
HAL Id: insu-02160613
https://insu.hal.science/insu-02160613v1

Submitted on 28 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Air-Sea Turbulent Fluxes From a Wave-Following
Platform During Six Experiments at Sea

Denis Bourras, Rémi Cambra, Louis Marié, Marie-Noëlle Bouin, Lucio Baggio,
Hubert Branger, Houda Beghoura, Gilles Reverdin, Boris Dewitte, Aurélien

Paulmier, et al.

To cite this version:
Denis Bourras, Rémi Cambra, Louis Marié, Marie-Noëlle Bouin, Lucio Baggio, et al.. Air-Sea Turbu-
lent Fluxes From a Wave-Following Platform During Six Experiments at Sea. Journal of Geophysical
Research. Oceans, 2019, 124 (6), pp.4290-4321. �10.1029/2018JC014803�. �insu-02160613�

https://insu.hal.science/insu-02160613v1
https://hal.archives-ouvertes.fr


Air‐Sea Turbulent Fluxes From a Wave‐Following
Platform During Six Experiments at Sea
Denis Bourras1 , Rémi Cambra2 , Louis Marié3 , Marie‐Noëlle Bouin4 , Lucio Baggio5,
Hubert Branger6 , Houda Beghoura3 , Gilles Reverdin7 , Boris Dewitte8,9,10,11 ,
Aurélien Paulmier12 , Christophe Maes3 , Fabrice Ardhuin3 , Ivane Pairaud13,14,
Philippe Fraunié1, Christopher Luneau15, and Danièle Hauser5

1Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France, 2France Énergies Marines,
Plouzané, France, 3LOPS, Plouzané IUEM Technopole Brest Iroise, Plouzané, France, 4Météo‐France/CNRM, Plouzané,
France, 5LATMOS, Guyancourt, CEDEX, France, 6Aix Marseille Université, CNRS, IRPHE, Ecole Centrale Marseille,
Marseille, France, 7Sorbonne‐Université, CNRS/IRD/DMNHN (LOCEAN), Paris, France, 8Centro de Estudios Avanzados
en Zonas Áridas (CEAZA), Coquimbo, Chile, 9Millennium Nucleus for Ecology and Sustainable Management of Oceanic
Island (ESMOI), Coquimbo, Chile, 10Departamento de Biología Marina, Universidad Católica del Norte (UCN),
Coquimbo, Chile, 11Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Toulouse, France,
12LEGOS, IRD, CNRS, CNES, Université de Toulouse, Toulouse, France, 13Ifremer Méditerranée LERPAC, La Seyne sur
Mer, France, 14Now at IFREMER, Université de Brest, CNRS UMR 6523, IRD, Laboratoire d'Océanographie Physique et
Spatiale (LOPS), IUEM, Plouzané, France, 15OSU Institut Pythéas, CEREGE, Europôle Méditerranée, Aix en Provence,
CEDEX 4, France

Abstract Turbulent fluxes at the air‐sea interface are estimated with data collected in 2011 to 2017
with a low‐profile platform during six experiments in four regions. The observations were carried out
with moderate winds (2–10 m/s) and averaged wave heights of 1.5 m. Most of the time, there was a swell,
with an averaged wave age (the ratio between wave phase speed and wind speed) being equal to 2.8 ± 1.6.
Three flux calculation methods are used, namely, the eddy covariance (EC), the inertial dissipation
(ID), and the bulk methods. For the EC method, a spectral technique is proposed to correct wind data
from platform motion. A mean bias affecting the friction velocity (u*) is then evaluated. The comparison
between EC u* and ID u* estimates suggests that a constant imbalance term (ϕimb) equal to 0.4 is
required in the ID method, possibly due to wave influence on our data. Overall, the confidence in the
calculated u* estimates is found to be on the order of 10%. The values of the drag coefficient (CD) are in
good agreement with the parameterizations of Smith (1988, https://doi.org/10.1029/JC093iC12p15467)
in medium‐range winds and of Edson et al. (2013, https://doi.org/10.1175/JPO‐D‐12‐0173.1) in light
winds. According to our data, the inverse wave age varies linearly with wind speed, as in Edson et al.
(2013, https://doi.org/10.1175/JPO‐D‐12‐0173.1), but our estimates of the Charnock coefficient do not
increase with wind speed, which is possibly related to sampling swell‐dominated seas. We find that the
Stanton number is independent from wind speed.

Plain Language Summary A small wave‐following platform was deployed in 2011–2017 across
four oceanic regions. The data are used to estimate turbulent fluxes, which are physical quantities that
describe the exchanges of heat and momentum through the air‐sea interface. In weather models, simplified
representations of the fluxes are used, which themselves depend on coefficients named drag coefficient for
momentum exchange and Stanton number for temperature exchange, respectively. In this study, we
evaluate these coefficients. First, we compare the flux estimates from the three main available methods. We
adjust the parameters in the methods to reach the best possible agreement between the calculated fluxes.
Two types of corrections are proposed, depending on the method considered, because turbulence data
are modified by the motion of the platform and by the proximity of waves. Data are corrected by applying a
mean bias to the fluxes and by accounting for a nonmeasured term in the turbulence equations. Then, we
analyze the wind dependence of the estimated drag coefficient and Stanton number. We find that drag is
slowly increasing with wind speed, in agreement with existing models. Estimates of the Stanton number
have biases but which do not depend on wind speed.
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• Stanton number estimates are
independent from wind speed in
moderate winds
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1. Introduction
1.1. Context of the Study

Atmosphere, ocean, and waves are coupled through turbulent energy fluxes across the air‐sea interface. The
fluxes considered in this paper are the momentum flux τ/ρ, where ρ is the density of air (in kg/m3), τ is the
wind stress (in N/m2), and HS is the sensible heat flux (in W/m2). In numerical models that predict water‐
wave fields or circulations of the ocean or the atmosphere, the fluxes are generally parameterized using
the Monin‐Obukhov (MO hereafter) similarity theory, which may be summarized as

τ=ρ ¼ CDU2 ¼ u*2 (1)

HS=ρCP ¼ CH U ∆T (2)

where u* is the friction velocity (in m/s), U is the mean wind speed relative to the sea surface (in m/s),
defined here as the norm of the averaged values of the horizontal components of the wind vector, ∆T is
the mean temperature difference between sea and air (in K), CP is the specific heat of air (in J · kg · K),
and CD and CH are the so‐called turbulent exchange coefficients, referred to as drag coefficient and
Stanton number, respectively. The exchange coefficients may be taken as constant or they may be parame-
terized as a function of wind speed, of the stability of the Surface Atmospheric Boundary Layer (SABL), or of
sea wave characteristics. Thus, the widely used notion of flux parameterization, in fact, always refers to the
parameterization of the exchange coefficients.

As air‐sea fluxes are a boundary condition in numerical models, the choice of one rather than another para-
meterization may strongly condition the model output fields. Recently, Brodeau et al. (2017) compared wind
stress estimates calculated with two known flux algorithms at global scale over a 30‐year period. They found
a discrepancy of 10%. They conclude that there is a strong need for further validation of the flux algorithms
with respect to observations. Converging toward a more universally accepted parameterization of the
Charnock coefficient (Charnock, 1955) or the drag coefficient on wind speed remains a key priority. This
illustrates well the expectations of modelers in this field. In the case of wind stress, however, the value of
10% corresponds to the claimed accuracy of the known COARE 3.0 bulk algorithm (Fairall et al., 2003)
for wind speeds between 10 and 20 m/s. Therefore, it may just be the state of the art, in addition to the fact
that 10% may already be considered as accurate from the point of view of scientists who struggle with noisy
data. Nevertheless, the conclusions of Brodeau et al. (2017) suggest that (1) some aspects of surface fluxes
parameterizations are yet to be explored and that (2) more accurate validation data are required.

In this paper, we take advantage of data collected over 7 years with a novel wave‐following platform dedi-
cated to air‐sea flux measurements (Bourras et al., 2014, B14 hereafter) to contribute to surface flux parame-
terization, with the following specificities: our data were collected in the open sea, mostly in conditions of
swell, with significant wave heights hsw averaging to 1.5 m, and in light to moderate wind conditions, that
is, 2 ≤U ≤ 10 m/s. The turbulence measurements were performed at a 1.5‐m height, which is in a part of the
atmospheric layer influenced by the presence sea waves (e.g., B14; Hara & Sullivan, 2015). These turbulence
data are restricted to the wind stress and to the buoyancy flux HSV, which is the virtual (noncorrected from
humidity) counterpart of HS, because no instrument was available on the platform to calculate the moisture
flux for most of the data. Finally, in this study, the turbulent fluxes are estimated with three methods: the
bulk method (COARE 3.0), the eddy covariance (EC) method (e.g., Pedreros et al., 2003), and the inertial dis-
sipation (ID) method (e.g., Yelland et al., 1994).

Hereafter in this introduction, we first review the science issues that shall be addressed with our data,
namely, the relation between wind stress and waves, the parameterization of drag in light‐ to medium‐range
wind conditions, and the parameterization the turbulent exchanges of temperature between air and sea.
Second, we provide a review on two issues associated with flux estimation, as the methodology strongly
conditions the accuracy of the calculated fluxes: the platformmotion correction with the EC flux calculation
method and the evaluation of the imbalance term in the ID method.

1.2. Surface Flux Parameterizations Issues
1.2.1. Wind Stress Versus Wave State
The relation between wind stress and wave state was addressed in a number of papers (e.g., Donelan et al.,
1997). The existing parameterizations of surface drag depend on wave slope or wave age (e.g., Drennan et al.,
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2003; Oost et al., 2002; Taylor & Yelland, 2001). However, according to Edson et al. (2013), the parameteriza-
tion of the Charnock coefficient as a function of wind speed only is sufficient to estimate wind stress over the
open ocean, without using wave characteristics except in specific cases such as light wind and swell, for
example. If true, this is fortunate, because accurate wave characteristics are not available in a number of
applications. According to Edson et al. (2013), the parameterizations of the wind stress as a function of wind
speed, wave age, and wave slope are equivalent, because the inverse wave age varies nearly linearly with
wind speed. This needs to be confirmed as it may be considered as an oversimplification of the effect of waves
on air‐sea momentum transfer.
1.2.2. Turbulent Drag in Light Winds
According to Edson et al. (2013), at wind speeds smaller than 4 m/s, swell travelling faster than wind
speed would reduce the drag, thus generating a low‐level jet, a hypothesis that was recently supported
by numerical simulations (Sullivan et al., 2008). There is a growing consensus that wind‐swell interac-
tions reduce the drag at low wind speeds (e.g., Hanley et al., 2010). Evaluating CD in these conditions
is possibly an ill‐posed problem, which is supported by the large scatter of drag coefficient estimates
reported in swell‐dominated conditions (Vickers et al., 2013). In apparent contrast, Potter (2015) ana-
lyzed the drag coefficient as a function of the ratio between swell energy and wind energy. His low wind
data (U10N < 4 m/s, with U10N the wind speed referenced at z = 10 m in neutral stability conditions)
clearly show an increase of the drag coefficient that is not much commented because the study was
more focused on drag at larger wind speeds. Potter (2015) argued that the observed increase in CD

