-use 67 
regression (Janssen, et al. 2012 and Son, et al. 2018), kriging interpolation schemes 68 
(Beauchamp et al. 2017 and Wu et al. 2018, Martin et al. 2012), methods for 69 
assimilation of measurements in models such as Kalman filtering (Hanea et al. 2004) 70 
or 4D variational assimilation algorithms (Elbern et al. 2001)) and Bayesian models 71 
(Beloconi et al. 2018).  72 
The scope of this study is thus to improve NOX and PM10 pollutant concentrations 73 
simulated with the PMSS high-resolution air quality model over and in the vicinity of 74 
the monitoring stations of the AIRPARIF local air quality agency in Paris, France 75 
(https://www.airparif.asso.fr). To spatially expand the measurement around 76 
monitoring stations, we use the concept of “representativeness areas” defined in our 77 
previous work (Rodriguez et al. 2019). These areas consist of points where 78 
concentration levels are similar and time variations correlated to those at the 79 
monitoring site’s location. In practice, they are defined by applying criteria thresholds 80 
on the Normalized Root Mean Square Error (NRMSE) and on the correlation 81 
coefficient between simulated concentrations over all the pixels around the 82 
monitoring sites and simulated concentration at the monitoring site’s location. 83 
 84 
Frequentist or Bayesian statistical approaches may be used. In both approaches, the 85 
purpose is to determine as accurately as possible an unknown parameter θ. Here, 86 
the unknown parameter θ is the concentration in the so-called “representativeness 87 
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area” of an AIRPARIF monitoring site, i.e. at the vicinity of a station. In the 88 
frequentist setting, the unknown parameter θ is pre-assigned to a fixed single value. 89 
A statistical procedure is chosen to establish a confidence interval from any set of 90 
data collected in the same conditions, under the same model. It ensures the 91 
probability of this random interval to cover the fixed value θ, i.e. the reliability of the 92 
chosen statistical procedure. Then, the confidence interval is calculated from the 93 
available data as a random draw from this estimation procedure. All the information 94 
is contained in data. The frequentist procedure assumes a reproducible experience 95 
and a large data set. Frequentists claim that this is an objective way of reasoning. 96 
Within the Bayesian paradigm, the unknown parameter θ is considered uncertain. 97 
What is known about θ is represented by a random variable conditioned upon the 98 
available information. The major issue is to quantify the uncertainty from all available 99 
data (Boreux et al., 2010). One of the most significant differences between 100 
frequentist and Bayesian approaches is the choice of a “prior” (O’Hagan, 2008). Prior 101 
characterizes our expert knowledge by giving suggestions on an unknown 102 
parameter θ (as a distribution of θ values) before observing data and is subjective 103 
since it reflects a personal probabilistic judgment.  104 
 105 
In recent years, Bayesian statistics have become a standard methodology in 106 
environmental science, it has been used to improve spatial predictions of pollutant 107 
concentration by Pirani et al., 2018, Amin et al., 2015, Millan et al., 2009, Sahu et al., 108 
2005, among others, and deposition (Cowles et al., 2003). In this study, we propose 109 
a Bayesian model that updates the distribution of current and past ground station 110 
measurements with the high-resolution output of the PMSS model (3x3m2) within the 111 
city of Paris for ten days over the period of March 2016.  112 
 113 
In Section 2, the AIRPARIF air quality network and PMSS model simulations are 114 
presented. Then, representativeness areas, as obtained in Rodriguez et al. (2019), 115 
are summarized, and the Bayesian framework is described. Section 3 gathers 116 
results: first, the pollutant concentrations at the monitoring site locations (Sect. 3.1) 117 
and then, concentrations within representativeness areas (Sect. 3.2). Conclusions 118 
are given in section 4.  119 
 120 

2 Data and methods 121 
 122 
As in Rodriguez et al. (2019), a simulation set of ten non-consecutives days in March 123 
2016 are used. During this period (March 2 – 21), a high-pressure episode occurred, 124 
characterized by strong atmospheric stability and the accumulation of PM10 within 125 
the boundary layer. It resulted in a sharp rise in PM10 concentration on March 11. 126 
The effect of this synoptic-scale episode is less pronounced for NOX than for PM10. 127 
Indeed, in highly urbanized areas, the spatial and temporal variability of pollutant 128 
concentration is more driven by traffic patterns for NOX than for PM10. We note that 129 
the contribution of the traffic sector to the total emission concentrations is two times 130 
higher for NOX than for PM10 in the Paris area (56% vs. 28% AIRPARIF, 2012). In 131 
the close proximity to roads, the NOX emissions decrease much higher for NOX 132 
(Pasquier et al., 2017). Data from eight local monitoring stations from the AIRPARIF 133 
network have been collected for the same period. 134 
 135 
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 136 
 137 
 138 

