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Abstract 
In many domains, such as weather forecasting, hydrology or civil protection, it is an important issue to characterize 
rainfall variability and intermittency in, either or both, a given time period or area. A variety of sensors, for 
instance, rain gauges, weather radars, and satellites are widely used for this purpose. Techniques to establish the 
similarity between rainfall time series are commonly based on the comparison of some extracted characteristic 
parameters (cumulative rainfall height, extreme values, rain occurrence, mean rain rate, etc.). The present study 
focuses on the development of a tool allowing to compare directly rainfall time series at a fine temporal scale. It 
allows quantifying the dissimilarity between the time series and determining a non-linear relationship between 
their time axes. This study presents an algorithm based on a Multiscale Dynamic Time Warping (MsDTW) 
approach, it is based on the DTW algorithm applied on an iterative multiscale framework we called IMs-DTW. 
This proposed algorithm is well suited for rain time series allowing point-to-point pairing between pairs of rainfall 
time. It takes the intermittency and the non-stationarity of the precipitation process into account. An application to 
measurements observed by four pluviometers located in the Paris area makes it possible to interpret the obtained 
results and to compare the IMs-DTW with more usual statistical features. 
 
Keywords Multiscale dynamic time warping, rain gauges network, time series comparison, precipitations, warping 
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1 Introduction 
  
In recent years, a wide range of data mining techniques 
has been developed and applied in various fields. Many 
of these techniques are far more flexible than more 
classical modeling approaches and could be usefully 
applied to environmental problems [35]. In the field of 
the water cycle, rainfall observation is essential in 
many areas such as climate study, weather forecast, 
urban hydrology [1] or extreme-event study. The way 
these observations are used differs depending on the 
application. Therefore, rain observations are generally 
used in combination with numerical models 
representing the physical processes occurring in the 
atmosphere or in the soil. The basic principle of these 
numerical models is to represent the state of the 
atmosphere on a regular 2D or 3D grid composed of 

pixels of a given size (spatial resolution). Then 
applying the equations of the model, the temporal 
evolution is computed at regular time intervals 
(temporal resolution). In the case of weather forecasts, 
observational data are meshed to the grid model and 
averaged at the timescale of the model and then 
incorporated into the numerical model to improve the 
prediction (data assimilation). In general, whatever the 
model considered, the choice of the spatial and 
temporal scales of the model is a critical point. A too 
fine spatio-temporal resolution leads to unrealistic 
computational costs while a too coarse resolution does 
not allow to represent the local variability of the 
geophysical fields. In practice, a compromise has to be 
found, depending on the study. In the case of global 
studies, given the coarse temporal and spatial 
resolutions, no compromise is needed. On the contrary, 
it is much more complicated for regional studies 
involving finer scales. This is especially true for 
precipitation, as rainfall has high spatio-temporal 
variability and is an inherently intermittent process. 
Hence, as soon as the grid size of the model is larger 
than a few hundred meters, rainy and dry regions can 
share the same pixel, which leads to a poor 
representation of the field. From a temporal point of 
view, the same problem exists as soon as the temporal 
resolution is greater than a few minutes. In addition, 
especially for convective rain events, there is such a 
spatial (temporal) variability in rainfall rate that a grid 
size (temporal resolution) greater than a few hundred 
of meters (a few minutes) cannot accurately represent 
the natural variability of precipitation [2, 3].   
Some common techniques for analyzing time series 
like spectral analysis, autoregressive model, principal 
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component analysis or logistic regression are widely 
used. They allow modeling some features which 
summarize the time series. However, these techniques 
are not necessarily well suited for the modeling of 
rainfall (or rainfall properties) at a fine scale (see for 
example Cristiano et al. [1] in the context of urban 
hydrology). Considering rainfall properties, one can 
notice that a rainfall-rate time series contains dry 
periods which are composed of a succession of zero 
values. The percentage of pure zero values in rainfall- 
rate time series is generally quite large (about 95% in 
the Paris area for an integration period T of a few 
minutes).  This property is not always in agreement 
with the assumptions (explicit or implicit) made by 
commonly used models which often assume, for 
example, the presence of an additive (Gaussian) noise. 
Moreover, most of these statistical models are only 
able to model stationary processes, which is not always 
the case for rainfall processes. 
One method to obtain information regarding the 
characteristics of precipitation at a particular location 
and for a specific application is the use of the concept 
called “rain event” [4]. Such a concept is a convenient 
way to summarize precipitation time series in a small 
number of macrophysical features so that they make 
sense for particular applications. However, different 
points of view exist concerning the concept of "rain 
event". For weather studies, a "rain event" is associated 
with a localized atmospheric disturbance in time and 
space. For hydrological studies, a "rain event" is rather 
defined from its ground track, materialized by a 
measured amount of water. A number of definitions of 
the concept of rain event [5, 6] have been investigated 
in the literature [7]. There is a wide variety of criteria 
for dividing precipitation records into rain events. 
Dunkerley [8, 9] carried out an analysis of the Inter-
Event Time (IET) in order to check the influence of this 
parameter on the definition of rainfall events and its 
influence on the average rainfall rate. As highlighted in 
their study, when determining a value for the IET the 
compromise between independence of rain events and 
intra-event variability of rain rates is crucial. The 
selection of the IET directly impacts the estimated 
macrophysical features.  
In the present study, to overcome the difficulties 
commonly encountered in the analysis of rainfall data 
at a given time scale (resolution) or by rain event, we 
will focus on a tool using a multiscale approach. The 
main advantage of this approach is that the entire 
temporal structure is taken into account without any 
loss of information (unlike averaging), without the 
arbitrariness of a time scale choice and without the 
definition of any inter-event time characteristics or 
macrophysical rain features. The proposed tool, based 
on the Dynamic Time Warping (DTW) algorithm [13, 
14], provides a measure of the dissimilarity between 
time series. The use of a similarity/dissimilarity 
measure, looser than a (metric) distance, leads to more 
appropriate comparisons. Indeed, a metric distance 
ensures the well-known condition:	 , = 0	 ⇔