was possibly due to wind gustiness inducing departure from the MO theory, combined with increased
viscous effects. Nevertheless, the data reported by Garcia‐Nava et al. (2012) and Ocampo‐Torres et al.
(2011) show even better the increased drag coefficient effect at low winds. There, it is attributed to
the so‐called swell‐induced stress, which is assumed to depend on swell steepness and on the wave
age. The increase of fluxes may also be due to an upward momentum flux when significant swell is tra-
velling faster than the wind (Grachev & Fairall, 2001; Hanley et al., 2010). Aircraft data recorded at an
altitude of 35 m also revealed a CD increase at low winds (Kalogiros & Wang, 2011). A similar increase
of CD at low winds is also noticed over lakes by Sahlée et al. (2014), Figure 11). In addition, the different
studies still debate whether there is a need for parameterizing the drag coefficient as a function of wind
only or wind plus sea state (e.g., Andreas et al., 2012) and whether CD would increase or not in swell‐
dominated conditions, as interactions more complex may occur at the interface, according to Högström
et al. (2013). At low wind speeds, the behavior of the turbulent drag is therefore still a question
to explore.
1.2.3. Stanton Number and Wind Speed
Historical and acknowledged values of the Stanton number for moderate wind conditions are
1.13 × 10−3 if the surface layer is unstable and 0.66 × 10−3 under stable conditions (Large & Pond,
1982), so that the Stanton number is expected to be smaller in stable conditions than in unstable condi-
tions. The confidence intervals of experimental estimates of the Stanton number are large, in the range
0.5 × 10−3 − 1.5 × 10−3, according to the HEXOS (DeCosmo et al., 1996) and CBLAST (Zhang et al.,
2008) reference experiments. The most recent studies point out the lack of understanding in this field,
that is, the discrepancy between theory and observations, specifically at large wind speeds (Mueller &
Veron, 2010). According to these authors, the coefficient slowly increases with wind speed at large wind
speed values. However, for wind values smaller than 10 m/s, the coefficient may increase or decrease,
depending on stratification (e.g., Figure 1b in Mueller & Veron, 2010). This contrasts with earlier findings
of Makin and Mastenbroek (1996) who suggested that the Stanton number was rather independent of
wind speed in the range 4–10 m/s. Larsen et al. (2004) and more recently Smedman et al. (2007) reached
a similar conclusion. Specifically, the later authors found that in unstable conditions, CH was independent
of wind speed, if the wind speed was below 9 m/s and if the mean sea minus air temperature difference
was larger than 3°. For larger wind values, the same authors found that CH gradually increases with
wind speed.

1.3. Experimental Issues With Flux Calculation
1.3.1. Motion Correction in the EC Method
The EC method is the application of the canonical flux definition, which is written as
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τ=ρ ¼ u′w′2 þ v′w′2
! "1=2

(3)

HS=ρCP ¼ −w′θ′ (4)

where u, v, and w are the wind vector components with w along the vertical and positive upward, θ is the air
potential temperature, and the over lines and quotes denote mean and fluctuating parts of wind or tempera-
ture after applying Reynolds decomposition.

The application of equations (3) and (4) to sea wind data would lead to biased estimates because wind data
are contaminated by platform motion (for ships and buoys) and flow distortion, mostly along the vertical
(e.g., Edson et al., 1998; Kaimal & Finnigan, 1994; Miller et al., 2008; Pedreros et al., 2003). This implies that
a correction ofw′ is required. A common correction process consists in subtracting the vertical velocity of the
platform from w′ (Pan et al., 2005). However, among others, Bourras et al. (2009, B09 hereafter) and
Prytherch et al. (2015) suspected that only part of the vertical motion is converted into vertical relative wind.
In addition, a phase shift between the platform vertical motion and the vertical wind measured can occur
because of the disturbing effect of the platform body at turbulent scales. This implies that one needs to
account not only for mean flow distortion but also for the flow distortion at turbulent scales.

The correction proposed by Prytherch et al. (2015) involves a slightly more improved subtraction with coef-
ficients inferred from a regression between data and the expected Kaimal et al. (1972) bell‐shaped cospectra
obtained over land 50 years ago. Indeed, they show that the subtraction procedure removes the platform
motion peak in their cospectra and produces flux data with less scatter. However, this comes at the cost of
a strong assumption on the shape of the cospectra and of a very restrictive data selection process. Our under-
standing is that platform motion correction is required at turbulent scales but that its application is still an
issue that needs to be further addressed.
1.3.2. Imbalance Term in the ID Method
The ID method is a two‐step method that begins with the calculation of the dissipation rate of turbulence ε.
According to the Kolmogorov cascade theory and after applying the hypothesis of Taylor's frozen turbulence
in order to convert wave numbers to frequencies, ε may be written as

ε ¼ 2π
Ur

EU fð Þj j2

c

 !3
2

f
5
2 (5)

where c is the Kolmogorov constant (0.55), Ur is the module of the wind vector relative to the measurement
platform (the apparent wind), f is the frequency in Hz, and |EU(f)|

2 is the frequency power spectrum of u in
the inertial subrange that is in a spectral region where energy decreases as f −

5
3, which usually occurs between

1 and 10 Hz with our data.

In a second step, u* is deduced from ε through the diagnostic equation of Turbulent Kinetic Energy (TKE;
Stull, 1988). Under the classical hypotheses of horizontal homogeneity and steadiness of the flow associated
with the application of the MO similarity theory to the SABL, the TKE equation is written as

u* ¼ κzεð Þ
1
3 ϕU

z
L

! "
−
z
L
−ϕimb

! "−1
3

(6)

where κ is the Von Karman constant (0.4), z is the height of measurement in meters, ϕU is the Businger‐Dyer
relationship, ϕimb is the so‐called imbalance term, and z

L is the MO ratio that defines dynamic stability of the
SABL, which is written as

z
L
¼ −κ z g=θV

# $
w′θV ′=u*3 (7)

where g is gravity acceleration in m/s2, θV= θ(1+0.61q) is the virtual potential temperature, and w′θV ′ is the
buoyancy flux, which is used in this paper as

HSV=ρCP ¼ −w′θV ′ (8)
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In equation (6), ϕimb is a residual term that is the sum of two terms: the TKE turbulent transport term
and the pressure correlation term (Stull, 1988). In practice, the pressure correlation term at the air‐sea
interface is not yet easy to measure with the available instruments. From the point of view of pure turbu-
lence, it originates from the process of return to isotropy, but close to the waves, that is, typically below a
height of 3 m, the pressure term is modified because of the presence of the wavefield. With the classical
Reynolds decomposition of turbulent variables, the definition of the pressure term is the divergence of
w′p′ , where p′ corresponds to the static pressure fluctuations. However, many studies (e.g., Cifuentes‐
Lorenzen et al., 2018; Edson & Fairall, 1998; Hara & Sullivan, 2015) use a three‐scale decomposition in
which the wave‐related fluctuations are denoted with a tilde, and the wave‐related wind‐pressure covar-

iance is referred to as we pe. Cifuentes‐Lorenzen et al. (2018) successfully managed to indirectly estimate
this term by evaluating momentum and energy budgets at the interface deduced from measurements of

wave spectra and wind turbulence at one altitude. Their estimates of gw ep¯ range from to 0.5 to 5 W/m2

in condition of sea waves driven by a strong wind input. This is unfortunately not conditions of swell‐
dominated seas that were present in our study.

With experimental data, an advantage of the ID flux calculation method is that it is not affected by plat-
form motion contrary to the EC method. However, parameters need adjustments to produce accurate
estimates, and since the late 1990s, there is a controversy on these adjustments (e.g., Dupuis et al.,
1997; Taylor & Yelland, 2000). For some authors, the value of c could be modified and ϕimb should be
neglected, while others suggested adjusting ϕimb without changing c. For example, B09 found that −0:46
z
L was an appropriate parameterization of ϕimb with data collected on a large research vessel, which was
in good agreement with Dupuis et al. (1997) results, that is,−0:65 z

L under unstable conditions. B14 found
that the same parameterization was also adapted to the small number of data of the FROMVAR 2011
experiment. With a larger data set further detailed in the present paper, Cambra (2015) rather found
that a constant imbalance term on the order of 0.5 should be accounted for, whereas the parameteriza-
tion in z

L had little impact on estimating friction velocity with the ID method. Interestingly, ϕimb = 0.5
compares well to the minimum of the dimensionless turbulence dissipation rate estimated as 0.7
by Edson and Fairall (1998). Therefore, the dimensionless dissipation rate of turbulence should be
further investigated.

In addition, according to the large eddy simulations of Hara and Sullivan (2015) and to the recent results of
Cifuentes‐Lorenzen et al., (2018), the dissipation rate and the turbulent part of the momentum flux should
decrease close to a wavefield compared to their wave‐induced counterparts, partly because of the wave pres-
sure effect. Therefore, we need to revisit the estimation of ϕimb, the value of which is likely height dependent
and may be specifically modified for our wave‐follower data. Indeed, most of our measurements are taken
close to the surface, that is, at 1.5 m, which may be either considered to be in the midpart of the wave bound-
ary layer (WBL) according to the rough estimation of 1–3m given by Cifuentes‐Lorenzen et al. (2018) or to be
in well inside the WBL according to the definition of Hara and Sullivan (2015), that is, at normalized heights
kζ (in wave‐following coordinates) ranging from 0.06 to 0.13, which is small compared to their WBL height
that peaks at kζ ~ 0.7 in their simulations.

1.4. Overview

The paper is organized as follows. In section 2, we present platform and instruments and the sea experiments
and encountered environmental conditions. The last two subsections of section 2 are devoted to the proces-
sing of other data than turbulence. First, we document the wave characteristics encountered during the
experiments such as significant wave height or wave age, the calculation of which—based on platform
motion data—is specific to our platform. Next, we present a new spectral motion correction method for ver-
tical wind speed and we verify whether it performs better than the usual correction based on a subtraction
between vertical wind and vertical velocity of the platform.

In section 3, we present a classical analysis of the spectral properties of turbulence, with power spectra and
cospectra. Specifically, we identify the inertial subrange, and we compare the turbulence cospectra to the
reference cospectra of Kaimal et al. (1972), to evaluate the performance of the correction method. In a fol-
lowing section, we calculate dissipation rates, we identify the most appropriate method to achieve it, and
we estimate the Kolmogorov constant.
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In section 4, we compare the outputs of the three flux calculation meth-
ods, namely, the bulk method, the EC method (with and without correc-
tion of vertical platform motion), and the ID method, and we analyze
the discrepancies. This raw comparison suggests whether and how
motion correction should be applied. Once the EC u* estimates are
adequately corrected, we adjust the parameters in the ID method.
Specifically, we verify whether it is more appropriate to use an imbalance
term than modifying c in the ID method, and we give an estimate of the
dimensionless dissipation rate of turbulence. Next, we evaluate the drag
coefficient, proposing a parameterization of the drag as a function of wind
speed, and we analyze the relations between the drag coefficient, the
Charnock coefficient, and wave characteristics. Last, we analyze how
the Stanton number depends on wind speed and stability.

In section 5, we attempt to identify whether or not the imbalance term
found is related to the proximity of sea waves, and we check if it is overall
more efficient to apply the spectral motion correction to individual data
rather than using it to evaluate a mean correction of the EC u* estimates.
Conclusions follow in section 6.

2. Platform, Sea Experiments, and Data Processing
2.1. Platforms

The OCARINA platform was already thoroughly described in B14. A
second prototype was built since then, so we recall here the main features
of the platforms and their respective instrumental setup. In the following,
the two prototypes are referred to as #1 (earlier version) and #2 (recent
version), respectively. Pictures of the two prototypes are shown in
Figure 1, and the list of available instruments and associated measured
variables and the placement heights of the sensors in each prototype are
summarized in Table 1.