2.1 Surface measurements 139 
 140 
The location of AIRPARIF monitoring sites have been chosen to sample various 141 
urban landscapes in Paris. They are classified as “traffic” or “urban background” 142 
depending on their proximity (or not) to the street network. A thorough description of 143 
the AIRPARIF network can be found on the agency’s website 144 
(https://www.airparif.asso.fr/en/stations/index). Data from three traffic-oriented and 145 
five urban background monitoring stations are used in this study as listed in Table1. 146 
Traffic monitoring stations are located on sidewalks along roads and on major 147 
crossroads, whereas urban background monitors are located on low emission areas 148 
such as parks, pedestrian squares, schoolyards, and leisure parks. All traffic 149 
monitors measure both NOX and PM10, whereas PM10 is measured only at two out of 150 
five urban background sites.  151 
These measurements are considered as reference, or “ground truth” of pollutant 152 
concentration, assuming that the measurement error is negligible. 153 
 154 
 155 
Type ID 

station 
Characteristic features Pollutants 

Traffic-
oriented 
stations 

HAUS Bld Haussmann*, side roads NOX, PM10 

OPERA Crossroad*, road traffic NOX, PM10 

ELYS Champs-Élysées Avenue*: large 
road bordered with trees, side roads 

NOX, PM10 

Urban 
background 
stations 

PA15L Stadium* and leisure park, 
“Boulevard Périphérique”, traffic 
road 

NOX, PM10 

PA12 Schoolyard*, railways, traffic road NOX 

PA13 Park*, traffic road, crossroad NOX 

PA04C Place*, park, the Seine River, traffic 
road 

NOX, PM10 

PA07 Square close to the Eiffel Tower*, 
Champ-de-Mars Garden, Seine 
banks, the Seine River, Bridge 

NOX 

Table1: Characteristic features of the study areas. Locations marked with an 156 
asterisk indicate the location of the monitoring site. 157 

 158 
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2.2 Numerical air quality simulations 159 
 160 
NOX and PM10 concentrations were simulated using the high-resolution model 161 
PMSS, in a 12×10 km2 grid covering the city of Paris. The model set-up is the same 162 
as in Rodriguez et al. (2019).  163 
The model has thirty-five vertical layers from the ground up to an altitude of 800 m. 164 
The thickness of the surface layer is two meters and increases with the altitude 165 
(Moussafir et al., 2015). The model simulates the turbulent flow around the buildings 166 
and pollutant dispersion through a three-meters horizontal resolution grid. Emission 167 
fluxes from urban sources are taken from the AIRPARIF inventory. Boundary 168 
conditions are taken from the CHIMERE chemistry-transport model (Mailler et al., 169 
2017). Meteorological conditions are simulated with the MM5 weather mesoscale 170 
model (http://www2.mmm.ucar.edu/mm5/). Building contours and heights are also 171 
accounted for as obstacles for the air flow. They are taken from the BDTOPO 172 
database developed by the French National Geographic Institute. Atmospheric 173 
dispersion is simulated with the PSPRAY Lagrangian particles model. Traffic 174 
emissions are calculated with the HEAVEN chain (Healthier Environment through the 175 
Abatement of Vehicle Emissions and Noise, http://www.airparif.asso.fr/etat-air/air-et-176 
climat-emissions-heaven) HEAVEN calculates in near real-time the traffic circulation 177 
and allows obtaining pollutant emissions on main traffic roads of the Paris area 178 
based on a “bottom-up” approach. Hourly traffic emissions are derived from the 179 
combination of traffic model (car flow, mean speed, cold engines percentage) and 180 
emission factors (car speed, road type, temperature, car type, etc.) applied by loop-181 
based counting systems. 182 
 183 
At each monitor, simulated concentrations are compared to measurements for both 184 
pollutants. PMSS simulations are in a very good agreement with PM10 185 
measurements, both for traffic and urban background sites, with a correlation 186 
coefficient (R2) equal to 0.83 and 0.92 respectively, and a root mean squared error 187 
(RMSE) equal to 9.57 µg/m3 and 6.21 µg/m3 respectively (Rodriguez et al., 2019). 188 
Model performance is not as good for NOX with an R2 value of 0.65 and 0.45, and 189 
RMSE of 81.57 µg/m3 and 21.12 µg/m3 for traffic and urban background sites, 190 
respectively.  191 
 192 
Fig.1 shows scatter plots of concentrations at the ELYS monitoring station. The 193 
PMSS model fails to represent NOX concentration maxima. As discussed in 194 
Rodriguez et al., (2019), this may be due to the simple chemical mechanism of the 195 
PMSS model that fails to represent the concentration of the highly reactive pollutants 196 
such as NO and/or to uncertainties in the NOX emission derived by the HEAVEN 197 
traffic emission modeling chain. Note that the error for NO2 is smaller than for NO for 198 
traffic stations (RMSE(NO2)=21.9 µg/m3 vs RMSE(NO)=72.3 µg/m3). A similar result 199 
is obtained for urban background stations. 200 
 201 
The model is not always able to represent the high concentration levels during 202 
pollution episodes at the studied monitoring sites in Paris due to omissions in 203 
emission sources, errors in the meteorological predictions, or inaccuracy of the 204 
parameterization. However, it still provides realistic dispersion patterns of pollutant 205 
according to other studies during specific measurements campaigns in wind tunnel 206 
and read field experiment (Trini Castelli et al., 2018) and for academic project 207 
(Hanna et al., 2011). To perform this study, we assume that the model captures the 208 
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actual spatial variability of pollutant in Paris (Rodriguez et al., 2019). 209 
 210 
  211 

