
HAL Id: insu-02160407
https://insu.hal.science/insu-02160407

Submitted on 19 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence of the Depth on the Shape and Thickness of
Nacre Tablets of Pinctada margaritifera Pearl Oyster,

and on Oxygen Isotopic Composition
Marthe Rousseau, Claire Rollion-Bard

To cite this version:
Marthe Rousseau, Claire Rollion-Bard. Influence of the Depth on the Shape and Thickness of Nacre
Tablets of Pinctada margaritifera Pearl Oyster, and on Oxygen Isotopic Composition. Minerals, 2012,
2 (1), pp.55-64. �10.3390/min2010055�. �insu-02160407�

https://insu.hal.science/insu-02160407
https://hal.archives-ouvertes.fr


Minerals 2012, 2, 55-64; doi:10.3390/min2010055 
 

minerals
ISSN 2075-163X 

www.mdpi.com/journal/minerals/ 

Article 

Influence of the Depth on the Shape and Thickness of Nacre 
Tablets of Pinctada margaritifera Pearl Oyster, and on Oxygen 
Isotopic Composition 

Marthe Rousseau 1,* and Claire Rollion-Bard 2 

1 UMR7561 PPIA, Faculté de médecine, Biopôle, 9 Avenue de la forêt de Haye, BP 184, 

Vandoeuvre-lès-Nancy 54505, France 
2 CRPG-CNRS, Université de Lorraine, BP 20, Vandoeuvre-lès-Nancy 54500, France;  

E-Mail: rollion@crpg.cnrs-nancy.fr 

* Author to whom correspondence should be addressed; E-Mail: rousseam@gmx.net;  

Tel.: +00-33-383-685-434; Fax: +00-33-383-685-409. 

Received: 1 February 2012; in revised form: 24 February 2012 / Accepted: 9 March 2012 /  

Published: 19 March 2012 

 

Abstract: Nacre, or mother of pearl, is composed of aragonite tablets and is produced by 

some mollusks. Because of the highly organized internal structure, chemical complexity, 

mechanical properties and optical effects of nacre, its formation is among the best-studied 

examples of calcium carbonate biomineralization. The pearl oyster Pinctada margaritifera 

is harvested in French Polynesia for pearl farming. The quality of the pearl depends on the 

quality of the nacre on its surface and its iridescent colors are affected by the thickness of 

the layers. Here we report on an experimental study conducted to influence the shape and 

the thickness of nacre tablets by keeping pearl oysters at four different depths (7, 20, 30 

and 39 m) for one week. Scanning electron microscopy was used to measure the thickness 

of the nacre tablets and to analyze their final shape. The shape of the tablets changed from 

hexagonal to rhomboid at a depth of 39 m. The change in shape led to a change in size. The 

thickness of the tablets was reduced by between 16 and 30% on average. We also measured 

the oxygen isotopic composition using Secondary Ion Mass Spectrometry. In this study, we 

demonstrated that depth can modify the size, shape and thickness of nacre tablets, but not 

the δ18O. This environmental modification is important for the biomineralization of the 

shell of the pearl oyster Pinctada margaritifera. 
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1. Introduction  

Nacre, or mother of pearl, is a calcium carbonate structure produced by bivalves, gastropods, and 

cephalopods as an internal shell coating. The combination of the highly organized internal structure, 

chemical complexity, mechanical properties and optical effects of this biomineral are responsible for 

its characteristic beautiful luster.  

Shells and pearls often have an iridescent color. The phenomenon has been attributed to both 

diffraction and interference. The shell of the mollusk Pinctada margaritifera has very strong iridescent 

colors, which depend on the thickness of the last few layers of nacre and the regularity of the tablets at 

the surface of the shell [1].  

The metabolism and growth of mollusks are influenced by their environment which, in turn, 

influences the size and shape of the shell [2,3]. Wada reported changes in the shape and growth rate of 

nacre tablets over the course of the year as a function of the season and of the temperature of the 

water [4]. The same observation was made on Pinctada fucata, a species living in the Ago Bay in the 

Mie Prefecture of Japan, where the water temperature can vary by as much as 10 to 15 °C. In contrast, 

in French Polynesian lagoons, water temperature variations are not as large.  