OCARINA #1 was equipped with a Gill R3‐50 3‐D sonic anemometer that
measured u′, v′, w′, and the sonic temperature, which was converted into
virtual temperature θV (the two variables shall be confused hereafter

because the conversion that was applied was on the order of a thousandth of a degree for the temperature
fluctuations), one Vaisala WXT‐520 meteorological station that measured air temperature (T), relative
humidity (RH), and atmospheric pressure (P), one Campbell CNR4 radiation flux sensor that measured
upwelling and downwelling solar and longwave radiation fluxes, and one CaddenMTI‐G inertial sensor that
measured attitude angles and linear velocities along three axes at 50 Hz. Last, there was a seabird SBE‐37SI
sensor under it for measuring the Sea Surface Temperature (SST).

OCARINA #2 was equipped with a Campbell Irgason EC100 that combined sonic anemometer with a fast
humidity and CO2 sensors. Meteorological data were sensed by a Rotronic HC2S3 sensor (for T and RH)
and one Vaisala PTB‐110 atmospheric pressure sensor. There was one sea surface sensor, namely, a 100
Ohms platinum resistor for SST. Motion was recorded by a NAVEOL NAV‐01H nine‐axis motion sensor.
The EC100 used on OCARINA #2 is a promising instrument that gathers several turbulence sensors in a
compact shape. However, this comes at the cost of a bulky appearance that distorts the air flow, affecting
somehow the mean wind and the vertical momentum flux (Horst et al., 2016). Both of them either increase
or decrease depending on the horizontal and vertical wind angles. Horst et al. (2016) showed that the distor-
tion effect was not symmetric, which means that data correction is even trickier because it depends on
whether the flow comes from the left side or from the right side of the instrument. We did not apply any cor-
rection to Irgason data because, due to a lack of experience from our part, the sensor was systematically
placed at a 90° angle from the mean flow direction, a setting for which the correction is not well documented
in Horst et al. (2016). Please note finally that no surface current meter is available on the platforms.

Figure 1. Pictures of the two OCARINA prototypes, referred to as
OCARINA #1 (earlier version, upper panel) and OCARINA #2 (more
recent test version, lower panel).
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Therefore, U is hereafter approximated by its value with respect to the seafloor (i.e., it is corrected with GPS
and motion data), not with respect to the sea surface velocity.

2.2. Sea Experiments

OCARINA was deployed in the framework of five oceanographic campaigns over 7 years, namely,
FROMVAR 2011, STRASSE 2012, AMOP 2014, BBWAVES2015, BBWAVES 2016, and UPCAST 2017. As
can be inferred from Figure 2 and Table 2, OCARINA was tested in four environments, namely, the tropical
Atlantic (STRASSE 2012), the southern eastern Pacific upwelling region (AMOP 2014), off the Brittany coast
(BBWAVES), and in a western coastal Mediterranean area (UPCAST 2017).

OCARINA prototype #1 was deployed in all experiments, whereas prototype #2 was only deployed during
BBWAVES 2015. Therefore, in the following, the different data sets are named as a function of the name
and year of the experiment and as a function of the prototype number (indicated only if it is prototype
#2). This results in seven data sets that are hereafter referred to as F11, S12, A14, B15, B15‐2, B16, and U17
(Table 2).

A total of 57 days were spent at sea, with the OCARINA acquisition systems powered on during 20 days (467
hr), and after application of quality tests and supervision of data, 13.5 days (324 hr) of data were eventually
retained. The most statistically represented experiments are S12 (77 hr) and A14 (181 hr). OCARINA drift
velocity averaged between 0.4 and 0.7 m/s, and the standard deviations of the roll and pitch angles averaged
between 0.2° and 6.8°, with larger maximum angles for B15‐2 data (25°) than for the other experiments (16°),
the head of the EC100 at the top of the central mast being heavier (2.8 kg) than the head of the R3‐50 anem-
ometer (1 kg).

Data were collected in conditions of T and SST in the range 13–28 °C and with specific humidity values
ranging from 6 to 18 g/kg. Stability conditions in the SABL may be described in terms of MO ratio.
Hereafter, we use the bulk estimates of z

L to identify stability conditions, because our EC and ID estimates
of z/L have more scatter (not shown). The median z

L values range from −0.03 to 0.00, which means that
the SABL is close to neutrality in our data (Table 2). For A14, the SABL is neutral but on the stable side,
as the median value of z

L equals −0.03 and as the maximum value of z
L exceeds 0.1. However, the SABL is

not significantly stable for A14, because the rms deviation of z
L is small, that is, 0.02. For S12, the SABL is

Table 1
Instruments Installed on the Two OCARINA Prototypes

OCARINA #1

Measured quantities Variable names (units) Sampling rate (Hz) Instrument Height (m)

Wind vector u, v, w (m/s) 50 Gill R3‐50 1.5–1.6
Speed of sound c (m/s) 50 ‐ 1.5–1.6
Air temperature T (°C) 1 Vaisala WXT‐520 0.8–0.9
Relative humidity RH (%) 1 ‐ 0.8–0.9
Atmospheric pressure Patm (hPa) 1 ‐ 0.8–0.9
Solar and infrared radiation fluxes,
upward and downward

Fsol_dn, Fsol_up, Fir_dn, and Fir_up (W/m2) 1 Campbell CNR4 0.7–0.8

Time, position, and motion time, lon (°), lat (°), lin_acc_xyz (m/s2),
and ang_vel_xyz (rad/s)

50 Xsens MTI‐G 0.1

SST and salinity SST (°C) and SSS (psu) 1 Seabird SBE‐37SI −0.1–0.3
OCARINA #2
Wind vector u, v, w (m/s) 25 Campbell Irgason 1.6
Air temperature T (°C) 25 ‐ 1.6
Specific humidity q (g/kg) 25 ‐ 1.6
Air temperature T (°C) 1 Rotronic HC2S3 1
Relative humidity RH (%) 1 ‐ 1
Atmospheric pressure Patm (hPa) 1 Vaisala PTB‐110 1
Time and position time, lon (°), lat (°) 1 Sirf EM506 GPS 0.
Motion lin_acc_xyz (m/s2), ang_vel_xyz (rad/s) 25 Naveol NAV01H 0.
SST SST (°C) 1 PT100 platinum temperature sensor −0.3
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neutral in average and it is unstable by episodes. Note, however, that there are no free convection events
(defined as z

L≪−1) as the minimum value of z
L is −0.57.

2.3. Sea Wave Conditions

The significant wave height estimates (hsw) and the period of most significant waves (Tsw) were inferred
from inertial platform output data, which are vertical acceleration (accz) for B15‐2 and vertical velocity (velz)
for the other campaigns.

Significant wave height estimates (hsw) were calculated as 4 times the integral value of the spectra of surface
elevation (η), between 1 and 30 s in periods. Time series of η were themselves obtained by applying a double
(single) spectral integration to the recorded time series of accz (velz). The resulting estimates of hsw average
1.5 ± 0.4 m. Individual daily average values per experiment range from 0.6 to 2 m, as reported in Table 2.

The most significant wave period (Tsw, or period of dominant waves) estimation technique slightly evolved
since B14, in which the location of the largest peak was detected in the surface elevation (η) spectrum. With
the availability of five new data sets, a wider range of wave conditions was observed and we noticed that the

Figure 2. Location and years of deployment of the platforms.
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self‐motion of the platform could sometimes be confused spectrally with the waves signal. In addition, the
double integration of accz required for calculating η and Tsw was sometimes biased at time periods larger
than 15–20 s because of their relatively low signal‐to‐noise ratio. The calculated values of Tsw correspond
to the periods where the maximum of the velz spectra occurred. We are aware that these values are not
the true Tsw values, but only an estimation of them. We were more confident in the location of the
maxima of velz spectra than in the location of the maxima of water elevation spectra, because velz time
series were directly acquired on board, while elevation time series were processed through a cumulative
integration of the velocities. The daily Tsw values found with this approach range from 4.9 to 12.1 s, as
reported in Table 2, which seems in agreement with visual observations. However, in spite of our efforts,
bad detection of Tsw still persists with some of the data. They result in unrealistically large values of Tsw
that are typically equal or larger than 14 s, which would correspond to wavelengths larger than 300 m
(maximum values of Tsw in Table 2).

Wave age is here defined as the ratio Csw/U10N, where Csw is the phase speed of sea waves at their peak fre-
quency, itself defined as (g/2π) Tsw for deep water waves and where U10N is the reference wind speed at an

Table 2
Summary of the Conditions Encountered During the Experiments

Experiment F11 S12 A14 B15 B15‐2 B16 U17
Year 2011 2012 2014 2015 2015 2016 2017
Prototype #1 #1 #1 #1 #2 #1 #1
Sea campaign FROMVAR STRASSE AMOP BBWAVES BBWAVES BBWAVES UPCAST
Location time at sea/useful data (hr) Iroise sea Tropical Atlantic Chile‐Peru Iroise Sea Iroise Sea Iroise Sea Mediterranean

9/5 120/77 240/181 19/12 31/22 41/21 8/6

Wind speed (m/s) min 1.2 1.4 1.7 4.2 3.7 1.4 2.6
x 4.9 4.7 4.8 6.1 6.4 4.4 6.5

max 8.6 7.6 8.8 7.7 10.4 8.5 10.4
σ 2.6 1.4 1.6 1.1 1.5 2.0 2.8

Air temperature (°C) min 15.1 25.6 17.5 13.3 13.0 14.3 18.5
x 16.4 26.4 22.0 14.7 14.8 15.8 19.1

max 17.6 27.1 24.6 16.0 16.3 18.1 19.5
σ 1.0 0.3 1.7 0.7 0.7 0.8 0.3

SST (°C) min 14.6 26.9 16.5 14.3 14.3 14.0 17.7
x 16.2 27.2 21.8 15.0 14.9 15.1 18.3

max 17.0 27.6 25.3 15.4 15.3 16.8 18.8
σ 0.8 0.2 2.2 0.4 0.3 0.8 0.3

z
L

min −0.15 −0.57 −0.05 −0.07 −0.17 −0.10 0.00
med 0.01 −0.03 0.00 −0.01 −0.01 0.01 0.00
max 0.73 −0.01 0.12 0.01 0.02 0.07 0.07
σ 0.19 0.09 0.02 0.02 0.03 0.03 0.02

Specific humidity (g/kg) min 8.0 13.3 10.8 6.4 7.3 7.1 7.7
x 9.5 15.8 14.4 7.4 8.7 8.5 9.5

max 11.3 18.3 16.3 9.0 10.3 10.0 11.6
σ 1.3 1.4 1.3 0.9 1.0 0.8 1.8

hsw (m) min 1.0 1.0 1.1 0.9 0.9 0.6 0.3
x 1.9 1.3 1.5 1.9 2.0 1.5 0.6

max 3.2 1.7 2.2 2.7 2.9 2.6 0.8
σ 0.8 0.1 0.2 0.6 0.6 0.5 0.2

Tsw (s) min 4.2 6.0 5.3 3.2 3.3 11.4 3.4
x 9.6 8.7 8.2 11.1 11.9 12.1 4.9

max 13.5 13.0 14.2 16.5 16.8 14.4 6.8
σ 4.5 2.3 2.5 5.0 4.7 0.8 1.7

Csw/U10N min 0.6 1.1 0.8 0.5 0.5 1.9 0.4
x 4.3 2.9 2.5 2.8 2.7 4.6 1.5

max 11.0 10.1 6.9 5.3 6.5 11.3 3.6
σ 3.5 1.7 1.1 1.2 1.4 2.5 1.2

hsw/Lsw
× 103

x 20 14 18 18 22 7 19
med. 9 17 18 7 7 7 25
σ 7 6 6 6 6 5 12

Note. The terms med. refer to median values, while x and σ correspond to mean values and to standard deviations, respectively.
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altitude z = 10 m, in neutral conditions of stability, calculated with the EC algorithm. The wave age values
are essentially larger than unity, as reported in Table 2, which means that most data indicate swell condi-
tions, that is, waves travelling faster than wind. The overall value of Csw/U10N averages 2.8 ± 1.6.