 212 
Fig.1: Scatter plots of measured vs simulated hourly concentrations for NOX 213 
(a) and PM10 (b) of Champs-Élysées avenue monitoring station during the ten 214 
days of March 2016. The black line represents Y=θ. The grey dotted line 215 
represents the linear regression between AIRPARIF measurements and PMSS 216 
simulations. 217 

 218 

2.3 Spatial representativeness areas 219 
 220 
PMSS simulations were used in Rodriguez et al. (2019) to determine 221 
representativeness areas around the AIRPARIF monitoring sites. The daily spatial 222 
representativeness area around a monitoring site was defined as the ensemble of 223 
adjacent pixels where the pollutant concentration is (1) strongly correlated with the 224 
concentration at the pixel of the station; (2) has a low statistical error (Normalized 225 
Root Mean Squared Error) with respect to the concentration at the pixel of the 226 
monitoring station. Correlation coefficient and NRMSE thresholds selection are 227 
based on an analysis over the 10-day with a step of 0.05 for both criteria. For each 228 
threshold, a score is estimated by counting the number of days on which the size of 229 
the selected area including the monitoring site is comprised between 300 m2 and 230 
400×103m2.  231 
The maximum score for each site is 10. Finally, a total score is calculated from all 232 
stations for the 10 days and reported as the percentage of success. In the case 233 
where two different combinations of criteria thresholds give the same score 234 
(percentage of success), the retained combination is the more restrictive (i.e. the 235 
higher � correlation coefficient and/or the lowest NRMSE value). 236 
Table2 shows the applied criteria thresholds to select representativeness areas. 237 
 238 
Pollutants ! NRMSE 
NOX 0.7 0.45 
PM10 0.75 0.3 
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Table2: Thresholds of representativeness criteria: correlation coefficient (!) 239 
and Normalized Root Mean Square Error (NRMSE) for NOX and PM10 240 

The retained thresholds for PM10 are more restrictive than for NOX. This is due to the 241 
higher spatial variability of NOX concentrations, which requires less restrictive 242 
thresholds in order to retain areas large enough to get beyond the pseudo-station. 243 
 244 
This method is applied independently each day of the simulation to select the 245 
representative pixels. A representativeness probability is assigned to each pixel, 246 
depending on the frequency (i.e. number of days out of ten) at which each pixel is 247 
selected. An example of representativeness areas around the monitoring site of 248 
“Avenue des Champs-Elysées” is given in Fig.2. This monitoring station is located on 249 
the sidewalk of a wide urban boulevard. NOX most representative area includes the 250 
sidewalk where the instrument is located along a distance of 500 m (yellow to red 251 
color, indicating that this area is selected at least 7 days), whereas the dark blue 252 
area shows street portions which have been selected only one day. The much larger 253 
PM10 area among the most probable representative ones (yellow to red, 7 days at 254 
least) includes both sidewalks along a distance of 700 m (boulevard portion including 255 
the station) as well as a 400-meters segment of sidewalk in northwestern direction 256 
from the station. 257 

 258 
Fig.2: NOX (a) and PM10 (b) representativeness areas cumulated over the 10 259 
days of the study for ELYS monitoring site. The black cross indicates the 260 
location of the monitoring site.  261 

 262 
 263 
 264 

2.4 The Bayesian framework 265 

2.4.1 Model formulation 266 
 267 
The goal of this study is to improve the PMSS pollutant simulations at, and around, 268 
each AIRPARIF station by using past and current station measurements. The 269 
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scheme of the Bayesian model applied at the monitoring station location is 270 
represented with the Directed Acyclic Graph (DAG) of Fig.3.  271 

 272 
Fig.3: Directed Acyclic Graph (DAG) describing our scientific question with [θ]: 273 
prior distribution, [Y|θ]: likelihood, [θ|Y]: posterior distribution. 274 

 275 
Past AIRPARIF measurements represent the information on which the prior expert 276 
knowledge of the unknown parameter θ (i.e. pollutant concentration at a given point 277 
in space and time) is based (before getting the predicted data from the PMSS 278 
simulated concentration).  279 
 280 
After integrating data information from the PMSS simulation, the prior information 281 
(past measurements from the station) is updated through the likelihood function to 282 
obtain the posterior knowledge. The likelihood function is the probability distribution 283 
of the data (PMSS simulations) conditional on the parameter θ (AIRPARIF 284 
measurements to the monitoring station), commonly used in other statistical 285 
approaches. Simple linear regression is used as a probabilistic model (PMSS 286 
simulated concentrations vs AIRPARIF measurements, Eq.1). 287 
 288 