In this study, we tested if depth could change the shape of nacre tablets, the final objective being to 

modify the optical properties of nacre. We also checked if depth could have an influence on the 

oxygen isotopic composition of the shell, this composition being an important proxy in paleoclimatic 

reconstructions. Indeed, isotopic compositions in biocarbonates, and more particularly, oxygen 

isotopic compositions are used as proxy of temperature and sea level change. It is based on the 

relationship first described by Urey [5] linking the isotopic fractionation to the temperature. The first 

paleo-environmental reconstructions were done by Epstein et al. [6,7] based on an empirical 

relationship for mollusk shells. Since, it was shown that some “vital effects” [8] can superimposed to 

the relationship between temperature and oxygen isotopic compositions. So it was important to know if 

the depth could have a consequence on these vital effects, because it would add another parameter to 

know if we want to apply the oxygen isotopic composition as proxy of temperature.  

Here we report on an experimental study in which we tried to influence the shape and the thickness 

of nacre tablets by keeping pearl oysters at four different depths (7, 20, 29 and 39 m) for one week. 

2. Results and Discussion  

2.1. Scanning Electron Microscopy Observations 

Scanning electron microscopy (SEM) was necessary for the observation of nacre tablets, which are 

only a few µm in circumference and around 500 nm thick. Our observations of the growing surface of 

the pearl oyster shell provided information about changes in the shape of the tablets. At a depth of 7 m, 

nacre tablets were elongated hexagonals (Figure 1) in the first and second year. At a depth of 20 m, the 

tablets were regular hexagonals (Figure 2). Figure 3 shows the elongation of the nacre tablets between 

a depth of 30 m (second year) and a depth of 39 m (first year) before the tablets became rhomboid. 

Figure 4 shows the different shapes of the nacre tablets as a function of depth. A change in the long 

axis in the growth direction was observed. Because of their shape, the growing tablets do not come into 
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contact with each other as soon as for the other shape. The tablets can thus continue to grow and are 

finally bigger. This is related to the way tablets grow following a Voronoi process [9]. 

Figure 1. Scanning electron microscopy (SEM) images of nacre surface of pearl oyster kept 

at a depth of 7 m (First Year: A: ×1,000; B: ×8,000; Second Year: C: ×1,000; D: ×8,000). 

 
 

Figure 2. SEM images of nacre surface of pearl oyster kept at a depth of 20 m (First Year: 

A: ×1,000; B: ×8,000; Second Year: C: ×1,000; D: ×8,000). 
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Figure 3. SEM images of nacre surface of pearl oyster kept at a depth of 30 m (A: ×1,000; 

B: ×8,000) and of 39 m (C: ×1,000; D: ×8,000). 

 
 

Figure 4. Shape of the nacre tablet as a function of depth, in relation to the shell 

growth direction. 

 
 

2.2. Oxygen Isotope Measurements 

About 10 measurements of δ18O were performed in the aragonite part of the shell, in the inner 

nacreous layer to make sure that the shell had been deposited during the course of the experiment. δ18O 

values varied from −2.48 to −0.94‰ (average −1.86 ± 0.50 ‰, n = 10) for the shell deposited at a depth 

of 39 m, from −2.65 to −0.83‰ (av. −1.70 ± 0.67‰, n = 13) for a depth of 20 m, from −2.96 to −0.02 ‰ 

(av. −1.59 ± 0.96 ‰, n = 12) for a depth of 7 m, and from −3.09 to −1.09‰ (av. −2.38 ± 0.63‰, n = 9) 

for the control. 