Sea conditions may lastly be described in terms of wave steepness, a proxy of which is defined here as hsw/
Lsw, where Lsw is the wavelength of the most significant waves itself defined as the product CswTsw. As
reported in Table 2, the median values of hsw/Lsw are larger by a factor 2 or more for S12, A14, and U17 data
than for the other experiments. Please note that this is not true for mean values, as we reach here the limits of
confidence of our data.

2.4. Vertical Velocity Correction

Asmentioned in the introductory review, a direct subtraction (DS) method (Pedreros et al., 2003) may not be
enough to correct wind data from platformmotion at water wave scales and at atmospheric turbulent scales.
Although OCARINA is a wave‐following platform with small vertical motion, we decided to develop a new
and radical correction technique that is presented hereafter.

The proposed technique is based on the rather strong hypothesis that any vertical wind fluctuation that
would be spectrally coherent with the vertical platform motion fluctuation should be suppressed. This is
written as

Ewcorr fð Þ ¼ Ew fð Þ−a fð ÞEvelz fð Þ (9)

a fð Þ ¼ Ew fð Þconj Evelz fð Þð Þ
║Ew fð Þ conj velz fð Þð Þ║

(10)

where Ew(f) and Evelz(f) are the Fourier transforms of w and velz, respectively, and Ewcorr(f) is the resulting
corrected wind component in Fourier space. Time series of corrected vertical wind wcorr are then obtained
by applying an inverse Fourier transform to Ewcorr(f). In the following, this technique is referred to as spec-
tral coherence (SC) technique. For its application, we used a numerical smoothing over 51 points to the
numerator and to the denominator of equation (10), a value adjusted by trial and error. Not only does this
technique account for amplitudes as a function of frequency but it also accounts for phase differences
between wind and vertical motion at all frequencies, which is much more complete than the standard DS
method.

The two above mentionedmethods, namely, the DS and SCmethods, were applied to the six OCARINA data
sets. The power spectra of vertical wind before and after correction averaged over the entire data sets are
shown in Figure 3. For F11 data, Figure 3a clearly shows that the DS method efficiently removes the energy
from the vertical wind signal at frequencies larger than ~0.3 Hz, which is comparable to what B14 found for
the longitudinal wind component. However, at frequencies smaller than 0.3 Hz, our data suggest that the
correction does not perform well because the power of the corrected velocity spectrum gradually increases
with decreasing frequencies, whereas the raw wind signal decreases (Figure 3a). In contrast, the SC techni-
que removes energy from the wind signal and flattens the motion peak at low frequencies.

The SC method gives comparable results for five other data sets such that the spectral peaks of vertical wind
are smoothed when the correction is applied (Figures 3b–3d, 3f, and 3g). As for F11, the subtraction techni-
que performs as well as the SC method for the two data sets S12 and A14, but only at frequencies larger than
0.3 Hz. The case of U17 is indicative on the differences between the two correction methods. The presence of
short wind‐driven waves during the experiment converts into a well‐identified |Ew(f)|

2 peak centered at 0.3
Hz in Figure 3g (black line). After application of the DS method, the low‐frequency part of the peak is not
efficiently removed, as found above, whereas the SC method performs better. As there is no immediate rea-
son for the physical processes to significantly differ from either part of the peak, our data suggest in this case
that the DS method is not efficient at frequencies smaller than 0.3 Hz.

In the case of B15‐2, the supposed motion peak at ~0.5 Hz is not well corrected by any of the two methods
(Figure 3e). On one hand, the DS method rather adds noise at low frequencies, whereas the SC technique
does not modify much the original w spectrum because the platform vertical velocity spectrum drops to
small values at frequencies larger than 0.2 Hz. In this case, the small impact of this correction technique
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could be attributed either to the lower quality of the accelerometers used or to the particular design shape of
the Campbell Irgason anemometer that was used during this experiment.

At this stage, one may not conclude that suppressing the vertical wind peak is necessarily a success. This will
be further analyzed with cospectra in section 3.1.3 and from the point of view of the discrepancies between
EC, bulk, and ID flux estimates in section 4.1.

Figure 3. Averaged power spectra (in arbitrary units) of the uncorrected vertical wind component (thick black line), of the
vertical velocity of OCARINA (thick dotted lines), of the vertical wind component corrected with the SC method
(thick gray line), and of the vertical wind component corrected with the DS method (Pedreros et al., 2003). The vertical
dashed line denotes the generally observed limit of efficiency of the subtraction method.
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3. Characteristics of Turbulence

In this section, we first describe the spectral characteristics of turbulence with wind and temperature power
spectra and with wind cospectra. Next, we estimate usual quantities that characterize the turbulent flow,
namely, the dissipation rates of energy and the Kolmogorov constant.

3.1. Spectral Characteristics
3.1.1. Wind Inertial Subrange
Defining the wind inertial subrange is required for calculating ID fluxes. It is done by finding the frequency
range of the power spectra of the measured longitudinal wind component |Eu(f)|

2 that nearly follows a −5/3
logarithmic slope. According to Figure 4, the wind power spectra normalized as f5/3|Eu(f)|

2/Ur
2, where Ur is

the apparent wind value that does not account for platform horizontal velocity, show an undisturbed inertial
subrange at 2–7 Hz for OCARINA #1 and at 1.2–4 Hz for OCARINA #2. The undisturbed range of the iner-
tial spectra slightly depends on the experiment considered; it is the largest for B15 and the smallest for S12.
The wave‐induced motion of OCARINA produces peaks in the u spectra at frequencies of about 0.8 Hz. In
addition, a flexion mode of the instrument‐supporting mast also generates peaks at 9 Hz for #1 (also seen
in B14) and at 5 Hz for #2.

The effect of the most significant waves results in peaks, which are more apparent at ~0.09 Hz in the normal-
ized spectra of Figures 4a–4c. The envelopes of individual spectra reveal only one outlier, happening during
B15. Overall, the mean normalized spectra of u represent well the envelopes of individual spectra, apart from
U17 that reveals the presence of two types of spectra, which is explained by two situations during the same
experiment (upwind of the island of Porquerolleswhere the conditions were comparable to those in the open
ocean and downwind of the Presqu’île de Giens, in very short fetch conditions both for sea waves and for the
SABL, as can be seen in the bottom panel of Figure 2). According to the shapes of the wind spectra analyzed
in this section, we selected inertial subranges for later ID flux calculations (in section 4.2) within the 2–5‐Hz
range, as reported in Table 3.
3.1.2. Temperature Inertial Subrange
The averaged sonic temperature power spectra|ETson(f)|

2 normalized by the variance of temperature σTson
2

and multiplied by f‐5/3 are plotted as thick black curves in Figure 5. Please note that a high‐pass filter with a
normalized cutoff frequency fz/U equal to 0.02 (or 10–20 s) was applied before the calculation of the var-
iances, which dramatically improved the normalization. The normalized spectra presented in Figure 5
almost all present an inflexion point around 1 Hz, which we interpreted as the beginning of the temperature
inertial subrange. However, Figure 5 reveals that the averaged spectra do not represent well the envelope of
individual spectra. By plotting them as a function of their wind speed range, we observe that the temperature
spectral slope is partly dependent on wind intensity, as highlighted by different shades of gray in Figure 5.

Interestingly, stronger winds correspond to steeper slopes, which turn into log exponents smaller than −5/3
(light gray curves in Figure 5). We find that the inertial subrange is better defined and of larger extent for
wind values smaller than 5 m/s (dark and medium gray curves), which is more apparent in Figures 5b–5e
and 5g. Note that there are outlier cases, such as in Figures 5a and 5f where the spectral envelopes in med-
ium gray and in dark gray do not comply with this. For the relatively large wind values (U> 7m/s), the com-
parison between Figures 5d and 5e is interesting because they correspond to the same experiment, but with
two different instruments (section 2.1).

Although the behavior of the different temperature spectra is comparable at moderate wind speeds (medium
gray curves) with a wide and clearly defined subrange that extends from 1 to 10 Hz, we observe discrepancies
at wind speeds larger than 7 m/s. Indeed, the Irgason temperature spectra show smooth peaks at 7–10 Hz,
which could also correspond to the inertial temperature subrange, while the Gill R3‐50 spectra apparently
present aliasing or folding at high frequencies. As a result, we cannot draw firm conclusions on the slope
of temperature spectra for the experiments at wind speeds larger than 7 m/s. Thus, we will use temperature
data in the range 1–2 Hz for calculating ID fluxes for all the experiments. However, for clarity, the 7–10‐Hz
subrange suspected above for B15‐2 data shall be tested in section 4.2.
3.1.3. Wind Cospectra
The cospectra between the longitudinal wind component and its vertical counterpart represent the energy
distribution of the momentum flux along the mean wind vector and across the entire available range of
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frequencies. Kaimal et al. (1972) proposed a model of normalized cospectrum based on data collected over
land that is used here as a reference cospectrum.

Calculated cospectra look rather different depending on the normalization used, on the calculation method
used, and on the frequency chosen on the x axis. It may be either the absolute frequency f in Hz, a normalized
frequency fz/U (which is usual), or a modified frequency scale f/f0 where f0 is defined in Kaimal et al. (1972).
Here, we present cospectra normalized by their integral value and multiplied by f. Therefore, the cospectra

Figure 4. Normalized wind power spectra for each experiment. The black curves show the averaged spectra, the gray
overlapping curves represent the envelope of the individual spectra, the vertical dashed lines locate a mast flexion mode
that occurs for prototype #1 at 9.1 Hz, and the horizontal dashed lines locate the mean values of each spectrum at 4 Hz.
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are not normalized as usually done by the square of a friction velocity,
which could be affected by various biases depending on the motion cor-
rection applied to the vertical wind component. The normalized cospectra
may be directly compared to the reference cospectra. The first step in the
calculation consists in computing a normalized cospectrum and its asso-
ciated Kaimal reference cospectrum for each time segment of an experi-
ment. Next, both cospectra are interpolated on a large linear range of
35,000 normalized frequency values fz/U from 10−3 to 15, encompassing
all the accessible frequency values. In a next step, the resulting interpo-

lated cospectra are independently averaged over all the available time segments. Last, an arbitrary
51‐point‐long median filter is applied to each averaged data‐based cospectrum to produce a smoother thus
easier to interpret envelope of points.

Various types of cospectra were computed in this way, namely, (1) with noncorrected vertical motion, (2)
with the DS correction, and (3) with the SC correction, following section 2.4 tests. Hereafter, they are
referred to as noncorrected, DS, and SC cospectra, respectively.