Yi = aθi +b+σ εi  (Eq.1) 289 
with error term εi~N(0,1) 290 

 291 
where Yi is the initial PMSS simulations (µg/m3), θi is the AIRPARIF monitoring 292 
station measurements (µg/m3) during the ten days in March 2016 and a, b and σ 293 
respectively the slope, intercept, and the standard deviation of the residuals of the 294 
linear regression. Parameter values (i.e. a high slope, a low intercept, and standard 295 
deviation) for which the likelihood is high, are those that have a high probability of 296 
producing the observed data.  297 
 298 
Bayes’rule (Eq.2) updates the prior knowledge by learning from data (Y:PMSS 299 
simulated concentration) and provides a posterior distribution from which the a 300 
posteriori most probable concentration is estimated, associated with its uncertainty 301 
(the posterior standard deviation) (O’Hagan, 2008). 302 
 303 
All three, prior, likelihood and posterior are distributions describing the probability 304 
that an event occurs. According to the Bayes’rule, the posterior distribution [θ|Y] is 305 
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the product of the prior distribution [θ] and the likelihood function [Y|θ], except for a 306 
constant scaling factor (Eq.2). 307 

"#|%& ' "(|)&")&
"(&   (Eq.2) 308 

Where "#|%& is the posterior distribution, "%|#&  is the likelihood, "#&  prior 309 
distribution,	"%&	a constant of normalization that we can omit to formulate Bayes’rule 310 
by saying that the posterior is proportional to the prior times the likelihood. 311 
 312 
The distribution of NOX and PM10 concentrations are close to log-normal (Fig.4a). 313 
Neperian logarithm concentrations (Fig.4b) are used instead of concentrations in 314 
order to use normal distributions, which are convenient to get an explicit posterior 315 
distribution, following the a posteriori formula of the conjugate normal model 316 
(O’Hagan, 2008) (Eq.3).  317 

 318 
Fig.4: NOX prior mean concentration of Champs-Élysées avenue monitoring 319 
site over ten years (2006 to 2015) at 1 AM during Monday and Friday: (a) 320 
concentration and (b) Neperian logarithm concentration. 321 

 322 
The posterior distribution is a normal distribution with a mean (+,-./01  and a 323 
standard deviation (2,-./01  obtained from the Bayesian updating formulae Eq.3.  324 
Model precision is calculated as the inverse of the variance of the posterior 325 
distribution 3 4

56789:; <. It reflects the degree of uncertainty related to the obtained mean 326 
of the estimated parameter. 327 
 328 

+,-=/0
2,-./0> ' ?+/-./02/-./0>  ?% ! b1a 	$

>

%>1 
(Eq.3) 329 

1
s(-=)*> ' 1

s)-=)*>  $
>

%> 
 330 
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Where +/-./0  and 2/-./0>  are respectively the mean and variance of the prior log 331 
concentration at the monitoring site’s location, % is the Neperian logarithm of the 332 
initial PMSS simulated concentration at a given pixel,	$	, + and %> are respectively 333 
the slope, the intercept, and the variance of the residuals of the linear regression 334 
model used as likelihood function (see Section 2.4.2). 335 
 336 
At the end of the processing, the mean and standard deviation of the posterior 337 
distribution of NOX and PM10 concentration are obtained by applying a log-normal 338 
transformation to the model output. 339 
 340 
 341 
Fig.5 shows an example of the application of Bayes’rule for NOx log-concentration 342 
with concentration expressed in µg/m3 at the OPERA monitoring station at 3 PM on 343 
March 2th. It is shown that the initial belief (prior) lies within a value ranging between 344 
4.8 and 6 (Neperian logarithm concentration) with a maximum weight of 5.4. The 345 
likelihood values range between 4.4 and 5.3 with a maximal weight of 4.9. The 346 
posterior distribution is the combination between prior and likelihood. It is a peaky 347 
distribution centered around 5, which appears as a compromise between likelihood 348 
and prior information. In this case, data (likelihood) are more informative than the 349 
prior because the variance of the prior distribution is high. The posterior mean 350 
properly fits the AIRPARIF measurements whereas the PMSS mean initial simulated 351 
concentration was biased, at 5.2.  352 
 353 
 354 
 355 

 356 
Fig.5: Example of Bayesian update of the NOX log-concentration at the Opera 357 
crossroad monitoring station at 3 PM on March 2, 2016. 358 