= . This is not appropriate for comparing the time 
series. Indeed two shifted time series are very similar 
even though their distance can be very large. Although 
various similarity/dissimilarity measures have been 
formulated in the past (see [13, 33, 36] for a complete 
review), the DTW is particularly interesting for rain 
studies. Actually, in addition to a measure of 
dissimilarity between two time series, it provides the 
temporal lags between them. Such information can be 
very useful for example to analyze the trajectories of 
rain cells through a network of rain gauges. In a more 
general way, time warping techniques could be useful 
to compare time series but also to deal with pattern 
recognition, extreme event detection or event 
clustering. In this context, clustering based on k-
medoids or hierarchical clustering seems to be a good 
approach when combined with a dynamic temporal 
distortion framework [10, 11]. When applied, for 
example, on a rain gauge network (urban area for 
example), this tool could help to deduce some rain 
spatial features. Finally, it can be noted that, unlike 
most classical approaches, the DTW does not require a 
second-order stationarity hypothesis. In the present 
study, we will apply this tool for the comparison of rain 
gauge time series located in the same zone of interest. 
As said previously, a wide variety of similarity 
measures between time series exists. Among them, the 
simplest is the Euclidean distance (which is also a 
measure of dissimilarity). However, this approach is 
not appropriate when the time series have different 
time lags or if they have different lengths. In both 
cases, it leads to a bad estimate of the dissimilarity. 
Another common technique is the cross-correlation 
function which is a measure of similarity of the 
temporal displacement of one time series relative to the 
other [12]. However, it is only able to catch linear 
relationships between two stochastic processes and 
does not allow to take into account some other 
nonlinear effects like local contraction or dilatation of 
the time axis (time scaling) of one time series versus 
the other one. In the framework of precipitation study, 
these effects can frequently occur. It can be caused by 
the variation of a rain cell advection velocity (due to 
horizontal wind) from a rain gauge to another located 
further. Convection or evaporation have the same 
effect. Subject to the processes of convection (vertical 
transport), advection (horizontal winds) or 
evaporation, the precipitation moves at variable speeds 
while deforming. Rain is a non-stationary 
phenomenon. Contrarily to classical approaches the 
proposed algorithm makes it possible to better take into 
account precipitation intermittency and non-
stationarity. 
In this paper we will focus on a method derived from 
the original Dynamic Time Warping method (DTW) 
[14]. This choice as preconized by Sung et al. [15] is 
conditioned by the good behavior of this method in 
presence of nonlinear signal transformations like time 
scaling and/or time shifting which are present in rain 
time series. They compared four distances namely the 
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DTW, the Earth Mover’s Distance (EMD) [16], the 
Fréchet Distance [17] and Hausdorff Distance [18]. 
They concluded that the DTW shows the best 
performances in all of the experiments they conducted. 
In this work we consider rainfall rate time series RR 
measured by a rain gauges network. Each rain gauge 
allows measuring the cumulated rain height over an 
integration time period . This parameter is usually 
converted to rainfall rate 	[ . ℎ ]   by dividing 
the rain height by the time period  (generally 
expressed in hour). Rainfall rate is well suited to 
describe rain variability and thus to classify rain events 
into different categories like stratiform or convective 
events. The information provided by rainfall rates is the 
main input of all hydrological models. A rain gauge 
time series, of duration D, is a sequence of N samples 

where = .  From this native rainfall rate time series, 

we can compute a subsequent rainfall time series  
which is averaged over consecutive time periods equal 
to . The parameter  called the resolution factor or 
the compression rate [14], is an integer value ranging 
between 1 and N. c values greater than 1 correspond to 
time series with a coarser temporal resolution. Hence, 
for a given compression rate c, we denote  the 
number of samples of  : 
 =	    (1) 