Minerals 2012, 2 

 

59

The δ18O in carbonate is determined by the δ18O of the water and by the temperature at which the 

carbonate is deposited. In biogenic carbonates, there is also an additional effect called the “vital 

effect”. This effect varies with the organism [10]. To our knowledge, to date there has been no study of 

the influence of depth on the δ18O of shell. Indeed, even if at the depths of culture used in this study, 

no influence on the isotopic fractionation coefficient would be expected, depth could have an impact 

on the “vital effect”. The prevailing environmental conditions at the time of the experiment (2004) 

resulted in temperature homogenization (24 °C), whatever the depth of the lagoon. Consequently, 

observed variations in the δ18O of the shell could only be due to the influence of depth. At equilibrium, 

δ18O can be calculated using the formula of Grossman and Ku [11] modified by Goodwin et al. [12]: 

T(°C) = 20.6 − 4.34 (δ18Oaragonite − (δ18Owater − 0.2)) 

where δ18Oaragonite and δ18Oshell are expressed relative to SMOW and PDB, respectively. Here, we assume 

that the δ18O of seawater is 0‰. With a temperature of 24 °C, the δ18O at equilibrium is −0.98‰. The 

measured average δ18O of the shell ranged between −1.59 ± 0.96 ‰ and −2.38 ± 0.63 ‰. Therefore, all 

the values are depleted in 18O relative to the equilibrium value, i.e., the so-called vital effect.  

The δ18O values in each shell displayed wide variability, between 1.54 and 2.94‰ (Figure 5a). 

Despite this variability, the average δ18O for each shell remained similar at the four different depths 

considered here (Figure 5b). The only difference between the depths was that δ18O variability appeared 

to decrease with depth (Figure 5a). Thus the change in the shape of the nacre tablets had no detectable 

effect on the δ18O of the shell. The fact that depth appears to play no significant role in the δ18O of the 

shell has major implications for paleoceanographic reconstructions.  

Figure 5. (a) δ18O values (‰, PDB) measured by SIMS in the inner nacre layer of each 

shell versus the depth (m) at which the organisms grew. Each error bar takes into account 

the internal error and the external reproducibility (see text for more details); (b) Average 

δ18O (‰, PDB) for each shell versus depth. The error bars represent the standard deviation 

(±1 σ) of the δ18O measurements in each shell (n = 9 to 12, depending of the sample).  

No influence of the depth on δ18O values was detected. 
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Figure 5. Cont. 

 
 

2.3. Modifications in Thickness and Size 

The thickness and size of the nacre tablets was measured using scanning electron microscopy. 

Thickness was measured on SEM images of shell fractures not on the presented SEM pictures (pictures 

not shown). We measured the 10 most recently laid down layers close to the surface of the shell and 

the 10 oldest layers of the same shell as internal control. The oldest layers had been secreted during the 

period before the experiment. We then calculated the difference between the two nacre thicknesses as a 

percentage of the thickness before the experiment began. The thickness of the tablets decreased by 

between 16 and 30% on average (Figure 6). In all cases, the change in the environment resulted in a 

reduction in the thickness of the tablets. The biggest variations were observed at the two extreme 

depths: close to the surface (7 m) and far from the surface (39 m), where conditions are extreme. The 

second year the reduction in thickness was more important at 7 and 20 m depth than the first year. 

At a depth of 39 m, the shape of the tablets changed from hexagonal to rhomboid, which resulted in 

a change in size (Figure 7). The size of the tablets increased from 7 to 21 μm2 with depth. These 

observations have to be correlated to the growth mechanism of nacre tablets [13]. Tablet formation is 

the result of a highly dynamic biomineralization process during which organic materials and carbonate 

precursor phases are delivered to the site of nacre tablet formation from the overlying mantle with a 

high degree of spatial control. Modifications of the environment like the depth have a direct impact on 

the shell growth at the scale of tablets. 

It has been known for many years that altered gravity, hyper- as well as hypogravity, can influence 

mineralized structures. Statoliths in Aplysia californica decrease in size under hypergravity [14]. Also, 

for cichlid fish larvae, hypergravity results in a significantly smaller size of otoliths compared with 

controls in 1 G. No morphological differences with respect to the general shape of the otoliths and the 

overall pattern of daily incremented ring layers could be found [15]. Marxen et al. [16] studied the 

influence of microgravity on the embryonic development of the freshwater snail Bomphalaria glabrata 

and they observed a slower development than under standard conditions. In older embryos a decreased 
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mineralization of the shell was detected. In both cases the shell formation proceeded normally. In 

our study we applied hypergravity and observed a modification of the mineralized structure at the 

tablet scale. 