 359 
 360 
 361 
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2.4.2 Finding the optimal probabilistic model at the monitor location  362 
 363 
A major challenge when using Bayesian statistics is to properly choose the prior 364 
distribution [θ] and the likelihood function [Y|θ].  365 
 366 
Prior distribution [θ] 367 
The prior is a distribution of possible values of the unknown parameter θ. It describes 368 
the expert knowledge before the observation. In the present case, to build a prior, we 369 
must answer the question: which data classification is the best source of information, 370 
to predict hourly NOX and PM10 concentration during the ten days of March 2016 at 371 
any monitoring station location?  372 
 373 
NOX and PM10 concentrations in the center of Paris are strongly correlated to traffic 374 
emissions. They also depend on meteorological conditions responsible for their 375 
transport and mixing. Consequently, two priors are tested, both based on data 376 
collected at the AIRPARIF station in past years: (1) the first one based on traffic 377 
variations, by classifying concentration data along three classes: working days, 378 
Saturdays, Sundays and public holidays; (2) the second one based on weather 379 
conditions, by distinguishing low and high-pressure days, as well as fast-flow 380 
situations. Because of the high spatial and temporal variability within the studied 381 
domain, different priors for each station and time of the day must be considered. 382 
 383 
AIRPARIF monitoring stations have been operating starting from different years: 384 
2006 for PA13, PA12, PA07 and ELYS stations, 2011 for OPERA and PA04C, 2010 385 
for HAUS and 2014 for PA15L.  386 
 387 
Fig.6 shows daily mean profiles of NOX concentration based on ten years of data 388 
(2006-2015) at the ELYS monitoring station. The diurnal cycle of mean 389 
concentrations is marked with a morning and afternoon peak corresponding to rush 390 
hours during working days. During Saturday, Sunday and public holidays, the night 391 
peak is more marked than the morning peak which is also shifted later on. The prior 392 
with weather classification (not shown) gives similar results for PM10, but does not 393 
work properly for NOX. The prior classification which best predicts NOX and PM10 394 
hourly concentrations for the ten days in March 2016 is, therefore, a classification 395 
per day-of-week. 396 
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 397 
Fig.6: Daily profiles of mean concentration for NOX prior at the Champs-398 
Élysées Avenue monitoring site. The magenta line represents working days 399 
data (Monday to Friday), the green line represents Saturday data and blue line 400 
Sunday and Public holidays data. 401 

 402 
Likelihood function [Y|θ] 403 
The second challenge is the choice of the appropriate likelihood function. This is the 404 
probability distribution of the data (PMSS simulation) conditional to the unknown 405 
parameter θ (AIRPARIF measurements from the monitoring station), commonly used 406 
in most statistical approaches. Through this function, the knowledge about the 407 
pollutant concentrations (AIRPARIF measurements from the monitoring station 408 
during the studied period) is updated, based on new information (PMSS simulation).  409 
 410 
A simple linear regression of PMSS simulated concentrations vs. AIRPARIF 411 
measurements is used here as a probabilistic model. A strong constraint is imposed 412 
by the small size of our dataset (hourly concentrations during ten days) to define the 413 
appropriate classification method. We couple simulated and observed concentration 414 
data over time-slots so that at least fifteen points are used for the linear regression 415 
(Eq.1). For each station, different time frames are tested to group the hourly data. 416 
Time windows of 2, 3, 4, 6, 8 and 12 consecutive hours, and whole day are tested as 417 
shown in Table 3.  418 
 419 
A sensitivity analysis is performed for each type of likelihood and both proposed 420 
priors (traffic and weather conditions). NOX and PM10 PMSS simulated concentration 421 
at the monitoring station’s location are compared with AIRPARIF monitoring station 422 
measurements before and after the Bayesian updating. To evaluate the best 423 
configuration, we calculate a percentage of Root Mean Square Error (RMSE) 424 
difference in each case (Eq.4). For the most relevant choice, to complete this first 425 
evaluation approach, we also calculate a percentage of standard deviation 426 
difference. 427 
 428 
%	-./0	1233454674 ' ?	89:;<=>?@	A<6?BC<D	EFG<>CD:	-89:;CDC>C<8	1

89:;CDC>C<8
∗ 100  (Eq.4) 429 
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where -./0?543, K$L1 ' M4N ?∑ ?543?P1 ! K$L?P11>1PQ>RS
PQS  is the root mean square error, 430 

543?P1 is the PM10 or NOX hourly concentration at the AIRPARIF monitoring site. 431 
For -./0TNTPTU.	, 	K$L?P1 is the PM10 or NOX hourly PMSS simulated concentration at 432 
the monitoring station location for the ten studied days. For 433 
-./0UVPWX	YU,W5TUN	Z[\UPW	, K$L?P1  is the PM10 or NOX hourly posterior mean 434 
concentration resulting from the Bayesian updating.  435 
 436 
Table 3 summarizes results of the sensitivity analysis, associating the previously 437 
chosen prior and the time frames tested to construct the likelihood function. The best 438 
data classification corresponds to the largest decrease of the %RMSE (the highest 439 
negative value), meaning that the Bayesian updating provides less biased 440 
concentration estimates compared to the initial PMSS simulation. Note that we only 441 
focus on the evaluation of the most probable concentration (posterior distribution 442 
mean). The overall best model performance is obtained when gathering the hourly 443 
data in 2-hours time frames. Data from all ten days corresponding to each 2-hours 444 
time frame are gathered to obtain twenty points for calculating the linear regression.  445 
 446 
 447 
 448 
 449 
 450 
 451 
a) NOX 452 
STATION  Initial 