In addition, for experiments where enough cospectra were available to produce reliable averages (S12 and
A14), we also performed calculations as a function of stability range. For S12, unstable conditions are
defined as z

L

%% %%<−0:1, which occurs for 40 cospectra. We also analyzed data for the neutral‐unstable z
L range

that is common to S12 and A14 data (−0:01> z
L>−0:05Þ, which corresponds to 152 and 155 cospectra, respec-

tively. Note that we do not present the analysis of the neutral‐stable cases of A14 (section 2.2), because the
corresponding cospectra have an inconsistent behavior, which are very sensitive to the z

L thresholds selected
(not shown).

As shown in Figure 6, the integral value of the SC cospectrum may considerably depart from the integral of
the reference cospectrum, down to −100% of difference, as shown in Figures 6a and 6g. Nevertheless, the SC
cospectra present a bell‐like shape for all experiments but F11, the data of which are noisy and sometimes
negative, which is not encouraging, contrasts with section 2.4 results, and justifies that more data were
required to confirm the results of B14. For the other experiments, the SC cospectra give consistent thus more
encouraging results. In contrast, the application of the DS correction results in decreased and sometimes
negative values of the cospectrum at normalized frequencies smaller than 0.05–1 for S12, A14, B15, B15‐2,
and B16 data (Figures 6b–6f), which is consistent with section 2.4 findings, whereas at higher frequencies,
the DS cospectra have large suspect values compared to the noncorrected cospectra in Figures 6b, 6c, 6e,
and 6f.

Interestingly, the application of the SC method to S12 and A14 experiments for which we have most of
our data (black curves in Figures 6b and 6c) only slightly decreases the values at the frequency of the
maximum peak of the cospectrum compared to noncorrected data (in orange). This is most obvious for
S12 data (Figure 6b), for which no correction would apparently be required for calculating the
momentum flux.

As shown in Figures 6b and 6c, for all the correction methods used, the maximum frequency peak of the S12
and A14 cospectra is shifted toward larger normalized frequencies compared to the model of Kaimal et al.
(1972), by large factors, namely, 2.75 and 4.5, respectively.

As shown in Figure 6b, the frequency of the maximum peak of the SC cospectrum is shifted toward larger
frequencies in unstable conditions compared to near‐neutral conditions (the red curve in Figure 6b is located
to the right of the green curve), and the amplitude of the cospectra is larger in unstable conditions than in
near‐neutral conditions, which was also documented in Cambra (2015).

For the neutral‐unstable z/L range shared by S12 and A14 data, that is, −0:01> z
L>−0:05, the S12 and A14

cospectra peak at a normalized frequency of 0.2–0.22, which is close thus encouraging (green curves in
Figures 6b and 6c).

The frequency shifts of the S12 and A14 SC cospectra with respect to the reference cospectra have to be
explained by another factor than stability, because they also occur in neutral conditions (green curves in
Figures 6b and 6c). This could be related to the wave‐following nature of the OCARINA platform, whose

Table 3
Frequency Range Selection for the Wind Inertial Subrange

Experiment F11 S12 A14 B15 B15‐2 B16 U17

f_min (Hz) 3 3 3 2 2 2 3
f_max (Hz) 4 5 5 4 3 3 5

Note. f_min and f_max are theminimum andmaximum selected frequen-
cies, respectively.
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drifting velocity with respect to the sea surface is not measured (section 2.1). Note also that the normalized
frequency used by Kaimal et al. (1972) may not fully apply over waves. Indeed, their presence overall
focuses energy and momentum transfers across the interface on particular scales. This may be quantified
in various ways, such as in terms of effective to peak phase speed ratio, as suggested by Cifuentes‐
Lorenzen et al. (2018). Although finding an appropriate frequency scale was not the focus in this paper,
the larger median wave steepness estimates found for S12 and A14 data compared to the other swell‐

Figure 5. Normalized sonic temperature spectra for each experiment. The black curves show the averaged spectra, and
the horizontal dashed lines locate the mean value of each spectrum at 1 Hz. The vertical dotted lines encompass the
inertial frequency subrange selected for temperature.
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dominated experiments (section 2.3) also support that a wave‐related frequency scale would be more
appropriate than fz/U for modeling the wind cospectra.

3.2. Integral Characteristics
3.2.1. Dissipation Rates
The calculation of the dissipation rate of turbulence is required for estimating ID u*, as alreadymentioned in
section 1.2. However, in addition to inferring the dissipation rate of turbulence from the wind power
spectrum (equation (5)), it can also be calculated with the time‐dependent third‐order structure

Figure 6. Normalized cospectra for the longitudinal wind component (gray dots). The values of N in parentheses indicate
the number of SC cospectra available for averaging. The dashed curve is the Kaimal et al. (1972) model. The thin black
lines correspond to the application of a low‐frequencymedian filter to the gray dots, through all frequencies. The symbolΔ
denotes the percentage of difference between the integral values of the averaged SC cospectra with respect to the
integral values of the Kaimal et al. (1972) model. Cospectra for the noncorrected and the DS‐corrected vertical velocity
components are represented in orange and purple, respectively. For S12 and A14 experiments, cospectra are also
represented as a function of stability ranges, that is, unstable (red) and neutral‐unstable (green).
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function S3(dt), as proposed by Fairall et al. (2003). This—under the assumption of frozen turbulence (e.g.,
B09)—may be written as

S3 dtð Þ ¼ u tþ dtð Þ−u tð Þð Þ3 ¼ −
4
5
ε3 Ur dt (11)

where the variable t is the time, dt is a time increment, the maximum extent of which is from the duration of
a half‐time segment (550 s) to the inverse of the Nyquist frequency (1/16 Hz), and ε3 is the dissipation rate of
turbulence. Note that the equivalent of equations (5) and (11) for temperature are

εθ ¼ ε
1
3

2π
Ur

& '2
3 Eθ fð Þ

cθ

& '
f
5
3 (12)

S3θ dtð Þ ¼ u tþ dtð Þ−u tð Þð Þ θ tþ dtð Þ−θ tð Þð Þ2 ¼ −
4
3
ε3θ Ur dt (13)

where Eθ(f) is the temperature power spectrum, εθ is now called the half‐variance rate of destruction of tem-
perature, cθ is the Corrsin constant (0.8), and S3θ(dt) is the time‐dependent wind‐temperature third‐order
structure function.

Hereafter, we compare the calculated values of ε (resp. εθ) to the values of ε3 (resp. ε3θ ). This gives a way to
assess our choices in the application of the ID method, as the comparisons depend on the choice of the fre-
quency bands of the inertial subrange made in section 3.1.

Here, dissipation rates for the longitudinal wind component ε and ε3 are calculated either as mean
values over the inertial subrange selected in section 3.1 or as maximum values over the whole frequency
range, which includes inappropriate values in the turbulent production range, although this has no impact
on the results (not shown). They are plotted versus the dissipation calculated from the spectra in the inertial
subrange in Figures 7a and 7c. The best agreement is found with mean values (Figure 7a), specifically for the
bias that is lowered by 48% compared to when choosing maximum values (Figure 7c). The correlation coef-
ficient found between ε and ε3 is 0.94, which is good, and the rms deviation of the difference between ε and
εS3 is 4×10

−3 m2/s3. This is comparable thus not better than what was found earlier using an instrumented
mast on a large ship, that is, 0.85 and 4×10−3 m2/s3, respectively (B09). Hence, this comparison between ε
and ε3 confirms the consistency of the inertial subrange chosen for the ID method.

The comparisons between εθ and ε3θ values are presented in Figures 7b and 7d. In opposite to the case for the
dissipation rates, the best agreement is clearly found with maximum values of the structure function, which
strongly improves the slope of the linear fit, by 57%. The correlation coefficient found between εθ and ε3θ is
0.96, which is good, and the rms difference found is 0.1 K2/s, which is acceptable though it is strongly con-
strained by distribution of the data that is denser at low values. In opposite to the case of dissipation rate
TKE, Figure 7d indicates that the inertial subrange limits selected in section 3.1 for compliance of the tem-
perature power spectra with the MO theory do not compare so well to the inertial subrange viewed from
third‐order structure functions.
3.2.2. Kolmogorov Constant
The Kolmogorov constant, c, may be expressed as (e.g., B09)

c ¼ 0:55 ε3
2
3 ε−

2
3 (14)

With our data, the values of c calculated with equation (14) range from 0.36 to 0.63 and are variable from one
experiment to another, as reported in Table 4. The values reported here result from a selection of c values in
the range [0; 1.5]. The overall mean value found for is 0.48 ± 0.16, which is 13% smaller than the standard
0.55 value. The values depend on the frequency band selection, with values varying from 0.3 to 1, according
to the subrange limits selected. Specifically, we found that they slightly increase with frequency (not shown).

4. Turbulent Fluxes

Here, we first compare turbulent fluxes that were successively calculated with the ID, EC, and bulkmethods.
In agreement with the results of section 2.4, we produced two sets of EC estimates that were respectively
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based on uncorrected time series of u, v, and w (section 2) and on spectrally corrected time series of w and
uncorrected u and v values. They are all estimated over 1,100‐s time segments, a value that was already
successfully used in B09 and B14. We produced two sets of ID flux estimates, respectively, with
dissipation rates from power spectra and from third‐order structure functions. In the latter case, the
calculated dissipation rates (referred to as ID S3 hereafter) were taken equal to the mean value of the
dissipation rate spectra in the selected inertial subrange, while the half‐variance destruction rates of sonic
temperature were taken as the maximum values of the destruction rate spectra over all frequencies, in
agreement with the results of section 3.2.1. No imbalance term was taken into account in the ID
calculation. In the ID method, the first guess values of u* chosen to solve iteratively equation (6) are the
EC estimates, mostly for sign determination. In the bulk method, we used the constant Large and Pond
(1981) parameterization of the drag coefficient, because as a first test it is an acknowledged reference at
least for winds of medium intensity.

4.1. Friction Velocity Comparison and Parameter Adjustment in the EC and ID Methods

When all experiments are considered together, the comparisons between EC, ID, and bulk u* estimates
have correlation coefficients larger than 0.9 whether the motion correction is applied or not, which is rather
satisfactory (Table 5). The rms differences obtained are in the range 2.4–2.9 cm/s, which is acceptable, since

Figure 7. Dissipation rates of turbulence (panels a and c) and half‐variance destruction rates of sonic temperature (panels
b and d). In panels a and b, the mean value of the third‐order structure function over the inertial subrange is calculated,
while in panels c and d the maximum value of the third‐order structure function is calculated.

Table 4
Statistics of the Kolmogorov Constant (c) Estimates for Each Experiment

Experiment F11 S12 A14 B15 B15‐2 B16 U17

c x ¼ 0:36 x ¼0.48 x ¼0.45 x ¼0.63 x ¼0.50 x ¼0.55 x ¼0.52
σ=0.16 σ=0.13 σ=0.17 σ=0.18 σ=0.10 σ=0.22 σ=0.12
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it is on the order of 15% of the mean u* value. The slopes of linear fits range from 0.81 to 0.92. The best
results in terms of slopes and mean deviation are found when the motion correction in the EC method is
applied (Table 5). In contrast, the rms differences are unchanged (ID − EC) or increased by 7% (bulk −

EC). An analysis of the comparisons for the different experiments confirms that the changes in the bias
are indeed the main outcome from the application of the motion correction. Indeed, the bias is decreased
in 11 cases out of 14, as reported in Table 6 column 4. Larger biases are found only in the comparisons
between bulk and EC for S12, B15, and B16 data. For the other cases, a smaller bias is gained but the
rms differences are smaller or similar only in 4 cases out of these 11 cases. These results suggest that the
application of the motion correction to individual data may not be the best approach with our data. We
consider that they rather give the magnitude and the sign of a bias to be applied to EC data for each
experiment, which is the correction method that is finally adopted hereafter. Technically, we apply a simple
mean correction to EC u* of −1.2 cm/s to all data sets but the B15‐2 data, for which the correction is set to
−2.9 cm/s. These two values correspond to the mean values of the bias differences found with and without
motion correction (average of the values in parentheses in Table 6). It may be argued here that the
application of a simple mean correction is counterproductive with respect to our efforts to set up the SC
method in the earlier sections. However, the overall efficiency of this approach shall be further shown in
section 5.2.