 
According to these notations, the time series  can 
be expressed as a sequence of rainfall rates (eq. 2). 
 = , , … ,   (2) 
 

, the  element of  is calculated from the 
native time series , thanks to the following 
equation: 
 = ∑ ℎ		 	 ∈ 1, (3) 

 
The time series  is also known as the temporal 
aggregation of the native time series. By definition, it 
represents the piecewise aggregate approximation 

 of the finer precipitation time series . Eq. 3 
simply states that the precipitation time series is 
composed of N 	equal-sized “frames” . In the 
following, we will use equivalently  and RR as 
well as  and N. Figure 1 illustrates a precipitation 
time series at native resolution 	 = 	1 	and its  
for 	 = 		2 and 4. 
 
2 The Multiscale Dynamic Time Warping 

algorithms (MsDTW) 
 
Let's first introduce the Dynamic Time Warping 
(DTW) algorithm and some of its variants. The DTW 
was introduced in 1978 by Sakaoe and Chiba [19] as 
the Dynamic Programming Algorithm (DP-
Algorithm). 

 
Fig. 1   Example of PAA of rainfall time series for c=1, 2 and 4 
obtained from a rain gauge with T= 6 min 
 
An extensive literature exists on either improving the 
method (especially to make it faster) or applying it in 
various fields such as speech recognition. The DTW 
algorithm computes the time distortion needed to align 
the two time series. This alignment is calculated in 
order to minimize a distance between two series. 
Several variants exist which introduce constraints in 
order to yield to an algorithm less computationally 
expensive.  For a complete description of the DTW 
algorithm under constraints see for example Zhanga et 
al. [20]. Here, we only give a brief description of the 
algorithm in the framework of precipitation time series 
alignment.  
Let’s denote 	  and 	  two rainfall rate time series 
observed with the same integration time  (Fig. 2a). 
The two time series do not necessarily share the same 
number of samples. Hence we denote respectively   
and  the lengths of the times series  and . As 
done previously the two time series can be expressed 
as sequences: 
 = , ,… ,… ,= , , … , … ,   (4) 

 
Sakoe and Chiba [19, 21, 22] proposed to consider an −   (Fig. 2b) where time series  and  are 
developed respectively along the −  and the −
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. This plane is reported in the literature as the 
distance matrix  [23]. The timing differences between 
time series  and  can be depicted by a sequence 

 of K points = ,  belonging to the distance 
matrix D: 
 = , , … , , … ,   (5) 

 
It is worth noticing that the length of the sequence K is 
not known at this point.   
This sequence represents a mapping from the time axis 
of time series  onto that of time series . Sakoe and 
Chiba [21] called this mapping a warping function and 
it is currently known as a warping path [23, 24]. When 
there is no timing difference between two time series 
(with the same number of samples), the path coincides 
with the diagonal line =  on the distance matrix D 
as shown in Fig.2a and 2b. Otherwise, it deviates 
further from the diagonal line as the timing difference 
grows (Fig. 2c and 2d). 
 
 

 
Fig.2   a Comparison between two time series with no timing 
difference. The grey lines represent the alignments between the 
two time series. b Warping path associated to a.  c Comparison 
between two time series with some timing differences. d The 
warping path associated to c (from [23]). 
 
In order to compute an optimal mapping between the 
two time series, a tool is needed to evaluate how close 
they are. Let’s denote  the distance 
corresponding to the kth point of the warping path 
which corresponds to the distance between two 
samples  and . In our case, we simply chose a 

quadratic distance: 
 = −    (6) 

 
For the DTW, we denote  the time-normalized 
dissimilarity between two sequences, here, the two 
rainfall time series  and . This dissimilarity relies 
on a corresponding optimal warping path . Both 
the dissimilarity and the warping path were given by 
Sakoe and Chiba [19] as the solution of an optimization 
problem: 

, = ∑ ∑, = 	 ∑ ∑
        (7) 

 
with  the non-negative weighting coefficients 
introduced intentionally to allow the dissimilarity 
flexible characteristics. The denominator ∑  is 
employed to make the dissimilarity score independent 
of K, the length of the warping path . Hence, the 
dissimilarity  is the minimum weighted average 
on all the possible warping paths. 
All warping paths are not necessarily appropriate and, 
since initially the DTW algorithm was developed for 
speech recognition, some constraints were added by 
the authors in accordance with speech features:  
 

1. Boundary conditions: = 1,1  and =, .  The path starts at the bottom left and ends at 
the top right. 

2. Monotonicity: − 0 and −0. The path will not turn back on itself, both the i and j 
indexes either stay the same or increase, they never 
decrease. 