RMSE 
[Initial  
standard 
deviation 
(%)] 

RMSE difference (%)  
[Standard deviation difference (%)] 

 

TYPE ID 
Day 2h 3h 4h 6h 8h 12h 

Traffic 

HAUS 60.0  
[42%]  

-49% -45% 
[-31%] 

-43% -43% -43% -41% -40% 

OPERA 108.6 
[50%] 

-68% -72% 
[-67%] 

-71% -70% -69% -69% -67% 

ELYS 67.8 
[75%] 

-27% -29% 
[-21%] 

-27% -27% -27% -25% -22% 

Urban 
backg
round 

PA12 20.1 
[24%] 

-19% -31% 
[-35%] 

-27% -27% -26% -21% -20% 

PA13 16.6 
[33%] 

-13% -26% 
[-22%] 

-21% -22% -18% -15% -14% 

PA04C 20.8 
[35%] 

-22% -30% 
[-31%] 

-25% -25% -28% -21% -21% 

PA07 25.5 
[36%] 

-27% -17% 
[-12%] 

-14% -15% -11% -13% -12% 

PA15L 23.3 
[45%] 

-17% -26% 
[-24%] 

-22% -25% -12% -19% -13% 

b) PM10 453 
STATION Initial 

RMSE 
[Initial 
standard 
deviation 

RMSE difference (%) 
[Standard deviation difference (%)] 

 
TYPE ID Day 2h 3h 4h 6h 8h 12h 
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(%)] 
 

Traffic 

HAUS* 8.6 
[23%] 

12% -12% 
[-13%] 

-14% -12% -7% -10% -5% 

OPERA 10.5 
[30%] 

-30% -38% 
[-49%] 

-36% -36% -37% -34% -32% 

ELYS 9.6 
[19%] 

12% -10% 
[-8%] 

-8% -8% -5% -7% -4% 

Urban 
backg
round 
 

PA04C 5.1 
[13%] 

4% -1% 
[-8%] 

3% 2% 5% 3% 5% 

PA15L 7.1 
[21%] 

19% -8% 
[-19%] 

-3% -4% -4% 1% 3% 

Table3: % RMSE and standard deviation (in brackets) difference between 454 
simulated and observed data before and after the Bayesian updating for 455 
several time frames of classification of the hourly data (per day, by 2,3,4,6,8 456 
and 12-hours period for the ten days). [HAUS* - PM10 results are averaged on 457 
8/10 days, due to the lack of AIRPARIF measurements for two days]. 458 

 459 
 460 
 461 
 462 

2.4.3 Expanding the measured value within the representative area 463 
 464 
We applied the previous Bayesian model, for each monitoring station and each hour 465 
of the day, to each pixel of the representativeness areas (see Section 2.3), by 466 
accounting for the probability of each pixel to belong to this area.  467 
 468 
The Bayesian model update is performed on every pixel within the 469 
representativeness area, using the initial PMSS simulated concentration at the given 470 
pixel and with the selected prior and likelihood function at the station (Section 2.4.2). 471 
The fraction of the number of days, for which the pixel is selected to belong to the 472 
representativeness areas on the total number of days of the study, is used as 473 
weighting coefficient (Eq. 5). Thus, for pixels within a representativeness area 474 
selected ten days out of ten, we apply a weight equal to one. In this case, the 475 
concentration at the pixel is the posterior mean concentration at the given pixel (i.e. 476 
concentration after the Bayesian updating). For pixels selected only one day out of 477 
ten the final concentration will be calculated as the sum of 1/10th of the posterior 478 
mean concentration at the pixel and 9/10th of the initial PMSS simulated 479 
concentration at the pixel.  480 
 481 

]VTNU. ' $ ∗ ]UVPWX	YU,W5TUN	Z[\UPTN0  ?1 ! $1 ∗ ]TNTPTU. (Eq5) 482 
 483 
where ]VTNU.  is the new concentration estimate at the pixel, $  the weighting 484 
coefficient, ]UVPWX	YU,W5TUN	Z[\UPTN0  the enhanced concentration estimate at the pixel 485 
and ]TNTPTU. the PMSS simulated concentration at the pixel. 486 
 487 
We note here that the weighting coefficient used to expand the measured value in 488 
the representativeness areas depends on representativeness criteria statistics (daily 489 
correlation coefficient and NRMSE) calculated from the ten-day period of the study.  490 
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Given the shortness of the time period and the random nature of meteorology, we 491 
expect to underestimate and/or misplace the daily variability of the concentration 492 
field. However, by taking the most probable representativeness area 493 
(representativeness area shared seven days on ten) instead of daily 494 
representativeness area, the uncertainty on daily representative area and thresholds 495 
effects are minimized.  496 
 497 
The methodology should be applied on longer study periods covering a larger variety 498 
of atmospheric conditions, to reduce uncertainties. Representativeness areas could 499 
then be defined based on dispersion pattern regimes. Alternative approaches include 500 
geostatistical kriging such as in Beauchamp et al. (2018c). 501 
 502 