Figure 6. Percentage reduction in the thickness of nacre layers as a function of depth (m). 

The error bars represent the standard deviation of the reduction in thickness. We analyzed  

5 shells for each depth and measured 10 points in each shell.  

 
 

Figure 7. Size of tablets (µm2) as a function of depth (m). The error bars represent the 

standard deviation of the tablet size. We analyzed 5 shells for each depth and measured  

10 points in each shell.  
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3. Experimental Section 

3.1. Experimental Testing 

We studied one-year-old Pinctada margaritifera oysters grown in their natural habitat, at a depth of 

12 m, in carefully monitored conditions at Marutea Marine Station, French Polynesia. We then kept 

the pearl oysters at several different depths at the same station for one week. The oysters were reared 

on down-lines as they were growing normally. We did not remove them from the line until the end of 

the experience to avoid any other stress. Only the depth of the line was changed. We used from 10 to 

20 pearl oysters for each depth, depending on the numbers of the oysters attached to the line. This 

experiment was repeated one year later: the first year at depths of 7, 20 and 39 m, and in the second 

year at depths 7, 20 and 29 m, due to different diving conditions. After one week, the sample oysters 

were fixed in 70% ethanol. Five shells were analyzed for each depth. 

3.2. Scanning Electron Microscopy 

The water content was gradually decreased and replaced by increasingly ethanol-rich solutions  

(3 day baths in 80%, 90% and 100% ethanol, respectively). After complete dehydration, the shells 

were opened, allowing the soft tissue of the mantle to be separated from the growing nacre. The shell 

samples were then air dried. After gold coating, observations were performed at the Electron 

microscopy service of Life Sciences laboratory, National Museum of Natural History (Paris, France) 

with a JEOL JSM-840A scanning electron microscope (SEM) operating at 15 kV. 

3.3. Oxygen Isotope Measurements 

A piece of each shell grown at a different depth was cut perpendicularly to the growth axis. The samples 

were mounted in epoxy and polished down to 1-µm with diamond paste. Ion probe oxygen isotope 

analyses of the aragonite part of the shell were performed at CRPG-CNRS (Nancy) using a Caméca ims 

1270. The analytical settings were the same as those described in Rollion-Bard et al. [17]. Briefly, a 

primary beam of Cs+ ions with an intensity of about 8 nA was focused on a spot approximately 20 µm 

in diameter. A normal incidence electron flood gun was used to compensate for sample charging 

during analysis. The measurements were performed in multi-collection mode using two off-axis 

Faraday cups. Typical intensities were 5 × 106 counts/s (cps) on the 18O− peak. The acquisition 

sequence consisted of 20 cycles of 3 s duration each. 

During analysis, the internal precision was about ±0.1 ‰ and the external reproducibility, based on 

repeated measurements of an in-house aragonite reference material (Arg, δ18OPDB = −7.18 ± 0.11‰, [18]) 

was ±0.25 ‰ (1 σ). The reference material was measured regularly throughout the analytical session. 

4. Conclusions  

We kept pearl oysters for one week at four different depths (7, 20, 30 and 39 m) to influence the 

shape and thickness of the nacre tablets. Scanning electron microscopy was used to measure the 

thickness of nacre tablets and to analyze their final shape, which changed from hexagonal to rhomboid 

at a depth of 39 meters. This change in shape led to a change in the size of the tablets. The thickness of 
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the tablets was reduced by between 16 and 30% on average, this could have an impact on the optical 

properties of nacre by favoring the luster and iridescent colors. We also measured the oxygen isotopic 

composition by SIMS. In this study, we demonstrated that depth can modify the size, shape and 

thickness of nacre tablets, but not the δ18O (within the error bars). This environmental modification is 

important for the biomineralization of the shell of pearl oyster Pinctada margaritifera.  
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