3. Continuity:	 − 1 and − 1. 
The path advances one step at a time. Both i and j can 
only increase by at most 1 on each step along the path. 

 
In many cases, searching for the optimal path may 
result in undesired effects because the global optimal 
path may not necessarily be the one desired and may 
even be unrealistic. As an example, in the presence of 
a succession of constant values (series of null values 
corresponding to dry periods in our case), a large 
number of points of one time series is mapped to a 
single point of the other one. A common way to 
overcome this problem is to restrict the warping path. 
This is done in such a way that it has to follow a 
direction in the neighborhood of the diagonal. To do so 
two additional constraints are commonly used: 

4. Warping window condition: | − |  
where  is a threshold restricting the path. It enforces 
the recursion to stop at a certain depth. This constraint 
is known as Sakoe-Chiba band [19] (Fig. 3a). Besides 
limiting extreme or degenerate mappings, it allows to 
speed-up the DTW distance calculation. 

5. Slope constraint condition:  and 

.  For a warping path, the slope should be 

neither too steep nor too gentle. Here, in a sequence of 
k consecutive points of the warping path, for one step 
in the i-direction, we are allowed t steps in the j-
direction. Likewise, for one step in the j-direction, we 
are allowed s steps in the i-direction [19].   
The constraints proposed above were used in the first 
versions of the dynamic time warping algorithm. Since 
then various modifications have been proposed to 
speed up the DTW computations as well as to better 
control the possible routes of the warping paths. Itakura 
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[25] proposed another constraint known as the Itakura 
parallelogram (Fig. 3b). 
With such constraints, the quality of an alignment 
depends heavily on the choice of one or more 
parameters, which is quite subjective. Moreover, as 
pointed by Cassisi and al. [13] the use of such 
constraints does not guarantee a good alignment 
between the two time series since it does not allow the 
optimal warping path to leave the region as defined in 
steps 4 and 5. 
 

 
Fig. 3   Examples of global constraints. a Sakoe-Chiba band. b 
Itakura parallelogram (from Cassisi et al [13]) 
 
Since the objective function in eq. 7 is a rational 
expression, its minimization is an unwieldy problem. 
However, if the denominator ∑  in eq. 7 (called 
normalization coefficient) is independent of the 
warping path . It can be considered constant and 
equal to L: 
 ∀ , ∑ =   (8) 
 
It can be put out of the brackets, resulting in the 
following equation:  
 , = √ ∑        (9) 

 
With this simplification [19], the warping path  
can be (and is traditionally) computed using dynamic 
programming [26] with an  “quadratic” 
complexity. To enable this simplification several 
weighting coefficient definitions were proposed: 
symmetric, asymmetric (see a complete discussion in 
[19, 27]). All these weighting coefficient definitions 
share the same disadvantage: they favor a type of path 
to the others. 
In the other hand, without any a priori information, we 
are looking for a weighting coefficient definition that 
does not suffer from such a disadvantage and evaluates 
equally the paths. In this case, the obvious definition 
for the weighting coefficients is:  
 ∀	 , = 1 ∑ =   (10) 
 
This brings the minimization of the objective function 
back to the problem encountered previously in eq. 7 
(i.e. the dependence of the dissimilarity score on K, the 
unknown number of points on the warping path).   
One way to overcome this problem is to reformulate 
the objective function keeping the same concept. To 

simplify the minimization computation we replace K 
by a known value of the same magnitude. We chose a 
normalized quasi-symmetric form of the DTW [23] 
reformulated below: 
 , = ∑, = 	 [∑ ]  (11) 

 
This optimization problem can be computed using 
dynamic programming. It has the following properties: 
 
1. If = =  then  , =∑  

2. The  is less sensitive to the difference 
between the lengths of the two series  and   

3. Consequence of eq. 11 : If = = 1 

then  , = − = | − | 
 
To speed-up the DTW Keogh and Pazzani [14] took 
advantage of the fact that we can efficiently 
approximate most time series by a piecewise aggregate 
approximation (PAA), so they proposed to apply the 
DTW on the time series at a coarser resolution 1 
rather than at the native resolution = 1 . They 
advanced that: 
 , ≅ ,   (12) 
 