3 Results 503 
 504 

3.1 Pollutant concentration estimates at the monitoring site location 505 
 506 
As shown in Table 3, concentration estimates by Bayesian updating present in 507 
almost all cases a lower RMSE than the initial PMSS simulated hourly 508 
concentrations. For both NOX and PM10 pollutants, this improvement is higher for 509 
traffic stations (up to 72% decrease in RMSE at the OPERA monitor for NOX) than 510 
for urban stations (31% at PA12 for NOX). As shown in the histograms of Fig.7, the 511 
distribution of the PMSS simulation bias with respect to the monitoring station is not 512 
normal (grey histograms). This suggests the presence of systematic errors in the 513 
PMSS simulation. Especially for traffic stations, and for both pollutants, we find 514 
extreme values, suggesting high model overestimation of the measured value. After 515 
the Bayesian updating, the bias distribution is closer to a normal distribution with 516 
errors centered around zero. This shows that the applied methodology is an efficient 517 
bias-correction method for the PMSS model. 518 
 519 
 520 
NOX traffic stations 521 

 522 
NOX urban background stations 523 
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 524 
 525 
PM10 traffic stations 526 

 527 
 528 
 529 
 530 
 531 
 532 
PM10 urban background stations 533 
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 534 
Fig.7: Distribution of the bias of initial PMSS simulated concentrations (grey) 535 
and of the posterior mean concentration (red), with respect to the monitoring 536 
station measurements. 537 

 538 

3.2 Pollutant concentration estimates in the representativeness areas 539 
 540 
The same Bayesian model (same prior and likelihood) is applied to the pixels of the 541 
representativeness areas in the vicinity of the monitoring station to update NOX and 542 
PM10 PMSS simulated concentrations. To account for the probability of each pixel to 543 
belong in the representativeness area, the weighting function is applied to the 544 
posterior distributions to provide the final concentration estimates (see Section 545 
2.4.3).  546 
 547 
Maps of the differences between the updated concentration estimates and the initial 548 
PMSS simulation within the representativeness areas are shown in Fig.8 for NOX 549 
and PM10 pollutants respectively. For NOX, around traffic stations, a small number of 550 
pixels are modified, due to the small size of the representativeness area. 551 
Changes can be seen in larger areas around the urban stations. The change in PM10 552 
concentrations is smaller than in NOX concentrations with a maximal correction of 553 
about 15% for PM10 vs. 50% for NOX. As mentioned in Section 2.2, this is most 554 
probably due to the better PMSS model performance for PM10 than for NOX.  555 
Moreover, for NOX, around traffic stations, we only find small changes in the initial 556 
PMSS concentration (by 20-30% in average) whereas around urban background 557 
stations, up to 50% changes are observed on large areas for PA12 and PA04C. For 558 
PM10, the highest modification is obtained for PA15L with 15% change and around 559 
the three traffic stations within a small-sized area surrounding the station.  560 
 561 
 562 
 563 
 564 
 565 
 566 
 567 
 568 
 569 
NOX traffic stations 570 
 571 
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 572 
 573 
NOX urban background stations 574 
 575 

 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
PM10 traffic stations 585 
 586 
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 587 
PM10 urban background stations 588 
 589 

 590 
Fig.8: Percentage difference in PM10 concentrations between the updated 591 
estimate and the initial PMSS simulation averaged over the ten days of the 592 
study. Crosses indicate the location of the monitoring sites.  593 

 594 
Table4 shows results obtained within the most probable representativeness area 595 
around each monitoring station, i.e. the area selected at least seven days out of ten 596 
(see Rodriguez et al., 2019). The results are given, as in Section 2.4.2, in terms of 597 
percentage decrease of the RMSE and standard deviation values between the 598 
updated concentration estimate and the initial PMSS simulated concentration with 599 
respect to the AIRPARIF measurement (Eq.4). RMSE and standard deviation shown 600 
in Table4 are spatially averaged across the pixels of the most probable 601 
representativeness areas. 602 
 603 
NOX concentrations after Bayesian updating are improved in all cases, with a 604 
maximal correction for the OPERA station (-46% for RMSE difference and - 39% for 605 
the standard deviation difference).  606 
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PM10 concentrations are also closer to the measured values after Bayesian updating 607 
within the most probable representativeness area by considering RMSE and 608 
standard deviation (Table4.b).  609 

 610 
a) NOX 611 
TYPE 
STATION 

ID 
STATION 

Initial RMSE 
 [Initial standard deviation (%)] 