Figure 8 shows the friction velocities corrected with the above mentioned mean biases. The resulting values
shown in Figures 8a and 8b compare slightly better to bulk and ID estimates of u* in rms deviation and cor-
relation coefficient than in Table 5. Note, however, that the slopes of first degree fits are slightly degraded.
There is a positive mean deviation of bulk u* values compared to EC, by 0.6 cm/s, which should now be
attributed to the bulk parameterization chosen, in the hypothesis that the motion correction applied to
the EC u* estimates is valuable, which we shall consider in the following.

Figure 8a first reveals that the bulk parameterization chosen is rather appropriate because the correlation
coefficient, rms deviation, and slope of linear fit are good, that is, 0.93, 2.6 cm/s, and 0.9, respectively. In con-
trast, the parameterization chosen overestimates the mean value of the fluxes by 0.6 cm/s, which will be
further analyzed in section 4.3. Second, EC u* estimates for B15‐2 data marked in gray in Figure 8 are under-
estimated with respect to other data in spite of the correction applied. Third, the ID estimates of u* are in
average underestimated compared to EC estimates, by −3 cm/s (Figure 8b), which is in appearance consis-
tent with the small average value of c found in section 3.2.2. Alternatively, an imbalance term could be
accounted for in equation (6).

The rms deviation between ID and bulk u* values is 1.4 cm/s, which is small (Figure 8c), as opposed to the
rms deviation found between ID S3 and bulk estimates of u* (Figure 8d), which is twice larger. One might
argue that ID S3 fluxes shall not be considered further. However, they show that the mean deviations and
slopes are comparable in Figures 8c and 8d. This indicates that the modification of c constant does not fully
explain why ID or ID S3 u* values are underestimated compared to bulk or EC values of u*. Indeed, we have
shown that dissipation rates from third‐order structure functions were larger than those obtained from
power spectra by 2 × 10−3 m2/s3 (positive bias in Figure 7a). Thus, the bias is indeed decreased if ID S3 is
used instead of ID, but the ID S3 are anyway underestimated by 2.2 cm/s (Figure 8d), which is significant.
In addition, the slope of linear fit is 0.77 in Figure 8d, which is noticeably smaller than unity. Therefore, it

Table 5
Comparison Between ID, Bulk, and EC Friction Velocity Estimates for the Whole Set of Data

All experiments

u* compared Correlation coefficient Rms deviation (cm/s) Mean deviation (cm/s) Slope of linear fit

bulk‐EC 0.92 2.8 −0.76 0.86
bulk‐EC_corr 0.91 2.9 0.0 (+0.8) 0.92
ID‐EC 0.95 2.4 −4.4 0.81
ID‐EC_corr 0.93 2.4 −3.6 (+0.8) 0.87

Note. The values in parentheses indicate the deviation to uncorrected data. The labels EC_corr denote u* estimates cor-
rected with the SC method (see text).
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seems reasonable to conclude that an imbalance term is—or at least is also—required for correcting ID or ID
S3 u* estimates with respect to EC u* estimates. To verify this, the imbalance termwas estimated according to
equation (6), rewritten as

ϕIMB ¼ ϕ
z
L

! "
−
z
L
−κzu*−3εU (15)

in which u* values here are output from the EC method. The values found for ϕIMB average to 0.4 ± 0.15.
Note that 5% of the absolute values larger than unity were considered as outliers with respect to the distribu-
tion of values, and removed. The average value found does not clearly depend either on the experiment con-
sidered or on stability (not shown). This is new compared to the existing parameterizations that are a
function of z

L and that do not have a constant part. For example, we tested the −0:46 z
L imbalance term pro-

posed by B09 but it produced insignificant changes on our data (not shown).

Applying a 0.4 constant imbalance term to the ID method was then tested and proved more successful.
Indeed, the mean deviation between ID and EC u* estimates is almost canceled (0.08 cm/s) and the slope
of linear fit is equal to 0.98, while the rms deviation does not change, that is, 2.19 cm/s. This shall be further
discussed in section 5.1. We also tested the application of a Kolmogorov constant estimated from the com-
parison between dissipation rates (0.48; see section 3.2.2), but we found that it is not as efficient as the use

Table 6
Comparison Between ID, Bulk, and EC Friction Velocity Estimates for Each Experiment

u* compared Correlation coefficient Rms deviation (cm/s) Mean deviation (cm/s) Slope of linear fit

F11 data
bulk‐EC 0.95 3.5 −5.1 0.95
bulk‐EC_corr 0.95 3.5 (+0.0) −3.1 (+2.0) 0.92
ID‐EC 0.97 2.8 −7.2 0.84
ID‐EC_corr 0.98 2.9 (+0.1) −5.3 (+1.9) 0.83
S12 data
bulk‐EC 0.96 1.6 0.0 0.95
bulk‐EC_corr 0.89 2.6 (+1.0) 1.4 (+1.4) 0.95
ID‐EC 0.96 1.7 −3.7 0.83
ID‐EC_corr 0.87 2.5 (+0.8) −2.2 (+1.5) 0.82
A14 data
bulk‐EC 0.96 1.8 −0.3 0.99
bulk‐EC_corr 0.94 2.2 (+0.4) −0.2 (+0.1) 1.08
ID‐EC 0.98 1.4 −4.1 0.91
ID‐EC_corr 0.97 1.5 (+0.1) −4.0 (+0.1) 1.00
B15 data
bulk‐EC 0.94 2.4 0.8 0.68
bulk‐EC_corr 0.96 1.6 (−0.8) 1.8 (+1.0) 0.78
ID‐EC 0.89 2.8 −4.0 0.68
ID‐EC_corr 0.93 2.0 (−0.8) −3.0(+1.0) 0.80
B15‐2 data
bulk‐EC 0.81 3.4 −7.5 1.00
bulk‐EC_corr 0.73 4.3 (+0.9) −4.6 (+2.9) 0.75
ID‐EC 0.86 3.0 −9.8 1.02
ID‐EC_corr 0.84 3.3 (+0.3) −6.8 (+3.0) 0.82
B16 data
bulk‐EC 0.95 2.6 0.1 0.96
bulk‐EC_corr 0.95 2.5 (−0.1) 1.2 (+1.1) 0.98
ID‐EC 0.94 2.9 −3.1 0.85
ID‐EC_corr 0.95 2.6 (−0.3) −2.1 (+1.0) 0.88
U17 data
bulk‐EC 1.00 2.3 −1.6 0.85
bulk‐EC_corr 1.00 1.5 (−0.8) 0.1 (+1.5) 0.91
ID‐EC 1.00 3.4 −6.4 0.76
ID‐EC_corr 1.00 2.6 (0.0) −4.3 (+2.1) 0.81

Note. Values in parentheses indicate the difference found for the considered statistical parameter when the correction is
applied.
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of an imbalance term (not shown). Specifically, the bias is not totally removed between ID and EC u*
estimates (−1.85 cm/s) and the slope of linear fit is too small compared to estimates corrected with the 0.4
imbalance term (slope = 0.89).

4.2. Buoyancy Flux Comparison

Estimates of HSV obtained with the ID, ID S3, EC, and bulk methods are compared to each other in
Figure 9. The rms differences found between the different types of HSV estimates range from 2.8 to 3.1
W/m2, which denotes a surprisingly good agreement between data, specifically for the ID and ID S3 meth-
ods in spite of the possible deviation of the temperature power spectra from the −5/3 slope at large wind
speeds (Figure 5). Noticeably, the slopes of linear fits to data have small deviations to unity in Figures 9a
and 9b, that is, 0.98 to 1.13. Note that the 0.4 imbalance term found in the last section was applied to the
ID calculation presented above, which has an impact on ID HSV estimates through the modification of u*
thus of z

L during the iterative calculation (e.g., B09). If the imbalance term is not accounted for, then the
slope between HSV from ID and EC decreases to 0.91 (not shown). We conclude from the above results that
the proposed imbalance term is sufficient to correct ID HSV values with respect to EC estimates. In
contrast, the slope of linear fit is only 0.79–0.84 between ID or IDS3 and bulk estimates as shown
in Figures 9c and 9d.

In section 3.1.2, we questioned the location of the temperature inertial subrange for B15‐2 data, because the
corresponding temperature power spectrum presented a−5/3 slope in the range 7–10 Hz (Figure 5e), while a
1–2‐Hz band was eventually selected for all the experiments. In response, we performed additional calcula-
tions of ID HSV values using the 7–10‐Hz band for B15‐2 data. We found disappointing results; namely, the
rms differences between the ID HSV estimates and the bulk or the EC HSV estimates were larger than 10
W/m2, and the slope of linear fit was 1.4–1.8 (not shown), which confirms that the 7–10 Hz is not an appro-
priate choice for the temperature inertial subrange.

Figure 8. Comparison between friction velocity calculations. Averaged motion correction was applied to EC data. The
dots in gray denote B15‐2 data. In panel d, the bulk u* estimates are compared to the ID estimates obtained with
third‐order structure functions (ID S3; see text).
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4.3. Exchange Coefficients
4.3.1. Drag Coefficient
The equivalent 10‐m neutral wind UN10 and drag coefficient CDN10 are calculated with wind module data at
the height of measurement z, and with EC estimates of u* and z

L. In a first step, z0 is calculated as

z0 ¼ z exp −κ
U
u*

−ψ
z
L

! "& '
(16)

In a second step, CDN10 and UN10 are estimated considering that friction velocity and roughness length are
unchanged

CDN10 ¼ κ2= ln 10=z0ð Þ2 (17)

U10N ¼ u*
κ

ln 10=z0ð Þ (18)

The median value found is CDN10 ¼ 1:12×10−3, which is smaller by 7% than the known 1.2 × 10−3 midwind
range value (Large & Pond, 1981), as shown in Figure 10a. Our data present an intermediate behavior when
compared to the parameterizations of Smith (1988) and Edson et al. (2013), as shown in Figure 10b. Note
that B15‐2 data are not taken into account here because they just add scatter compared to the other data.