They called their algorithm Piecewise Dynamic Time 
Warping (PDTW). One important limitation of this 
approach, however, is that the user must carefully 
choose the compression rate parameter . Indeed, a too 
coarse resolution can lead to an inaccurate or even 
completely useless warping path [24, 28]. Although 
this approach may be interesting for processes 
characterized by a low, temporal or spatial, variability, 
this is not valid in the case of rain. Indeed rain is well 
known to exhibit a multifractal behavior [2, 38, 39] 
characterized by variability that can greatly increase 
with the resolution. 
This limitation motivates other approaches such as the 
Multiscale DTW (hereafter MsDTW) approach which 
is based on a multilevel mapping achieved through the 
use of several resolutions. In this regard, Chu et al. [29] 
presented an algorithm named Iterative Deepening 
Dynamic Time Warping (IDDTW). The basic principle 
is to iteratively apply the Piecewise Dynamic Time 
Warping (PDTW) for different resolutions starting at a 
very coarse resolution. At each iteration, this algorithm 
decides whether to apply the PDTW to a higher 
resolution or to keep the current PDTW approximation. 
Unfortunately, IDDTW like PDTW is not acceptable 
for precise alignment of the time series. Later, Salvador 
et al. [30] proposed the FastDTW algorithm. The 
authors state that : ”A multilevel approach works well 
if a large problem is difficult to solve all at once, but 
partial solutions can effectively be refined at different 
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levels of resolution. The dynamic time warping 
problem can also be solved with a multilevel 
approach”. This approach avoids applying the brute 
force of the standard DTW algorithm by using the 
multiscale framework. 
The FastDTW algorithm can be divided into four steps:  
 
1- Initialization: The two time series are initially 

averaged to a low resolution (c	 1) using a 
piecewise aggregate approximation (PAA). The 
DTW algorithm is run (using constraints 1 to 3) and 
a warping path is found for the current resolution 
(solid line in Fig. 4a).  

2- A projection operator projects this warping path to 
the next higher resolution giving a list of cells 
defining a new constraint that only these cells will be 
evaluated by the DTW algorithm (dark gray cells in 
Fig. 4b).  

3- Aware that the entire optimal warp path may not be 
contained within the projected path, Salvador et al. 
[30] have released a little bit this constraint by 
allowing an additional number of cells to be 
evaluated (light grey cells in Fig. 4b). For that, they 
introduced a radius parameter  which controls the 
additional number of cells on each side of the 
projected path that will also be evaluated. 

4- The DTW algorithm is run with this released 
constraint (and constraints 1 to 3) and an optimal 
warp path is found. This optimal warp path is then 
used to find a new released constraint for the next 
higher resolution. The procedure is repeated (go to 
step 2) until the full resolution is reached.  

 
The Fig. 4 (from [30]) provides an illustration of the 
iterative process for a resolution factor  equal, 
respectively, to 8, 4, 2 and 1. In this figure, the solid 
black line represents the optimal warping path for the 
current resolution factor . In this example, the optimal 
path does not move too far from the local diagonal 
path. However, with a radius r greater than 1, the 
algorithm allows going far from the local diagonal. 
This case is illustrated in Fig. 5a where the FastDTW 
has been applied to two rain gauges time series 
recorded in two cities (Trappes and Villacoublay) 
located near Paris. The FastDTW provides good 

alignments except for spurious peaks. This is the case 
for example at the 205 time index where a peak in the 
Trappes time series is associated with another peak in 
the Villacoublay time series at the time index 420. The 
global optimal path  leads to a shift of 215 lags 
between the two peaks, which correspond to a delay of 
215x6 min = 1290 min, i.e. more than 21 hours. This 
alignment is unrealistic considering the distance 
between the two cities (15 km). This kind of situation 
will occur whenever the rain is observed by a rain 
gauge but not by the other. In other words, the 
trajectory of the rain cell meets only one of the two rain 
gauges. 
We want to avoid the unrealistic association of a 
spurious parasitic peak of one time series to an 
unrelated rain event from the other. Hence, instead of 
the global optimal path, we would better choose a local 
minimum path that respects the independence between 
distant rain events that should not be linked. Therefore, 
we only want to consider the intra-rain event 
deformation mapping a rain event to another. 
Purposely we set the radius r to 0. This corresponds to 
removing the third step of the  FastDTW algorithm and 
therefore not to release the constraint defined in step 2. 
In contrast with Fig. 5a, Fig 5b shows that the peak at 
time index 205 in the Trappes time series is now 
associated with a zero value in the Villacoublay time 
series. It would be much more realistic if it was 
associated with the peak located at time index 420 
instead. We are aware that the found path is not 
necessarily the global optimal path but rather an 
optimal path under multiscale constraints. In the 
following, this particular configuration will be called 
IMs-DTW for Iterative-Multiscale DTW. For the sake 
of simplicity, the optimal warping path will be denoted 
by  instead of . Finally, it can be noted 
that even if it was not the main objective, a radius 
defined to zero considerably reduces the calculation 
time. 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Illustration of the Salvador et al. algorithm [30]. Dark gray squares are cells that will be evaluated by the constrained DTW. 
They are derived from the previous step by a “projection” operator. Light grey cells correspond to the released constraint for a radius 
equal to 1 square. They are also evaluated by the constraint DTW algorithm. White cells are not taken into account by the DTW 
algorithm. The solid line corresponds to the derived optimal path. 