RMSE difference (%) 
[Standard deviation difference 

(%)] 
Traffic HAUS 72.0 

[48%]  
-37%  

[-33%] 
OPERA 105.5 

[47%] 
-46%  

[-39%] 
ELYS 64.0  

[71%] 
-20% 

[-14%] 
Urban 

background 
PA12 20.4 

[34%] 
-21%  

[-25%] 
PA13 18.5 

[36%] 
-21%  

[-19%] 
PA04C 25.3 

[37%] 
-17%  

[-22%] 
PA07 26.6 

[36%] 
-19%  

[-22%] 
PA15L 24.6 

[48%] 
-22%  

[-19%] 
b) PM10 612 

TYPE 
STATION 

ID 
STATION 

Initial RMSE 
[Initial standard deviation (%)] 

RMSE difference (%) 
[Standard deviation 

difference (%)] 
Traffic HAUS 25.3  

[52%] 
-8%  

[-12%] 
OPERA 10.0 

[26%] 
-18% 
[-24%] 

ELYS 10.5  
[21%] 

-12%  
[-13%] 

Urban 
background 

PA04C 5.5 
[13%] 

-5%  
[-8%] 

PA15L 7.2 
[21%] 

-10%  
[-18%] 

Table4: Average RMSE, standard deviation and % RMSE, and standard 613 
deviation differences between simulated and observed NOX (a), and PM10 (b) 614 
concentrations, before and after Bayesian updating, spatially averaged within 615 
the most probable representativeness area, for the ten days of the study. 616 

 617 
 618 

4 Conclusion 619 
 620 
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In this study, our main goals are (1) to improve NOX and PM10 simulated 621 
concentrations over AIRPARIF monitoring stations and (2) to extend this enhanced 622 
concentration estimate within representative areas at the vicinity of the station.  623 
We show that the bias in the ten-day PMSS simulation with respect to the AIRPARIF 624 
measurements does not follow a normal distribution. Uncertainties due to the 625 
emission inventory, meteorological conditions and model parameterizations lead to 626 
systematic errors. Bayesian statistics is especially appropriate to handle model 627 
uncertainties and provide bias correction in such cases.  628 
The proposed Bayesian model combines PMSS model simulations with current and 629 
past surface pollutant concentration measurements of the AIRPARIF stations (3 630 
traffic-stations, 2 and 5 urban background stations respectively for PM10 and NOX). 631 
Combination of these two sources of information results in PMSS model error 632 
reduction at the station location and provides a spatially resolved concentration 633 
estimate in the vicinity of the monitoring site.  634 
 635 
The most probable NOX and PM10 concentrations at the monitoring station location 636 
are given by the Bayesian posterior distribution. A sensitivity analysis is performed to 637 
find the optimal probabilistic model at each station, and determine the parameters of 638 
the prior and likelihood distributions. Past hourly AIRPARIF pollutant concentration 639 
measurements are used to establish the prior distribution for each monitoring station. 640 
Two different data classifications, based either on the intensity of traffic circulation or 641 
meteorological conditions, are tested. The classification per weekday, accounting for 642 
traffic circulation appears more appropriate. The hourly data were grouped in several 643 
time frames for the linear regression in order to test different likelihood functions. The 644 
two-hour period likelihood is found to give the best results by reducing RMSE and 645 
standard deviation between simulated concentrations and AIRPARIF measurements. 646 
For example, at the OPERA crossroad site, a -72% difference in the RMSE is 647 
obtained for NOX concentrations.  648 
 649 
We spatially extend the updated concentration estimates within the 650 
representativeness areas of each monitoring site, by applying a weighting function 651 
that considers the probability of each pixel to belong to the area. We propose to 652 
estimate the updated concentration at each pixel, by taking a weighted average 653 
between the posterior mean concentration and the initial PMSS simulation at the 654 
given pixel. The fraction of the number of days for which the pixel is selected to 655 
belong to the representativeness areas on the total number of days of the study is 656 
used as the weighting coefficient. 657 
Results show that final NOX and PM10 concentration estimates within the most 658 
probable representative area (pixels selected seven days among ten) are closer to 659 
AIRPARIF measurements than the initial PMSS simulation with a reduced error 660 
(decrease of % RMSE and of % standard deviation).  661 
Bias correction is larger for NOX concentrations than for PM10 because the initial 662 
PMSS model error is smaller for PM10. Modifications are observed over larger areas 663 
around the urban stations than around traffic ones due to the size of the 664 
representativeness area. 665 
The Bayesian model developed in this study is an innovative and low computational 666 
cost method to spatially extend pollutant concentration measurements in the vicinity 667 
of the station. By providing low-bias high-resolution pollutant concentration estimates 668 
over urban areas, the method could contribute to a better assessment of human 669 
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exposure to atmospheric pollution. This method should be further validated, by 670 
performing local measurements inside representativeness areas. 671 
 672 
Finally, longer PMSS simulations would increase the available dataset for the linear 673 
regression, leading to more robust likelihood functions. In particular, the impact of 674 
the specific air pollution episode with a sharp PM10 increase in the whole region 675 
would be attenuated in favor of more general statistics reflecting the baseline 676 
conditions.  677 
 678 
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