From the second degree fit to data in Figure 10a, one may even consider the drag coefficient to be rather con-
stant in winds ranging from 4 to 7m/s. At wind speeds larger than 7m/s,CDN10 data tend to increase, which is
known. However, the number of available points at wind speeds larger than 8m/s is insufficient to propose a
reliable parameterization. At wind speeds smaller than 4m/s, although the scatter is large, we note thatCDN10

estimates visually tend to increase when wind decreases (black dots in Figure 10a). However, it is likely that
part of the increase of CDN10 at low winds may be attributed either to the imperfect motion correction as
shown in section 3.1 or to the fact that the problem is ill‐posed in these conditions (section 1.2.2). Indeed,
the proposed fits to data in Figure 10a (plain and dashed gray lines) hardly increase at low wind speeds,
which is more obvious with the smoothed version of the parameterization (dashed gray line). With this

Figure 9. Comparisons for the buoyancy flux.
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last parameterization the resulting bulk estimates of u* compare well to
EC and ID u* estimates (not shown) in rms difference, that is, 1.98 cm/s
(bulk − EC) and 1.27 cm/s (bulk − ID), in terms of mean deviation
(0.39 and −0.11 cm/s, respectively), and in slopes of linear fit to data,
0.96 (bulk − EC) and 1.03 (bulk − ID). Therefore, our data do not confirm
the increase inCD10N at low wind speed present in Dupuis et al. (1997), Pan
et al. (2005), or Ocampo‐Torres et al. (2011), as shown in Figure 10b.
Overall, our data compare best to the parameterization of Edson et al.
(2013) in light winds, while in medium‐range wind speeds, the historical
Smith (1988) parameterization has the best fit to our data.

Note that most of existing wave‐dependent parameterizations such as
Oost et al. (2002) or Taylor and Yelland (2001) apply to nonfully developed
seas, thus not to the swell conditions that correspond to our data set.
Consistently with the fact that our data sets correspond to swell cases,
the drag coefficient does not clearly scale with inverse wave age (u*/
Csw) for most data (the correlation coefficient is 0.13 or 0.27 in linear or
logarithmic coordinates, respectively), although a visual correlation may
be suspected, as shown in Figure 11. As in Edson et al. (2013), we find a
linear relation betweenUN10 and u*/Csw (Figure 12a), but please note that
it may be here the result of an implicit relation between UN10 and u*.

Comparison of our data to the data of Edson et al. (2013) in terms of non-
dimensional roughness length z0/ση as a function of inverse wave age
further reveals the particularity of our data set, as shown in Figure 12b.
Specifically, the model of Edson et al. (2013) fits well some of the data,
but the values of z0/ση are scattered and larger than the Edson model for
the core of our data. In addition, the model of Edson et al. (2013) has a
better fit to our data in terms of Charnock number as a function of inverse
wave age than the models of Oost et al. (2002) or Drennan et al. (2003), as
shown in Figure 12c. Our estimates of the Charnock coefficient α were
calculated as

α ¼ z0−0:11 ν=u*ð Þ g=u*2 (19)

where z0 and u* were EC estimates and νwas the kinematic viscosity of air taken equal to 1.45 10−5 m2/s. As
shown in Figure 12d, α is not increasing as a function of UN10 as opposed to what is expected from the para-
meterization of Edson et al. (2013), which again is possibly specific to our data. Nevertheless, the calculation

of the median value of the Charnock coefficient gives α = 0.014
(Figure 12d), which is not too different from the 0.011 reference value in
light to medium winds.
4.3.2. Stanton Number
As it was not possible to directly calculate EC estimates of CH, we used EC
buoyancy fluxes combined with bulk latent heat flux values to calculate
CH as follows (see Stull, 1988, p. 147):

w′θ′est ¼ w′θv′EC−0:61 θ w′q′bulk
# $

= 1þ 0:61 qð Þ (20)

CHEC;bulk ¼ w′θ′est= U10N SST−T10N
# $# $

(21)

whereU10N and T10N are the 10‐m neutral wind and temperature output
from the bulk algorithm. Thus, we use true temperature and not potential
temperature, which is not an issue as long as potential and true tempera-
tures are not confused in the difference at the denominator of equa-
tion (21). However, this calculation may be considered as misleading as

Figure 10. Neutral drag coefficient as a function of the 10‐m neutral wind
speed (panel a). In the legend, the mention medfilt means that a median
low‐frequency pass filter over seven points was applied through the data
points. In panel b, EC data (gray dots) are compared to several parameteri-
zations of the literature that do not explicitly account for wave
characteristics.

Figure 11. Drag coefficient as a function of inverse wave age and phase
speed of the most significant waves.
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it mixes EC and bulk; thus, we also performed a calculation based on the EC flux only, with the humidity
correction as follows:

CHV ¼ w′θv′EC= U10N SSTV−T10VN
# $# $

(22)

where only the mean variablesU10N and T10VN are outputs from the bulk algorithm. Note thatSSTV refers to
a virtual equivalent of the SST that is calculated using

SSTV ¼ SST 1þ 0:61 qSð Þ (23)

where qS is the surface specific humidity output from the bulk algorithm, which mostly depends on SST. In
neutral to slightly unstable conditions, referred to as NUC hereafter −0:1< z

L<0
#

), CHV is underestimated
(median value equal to 0.73 × 10−3) compared to the bulk (0.94 × 10−3), which is surprising (Figures 13a
and 13b). The difference is less marked in unstable conditions z

L<−0:1
# $

, that is, 0.88 × 10−3 for EC data
and 0.98 × 10−3 for the bulk, respectively. Also, we find that CHV is rather constant or it slightly decreases
with wind speed under NUC and unstable conditions, as shown in Figure 13a (black dots and crosses). In
neutral to slightly stable conditions, or NSC hereafter 0:1> z

L>0
#

), the median value of CHV found is
1.14 × 10−3, which is again smaller than bulk estimates (1.26 × 10−3), but the data have scatter, specifically
at low winds (gray dots in Figure 13a). Please note that the CHV estimates peak at unrealistically large values
(> ± 1 × 10−2) that are not shown in Figure 13a.

If CHEC,bulk is plotted as a function of U10N (Figure 13c), the difference between the median values in NSC
(1.20 × 10−3) and NUC (0.31 × 10−3) is even larger than what was found above for CHV (Figure 13a). The
value found in NSC has a good fit to the bulk (1.21 × 10−3, Figure 13d), but the scatter is large, such as in
Figure 13a (gray dots). As the values found for CHEC,bulk are largely underestimated in NUC and in unstable
conditions, they are doubtful. However, there is no increase of CHEC,bulk with wind speed, regardless of the
stability range considered, as already found for CHV.

Figure 12. Relation between inverse wave age, wind speed, normalized roughness, and α. Dots in gray color denote the
U17 short‐fetch experiment.
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Please note that the warm layer and cool skin effects (e.g., Fairall et al., 2003) were accounted for in the bulk
algorithm for obtaining the above results, by using the measured radiation fluxes. Technically, this means
that the corresponding parameters so‐called jwarm and jcool, respectively, were switched on in the bulk
algorithm. Additional tests were performed with the four possible combinations of the jwarm and jcool
switches, but this had no major impact on the above results, as reported in Table 7 for the median
values found.

5. Discussion
5.1. Imbalance Term

In section 4.1, we showed that the ID method underestimated u* compared to the EC method. Therefore,
there is a lack of energy in the estimates of u* with the ID method. We also found that the value of the

Figure 13. Estimates of the virtual equivalent of the Stanton number (panels a and b) and of the Stanton number
(panels c and d), as a function of U10N and z/L range. The estimates were obtained with EC data (panel a), with the bulk
algorithm (panels b and d), and with a mixed bulk‐EC calculation (panel c). There are outliers not shown at values
smaller than −2 × 10−3 and larger than 5 × 10−3.

Table 7
Comparison Between Estimates of CHV, CH, and CHEC,bulk Calculated With Different Options in the Bulk Algorithm for Accounting for Warm Layer (jwarm) and
Surface Cooling Effects (jcool)

Stanton number ×103 Stability jwarm = 1 jcool = 1 jwarm = 0 jcool = 0 jwarm = 1 jcool = 0 jwarm = 0 jcool = 1

CHV unstable 0.88 0.82 0.82 0.88
neutral‐unstable 0.73 0.69 0.70 0.73
neutral‐stable 1.14 1.16 1.13 1.14

Bulk CHV unstable 0.98 1.14 1.14 0.98
neutral‐unstable 0.94 1.09 1.09 0.94
neutral‐stable 1.26 1.13 1.12 1.24

CHEC,bulk unstable 0.67 0.51 0.51 0.67
neutral‐unstable 0.31 0.19 0.22 0.31
neutral‐stable 1.20 1.19 1.17 1.19

Bulk CH unstable 0.89 1.14 1.14 0.89
neutral‐unstable 0.81 1.10 1.10 0.80
neutral‐stable 1.21 1.11 1.10 1.22
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Kolmogorov constant was too low (c = 0.48 instead of 0.55) and that an imbalance term of 0.4 dramatically
improved the comparison between ID and EC u* estimates. In addition, we showed that applying a 0.4 con-
stant imbalance term was a better choice than modifying c, as already found by B09. However, with a larger
data set than the one used in B14, we found that a parameterization of the imbalance term as a function of z

L

had little effect on ID u* estimates. In addition, Cambra (2015) recently found an imbalance term equal to 0.5
for S12 and A14 data, which is close to the 0.4 value found here.

The origin of the constant term needs to be further addressed. The main differences between OCARINA
and research vessel data are in how they move relative to the surface (OCARINA is a wave follower) and
the large differences in measurement heights above surface, which are typically on the order of 1 and 15
m, respectively.

First, OCARINA being a wave follower, the sensor is not at a constant height above the mean sea
level. However, according to Grare et al. (2013) who compared momentum fluxes in a wind wave tunnel
at constant height and with a wave following system, the two measurements result in similar
momentum fluxes.

Second, we already explained that OCARINA wind measurements were performed at a height at which the
measurements are influenced by the waves (section 1.3). Thus, regarding the IDmethod, we suspect that the
origin of the imbalance term is the pressure‐wave term in the TKE equation. This term was not estimated
here, because measuring pressure close to the surface is still a challenge.

In order to get around this technical issue, we check hereafter the assumption that u* estimated from EC
includes wave effects, whereas u* estimated from ID without imbalance term does not include these wave
effects. For this purpose, we applied a high‐pass frequency filter to turbulent time series of wind, tempera-
ture, and humidity before applying the EC method. Next, we compared the filtered EC u* estimates to ID
u* values as a function of the cutoff frequency filter.

We used a normalized cutoff frequency fcut = f z/U, selected in a large range from 10−4 to 2 × 10−1. Next,
we converted fcut values to time period values Tcut, and we monitored the evolution of the bias, rms differ-
ence, and slope of the comparisons between EC, ID, and bulk estimates of u*, HSV, and LE, as a function of
Tcut. As shown in Figure 14 (black line), when filtering the time series of data at periods longer than about
20 s, EC values are in a better agreement with ID values, with smaller rms deviations (in absolute values)
and slope of the fit close to unity, compared to what is obtained with larger values of Tcut. Note that this is
less clear when B15‐2 data are accounted for (Gray line in Figure 14). Although the specificity of these data
has already been addressed, they are presented here for consistency with Figure 8b statistics. At a cutoff
value of 8 s, the rms difference exhibits a minimum value, whereas the correlation coefficient is close to
its maximum value, which indicates a good agreement between EC and ID u* estimates. As a result, since
the cutoff period of 8 s roughly corresponds to the dominant wave periods of our data set (section 2.3), we
show that removing energy in EC u* at the period of the dominant waves contributes to a better agreement
between EC and ID u* estimates. Of course, this is subject to caution because the energy that is gradually
removed from the EC u* estimates when decreasing values of Tcut also includes energy that possibly results
from internal boundary layer processes or intermittency. In spite of these limits, Figure 14 brings an
insight to explain that the 0.4 imbalance term is related to waves, namely, to the wind‐pressure correlation
term, through—for wave modelers—the pressure versus wave slope term also called the form drag
(Grare, 2009).