7 
 

 
 
 

 
Fig. 5   a FastDTW alignments for two rain gauges time series 
measured in the cities of Trappes and Villacoublay with a time 
resolution of T=6 min. The grey lines represent the alignments 
between the two time series. b Same figure but for IMs-DTW 
alignments 

 

3 The Iterative Multiscale DTW algorithm 
 
3.1 Experiment outline 

 
In order to evaluate the efficiency of the IMs-DTW 
algorithm on precipitation time series, several 
experiments were conducted. Here we present an 
experiment for a precipitation time series resulting 

from 10-days of tipping bucket rain gauge 
measurements, recorded close to the city of Trappes 
(27 km southwest of Paris) between June 7, 2009, and 
June 17, 2009. This time series called reference time 
series in the following is characterized by an 
integration time T equals to 6 minutes and by a tipping-
bucket volume corresponding to an equivalent rain 
height of h = 0.2	 .  
This time series of precipitation (Fig. 6a) is 
characterized by four early rain events between June 7 
and June 11. Then a dry period of several days is 
followed by a last rainy episode. Hereafter, we call this 
precipitation time series  which corresponds to  of 
section 2 (for sake of clarity the resolution factor 
exponent 	 = 	1 will be omitted in the following). 
This 10-day period is particularly interesting since it 
regroups both several short dry periods (few hours or 
less) and a long dry period (a few days). It will allow 
us to show the behavior of the IMs-DTW algorithm in 
different meteorological situations. In the next 
subsection, this time series is used to illustrate the 
ability of the algorithm to map rainfall time series 
through the estimated warping path. 
 

3.2 Robustness of the IMs-DTW on precipitation 

time series 

 
To demonstrate the robustness of the IMs-DTW 
algorithm we simulate a set of transformed time series.  
They were built from the reference time series A by 
applying three kinds of transformations namely: 
adding lags, varying rain rates by multiplying non-zero 
rainfall rates values by a random value and finally 
inserting some spurious rain events. In the following, 
the IMs-DTW algorithm is applied between the time 
series A and the transformed time series. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 a The reference precipitations 
time series A recorded in Trappes 
between June 7, 2009 and June 17, 
2009 with an integration time T = 6	 .  
b A realization of the transformed time 
series B’’ built from the reference 
precipitation time series A. Black 
arrows indicate inserted rain events. 
The event at time index 2000 is 
zoomed. 
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To ensure that we cover a wide range of situations, we 
have simulated 1000 transformed time series with the 
following 3-step procedure: 
 
1. The first transformation is a time shifting. It 

can be seen has the time lags introduced by a 
fluctuating wind (advection velocity) transporting a 
frozen rain event from a place to another. At each 
time step the time series B is delayed from A by an 
offset h(i) corresponding to an accumulation of 
random time lags . This shifted rainfall time series 
B is computed by adding zero rain rate values. It can 
be expressed by Eq. 13: 
 = 																																			= 0			when	 	≠ 0	  (13) 

 

With the sequence = 1, … ,  and the sum  ℎ = ∑  where  is drawn according to 

a poisson law of parameter λ λ=0.1 in our case). 
2. The second transformation is an amplitude 

modulation. Since a rain event is not frozen when it 
is transported/advected from a place to another, we 
have to modulate the values of the rain rates to take 
the variability of rain into account. Hence, the B’ 
transformed time series is computed by a correction 
to the non-zero rainfall rates of an already shifted B 
time series. To exhibit significant rain rate variations 
from A, the non-null rainfall rate values are 
multiplied by a random value  drawn uniformly 
between 0.5 and 2. This new type of time series is 
denoted ′ : 
 = 	 							 ℎ 	 	≠ 0				  (14) 

 
This transformation does not disrupt dry periods since 
only non-zero rainfall rates are considered. 
3. The third transformation adds spurious rain 

events. Finally, as explained in the previous section, 
a rain event can be seen by a rain gauge in a specific 
area but not by another one located a few kilometers 
away. For this reason, the transformed time series ′′ 
is derived from ′ by inserting spurious rain events. 
The number of added rain events is drawn according 
to a uniform law between 2 and 30. Figure 6b shows 
a realization of a transformed time series ′′. 

 
To evaluate the IMs-DTW performance, we first 
analyzed the warping paths ,  linking the 
time series A to the different realizations of the shifted 
time series . As expected, thanks to the multiscale 
constraints, the IMs-DTW was able to find the right 
warping paths whatever the added time delays. The 
calculated ,  dissimilarity, based on the ,  warping path, manifests two behaviors 
depending on where the time delays were added: 
 
- Case 1: a time series B is generated as mentioned 
above but time shifts only occur inside a dry event 

(consecutive zero sequences). In other words, the rain 
event patterns, i.e. non zero sequences, are preserved. 
In this situation, as expected the dissimilarity between 
A and B is always null: , = 0. 
 
- Case 2: a time series B is generated but this time one 
or more zero rain rate values are added inside the rain 
events. (A zero is added in between consecutive non-
zero rain rate values.) It creates intra-event dry periods, 
therefore, changing event durations, and generally 
modifying the rain event properties. These intra-event 
dry periods are expected to be associated to non-zero 
rain rates. Consequently, the ,  dissimilarity 
is different from 0. This case is illustrated by the event 
at the time index 2000 in Fig. 6b. In Fig. 7a the blue 
curve shows an example of the estimated ,  
warping path. One can see that during inter-event dry 
periods, the path remains on a local diagonal  (see, for 
example, the time period between 880 and 1900). The 
associated lags are, consequently, constant (Fig. 7b). 
Similarly, when the second type of transformed time 
series ′ was tested, the IMs-DTW was also able to 
find the right paths (not shown).  

Now let’s consider the third type of transformation 
(transformed time series ′′) in which some spurious 
rain events were inserted. Again two situations have to 
be considered: 
 
- Case 1: In time series B’’, the inserted rain event is 
“far” (few hours) from the rain events in A. In this 
situation, the inserted rain event is considered by the 
algorithm to exist only in time series B’’. Therefore it 
is associated with zero values in time series . This 
case is illustrated for example in Fig. 6a and b for index 
time ranging from 1142 to 1232. (In this case the rain 
events are present only in time series B’’.) The figure7b 
shows that during this period the warping path remains 
on the local diagonal and consequently the rain event 
is associated with zero values in . 
 
- Case 2: In time series B’’, the inserted rain event is 
"close" to a rain event in . In this case, the IMS-DTW 
considers the two rain events as a single event and the 
time separating them as an intra-event dry period. The 
inserted rain event is then associated with the closest 
rain event in . This case is visible in Fig. 7 in which 
the event beginning at time index 940 in B’’ has been 
grouped with an event of time series A at time index 
863. 
 
Finally, for the 1000 simulations, the IMS-DTW 
proposed acceptable warping paths  that were 
consistent with what might be expected from the 
observation of rainfall. Indeed, two rainy events 
occurring with a time lag of more than a few hours can 
be considered independent. The presence of a rainy 
episode in a time series does not necessarily imply its 
presence/absence in the other one. 
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Fig. 7   a In blue, the warping path ,  between the time 
series A time series B. In green , ′′  the warping path 
between time series A and time series B’’ shown in Fig. 6b. The 
dashed line represents the diagonal line. b The corresponding 
time lags. 
 
In this subsection, we have shown the good behavior of 
the IMS-DTW algorithm in various simulated 
situations based on a real time series (time series A) 
and the main transformations encountered in the 
context of rainfall observation. In the following, the 
study focuses on how the method can be used to 
compare two real time series. 
 
3.3  Case study 

 
In this section, we wish to assess the performance of 
the IMS-DTW on real rainfall time series observed by 
rain gauges located in the same urban area. We chose 
to present an analysis that is performed on four 
relatively short precipitation time series (13 hours) 
simultaneously recorded by four meteorological 
stations (Trappes, Le Bourget, Roissy, and Nangis) 
located near Paris. The measurements occurred on June 
10, 2009 between 06: 00 and 19: 00 with an 
integration time  = 6 min. The figure 8 shows the 
four time series. 
 

 
Fig. 8  Precipitations time series recorded in Trappes, Le 
Bourget, Roissy and Nangis on June 10, 2009 between 06:00 and  
19:00 with an integration time T=6 min.  
 