Following the helpful comment of an anonymous reviewer, we decided to further address the issue of the
imbalance term by quantifying two Composite versions of the dimensionless Dissipation Rates (CDR here-
after) εκzu*

−3, in which friction velocity was either taken equal to u*EC (with SC motion correction applied)
or taken equal to u*bulk (with the smooth parameterization of drag found in section 4.1 applied). The CDR
estimates were then compared to the dimensionless dissipation function ϕU

z
L

# $
− z

L−ϕimb with ϕimb = 0.4,
which simply corresponds to a reorganization of the terms in equation (6). As shown in Figure 15, the
CDR values are scattered, markedly close to neutral stability conditions. Nevertheless, the overall median
CDR values found are 0.55–0.62, which indicates consistent values both for the EC and for the bulk estimates
of the CDR. The values found are in good agreement with the average value of 0.7 found in near‐neutral con-
ditions by Edson and Fairall (1998), Figure 6).
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We point here that with a wave‐following platform, the EC momentum flux estimates should correspond
to a turbulent plus wave‐induced flux thus to a total flux, according to Hara and Sullivan (2015, section
5f). In addition, in their simulations, these authors show that at the height of measurement of our platform,
kζ ~ 0.1, the wind profile and the wind shear are hardly modified by the presence of waves (Figure 2 in Hara
& Sullivan, 2015), despite that their simulations correspond to conditions of strong wind forcing. Thus, this
also fully justifies that our bulk estimates of momentum flux thus of the drag coefficient are consistent with
the corresponding EC estimates, in sections 4.1 and 4.3.1.

5.2. Spectral Motion Correction Efficiency

Although the spectral method proposed in section 2.4 for correcting the
measured vertical wind component from vertical platform motion was
shown to improve spectra and cospectra in sections 2.4 and 3.1.3, it was
eventually replaced in section 4.1 with a simple mean correction of the
EC u* estimates. As a first justification, we argued there that the changes
in the biases were the main outcome from the application of the SC
motion correction. It was not possible to better justify this without
accounting for the facts that the correction method selected conditioned
the value of the ID imbalance term found and the bulk parameterization
found for the drag coefficient and that both of which could have a feed-
back effect on the comparisons between the resulting bulk, ID, and
EC u* estimates.

Hereafter, we further assess the efficiency of the methods by comparing
the adjusted bulk, EC, and ID u* estimates as obtained (1) with the SC
method and (2) with the mean biases used in sections 4.1 and following.
Please note that we exclude the scattered B15‐2 data, like in
section 4.3.1.

Figure 15. Comparison of the dimensionless dissipation function (triangles)
to composite estimates of the dissipation rate that are either normalized with
respect to u*EC

3 (gray dots) or with respect to u*bulk
3 (black dots).

Figure 14. Sensitivity of the statistical elements of the comparisons between ID and EC u* estimates as a function of the
cutoff Period (Tcut) of a high‐frequency pass filter applied to EC data.
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With the SCmethod applied on individual data, we find ϕimb = 0.47, which is slightly larger than the value of
0.4 obtained with the mean biases (section 4.1), and the smoothed parameterization of the drag is now CDN10

x 103 ¼ 0:013 U10N
2−0:2 U10N þ 2:23 , which may be compared to the smoothed parameterization of

Figure 10a. With these parameters, new bulk and ID u* estimates were calculated, next compared to the
SC corrected EC u*, as shown in Figure 16.

Figure 16. Comparison between SC‐corrected EC u* values and the corresponding adjusted ID and bulk estimates of u*.

Figure 17. Comparison between u* estimates if the mean motion correction is applied.
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In order to properly assess the respective efficiencies the correction methods, plots comparable to Figure 16
were produced with the mean motion correction, with the parameterization of drag, and with the value of
the imbalance term found in section 4.1, as shown in Figure 17. The comparison between Figures 16 and
17 plots clearly indicates that the mean motion correction results in better comparison between bulk, ID,
ID S3, and EC estimates of u*, specifically in terms of slope of linear fit.

6. Conclusions

We analyzed data from a novel‐drifting and wave‐following platform that was already described in Bourras
et al. (2014). It was deployed in four regions during six experiments from 2011 to 2017. The platform recorded
300 hr of data in wave height conditions up to 3 m and with wind speeds up to 10 m/s, mostly in the presence
of swell. The platform sampled atmospheric turbulence data at 1.5‐mheight, wave characteristics, and water
temperature at 10–30 cm below the surface. A second similar prototype platform was deployed in parallel to
the first one during one of the experiments (BBWAVES 2015). The second prototype was equipped with a
different sonic anemometer (Campbell EC100) from the sonic anemometer installed on the first prototype
(Gill R3‐50).

The flux calculation stage was challenging and was specific to the wave‐following nature of the platform and
to the low height of the turbulence measurements. A spectral method was proposed to correct wind data
from platform motion. It was compared to the classical subtraction method. We showed that the spectral
method performed better than the subtraction method at frequencies smaller than 0.3 Hz, for the power
spectra of the vertical wind component, which was confirmed in a majority of cases by an analysis of the
wind cospectra. However, the analysis of the cospectra revealed that a motion correction was not always
required, which was the case with S12 data.

For the two most represented sets of data (S12 and A14), the maximum peaks of the calculated wind cospec-
tra were significantly shifted toward larger values of the normalized frequency fz/U compared to the refer-
ence cospectra of Kaimal et al. (1972). Although we have shown that the cospectra were indeed shifted
toward larger frequencies under unstable surface boundary layer conditions for S12 data, the observed shifts
for S12 and A14 also occur in near‐neutral conditions. The shift is therefore attributed to the sea conditions,
because our data indicate that the median value of the wave steepness is larger for S12 and A14 data than for
the other swell‐dominated experiments. We suspect that a frequency scale that would account for wave char-
acteristics would be more appropriate than fz/U for modeling the wind cospectra.

Although the proposed spectral motion correction may be applied on individual data, we have shown that it
was more efficient to use it for evaluating mean biases at the scale of an experiment, and next to apply the
biases to the noncorrected EC u* values. With this mean motion correction approach, we obtain a good
agreement with bulk, EC, and ID u* estimates, that is, rms deviations from 1.3 to 2 cm/s, and slopes of linear
fit close to unity.

A constant imbalance term equal to 0.4 is required in the ID method in order to reconcile the EC and ID u*
values. We checked that applying a constant imbalance term is a better option than to modify the value of
the Kolmogorov constant. The origin of the imbalance term was analyzed by filtering out the swell‐
dominating periods (~8 s) from the EC estimates and by estimating the median dimensionless dissipation
rate (0.55–0.62), which has a good fit to Edson and Fairall (1998) data in neutral conditions (0.7). Both
approaches suggest that the imbalance term found is mainly related to the wave pressure transport term
of the TKE budget equation. This is specific to the wave‐following nature of our platform and to the fact
that the measurements are performed in the WBL, that is, close to the waves. As was well described in
Hara and Sullivan (2015), the EC momentum flux estimated with OCARINA data should correspond to
a turbulence plus wave‐induced flux, thus to a total flux. Close to the surface, the turbulent flux and the
dissipation rates are expected to decrease with respect to their wave‐induced counterparts, which explains
the underestimation of the ID fluxes compared to the EC fluxes if no imbalance is accounted for.
Regarding the bulk estimates, Hara and Sullivan (2015) show with large eddy simulations that the profiles
of mean wind speed and wind shear are not strongly affected at the height of measurement of our plat-
form, which is an encouraging indication that the bulk estimates of the friction velocity presented in this
paper are valid.
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The comparisons presented for the buoyancy flux indicated a good qualitative agreement between bulk, EC,
and ID estimates, with rms differences on the order of 3 W/m2. However, this figure represents a difference
of 33% with respect to the mean absolute value of the flux (9.2 W/m2), which is large.

Our estimates of the drag coefficient show lower scatter compared to measurements performed on research
vessels (e.g., B09). We found a realistic mean value of 1.12 × 10−3. Our data have a good fit to the Smith
(1988) parameterization as a function of wind speed, although it slightly overestimates it at light winds
(<5 m/s). The estimates of the drag coefficient are in better agreement with the parameterization of
Edson et al. (2013) in light wind conditions. The scatter found inCD10N estimates is larger at low wind speeds,
which is usual. However, we did not find thatCD10N significantly increases at low winds, which is opposed to
the behavior of several existing parameterizations such as Dupuis et al. (1997), Pan et al. (2005), or Ocampo‐
Torres et al. (2011). In these studies, the apparent increase in surface drag in these parameterizations may be
partly attributed to imperfect motion correction or artifacts in data. However, with our EC data the respec-
tive contributions of the wave‐induced and of the turbulence momentum flux could compensate thus artifi-
cially lead to a reduced drag coefficient.

Our data do not show a dependence of the drag coefficient on inverse wave age or phase speed, in average.
For the Charnock coefficient, we find a realistic value of 0.014 over the whole range of wind speeds.
However, we find that Charnock coefficient is decreasing with wind speed if U < 5 m/s and that it is rather
constant for larger wind speeds (5 < U < 10 m/s), to which case it is better agreement with the parameter-
ization in COARE 3.0 (Fairall et al., 2003) than with the one in COARE 3.5 (Edson et al., 2013) in which the
Charnock coefficient gradually increases with wind speed if U < 18 m/s. This is possibly specific to our data
set, maybe due to the presence of swell.

We calculated Stanton number estimates based on EC buoyancy fluxes corrected with bulk latent heat fluxes.
The resulting estimates have uncontrollable biases and scatter, regardless of the calculation method used.
The virtual counterpart of the Stanton number CHVwas also calculated, as it results from a more straightfor-
ward calculation with sonic anemometer data. The values found compare reasonably well to the bulk ones,
but they are underestimated by 0.1− 0.2× 10−3. Interestingly, Smedman et al. (2007), Figure 17) find that the
mean value of CH (0.91 × 10−3) is smaller by 0.1 − 0.18 × 10−3 in swell conditions than for younger seas
(1.01 − 1.09 × 10−3). This may partly support the underestimation found above, because the bulk estimates
of CHV do not explicitly account for wave age. Nevertheless, this parallel with the work by Smedman et al.
(2007) would need to be further investigated with new data, because CH and CHV are not the same quantities.

According to our data,CH orCHV do not increase with with wind speed, over a 2–8m/s range, which was also
observed by other authors such as Smedman et al. (2007). It is even rather the opposite; that is, CHV slightly
decreases with wind speed.

Back to the science issue raised in section 1, our data suggest that the discrepancy of 10% found by Brodeau
et al. (2017) who compared wind stress from two known bulk algorithms is rather optimistic compared to the
achievable accuracy with modern sensors and platforms. Indeed, the 7–10% confidence on friction velocity
found with our data has to be doubled to get its equivalent in terms of wind stress. However, our results
would also suggest that several aspects of the relation between wind stress and wave characteristics are
yet to be explored, specifically for what regards conditions of swell or swell plus wind‐driven waves that
are common in the open ocean, although they are less documented with experimental data than fully devel-
oped seas in terms of air‐sea turbulent momentum exchanges. Large eddy simulations such as the ones per-
formed by Hara and Sullivan (2015) but specific to the swell conditions presented here would be particularly
helpful to further analyze the collected data. Independently, these data could further be used to assess the
momentum and energy budgets across the interface with respect to wave spectra, following the recent work
by Cifuentes‐Lorenzen et al. (2018).
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