The similarities between the rain patterns on the four 
series suggest that it could be the same rain event 
recorded by the four stations. This suggestion is 
partially confirmed by radar images (not shown) which 
also indicate that the rain cells at the origin of the four 
recordings move from Southwest to Northeast. Radar 
images also allow the following observations: 
 
1- The same rain cell was at the origin of the time 

series recorded at Trappes first and then at Le 
Bourget, and Roissy. The meteorological station of 
Trappes is located to the Southwest of Le Bourget 
and Roissy. On the radar image, the rain cell is thus 
observed there a little earlier than for the other two. 
One notes moreover that it seems less intense. 
 

2- A different rain cell was at the origin of the 
time series recorded at Nangis station which is 
located in the extreme southeast of the area (60 km 
from Roissy).  

 
As a result, since Roissy and Le Bourget are close 
(around 10 km between the two) we expect that their 
time series should just be slightly delayed. Moreover 
the lags obtained between Nangis station and the three 
others have no physical meaning. 
 
To illustrate the benefit of considering a time warping 
using the IMS-DTW for real precipitation time series 
comparison we first computed the Euclidian distance 
widely used in the context of precipitation time series 
comparison [31]. For A and B representing 
precipitation time series at the native resolution (i.e. for 
a resolution factor c=1) recorded at the stations Si and Sj, the Euclidian distance is defined by: 
 , = ∑ −   (15) 
 
 

This distance is sensitive to  the length of the time 
series. To eliminate this undesired effect, we computed 
a normalized Euclidian distance defined by: 
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	 , = 	 , , = 1 −  

(16) 
 

In eq. 16 we add the term , for the “No Timing 
Difference Path”, which corresponds to a diagonal 
warping path, i.e. = , . In fact, the normalized 
Euclidean distance is a special case of the dissimilarity 
defined by eq. 11 and therefore it is possible to 
compare these two distances. Similarly, we will denote 
the correlation coefficient between the two time series , = , , , and the maximum of 

cross-correlation , 	 , = 	 , , .  
is the warping path associated to the time lag  
( =  with T the integration time), this latter 
corresponds to the time lag maximizing the cross-
correlation function. This means that the warping path 

 is located on the n-super/sub diagonal of the distance 
matrix D, i.e: 
 

 = , = 	 , ∓ 						 ℎ	 =  

 
The Normalized Euclidian distance , =	 , ,  considering the time delay  was also 
performed. Table 1 provides the corresponding values 
for six  ,  station pairs while Fig. 9 shows the 
warping paths  (Fig. 9a) and  (Fig. 9b) for the 

pairs of stations Trappes/ Le Bourget and Trappes/ 
Nangis.  
The without sliding approach (i.e. based on the  
warping path) compares rainy periods to non-rainy 
periods (see Fig. 9a). The smallest normalized 
Euclidian distance ,   (Table 1 column 3) is 
obtained for the Trappes / Nangis pair while these two 
stations are the furthest apart. As mentioned before 
they did not record the same rain cell. In fact, the 
obtained distances seem to be only sensitive to the rain 

amount of the two considered time series when the 
stations are sufficiently distant. This example shows 
that the Euclidian distance is meaningless in the 
context of rainfall time series comparison.  Concerning 
the ,  correlation coefficient (Table 1 column 
4), it is close to zero except for the pair Le Bourget / 
Roissy. There is no linear correlation between the pairs 
except when the stations are close enough like for the 
pair previously mentioned. Thus, like the normalized 
Euclidean distance, the correlation coefficient is 
ineffective in this context and classical approaches 
without sliding  do not generally allow to 
identify the similarities/dissimilarities between 
precipitation time series.  
In the second approach, we compare the time series 
pairs taking into account a shift by a constant time lag 

 which is equivalent to the use of the warping 
path . Very low cross-correlation values (Table 1 
column 7) are obtained when Nangis station belongs to 
a pair. As stated in the without sliding approach, the 
two recorded rain time series do not come from the 
same rain cell and are therefore are not correlated. For 
the three first pairs of stations Trappes/ Le Bourget, 
Trappes/ Roissy and Le Bourget/ Roissy the time 
delays 	  are consistent with both the geographic 
distances (Table 1 column 2) and the advection 
velocity observed on the radar images (not shown). In 
these cases, the maximum of cross-correlation , ,  is thus representative. In addition, for 
these pairs, the normalized Euclidian distance 

,  decreased compared to 	 ,  by a 
factor ranging from 16 to 50%. Trappes and Roissy are 
not as dissimilar as suggested by the normalized 
Euclidian distance. On the other hand, for the stations 
of Le Bourget and Roissy we expected, given their 
proximity (10 km), a smaller dissimilarity (5.05 mm.h-

1). When the Nangis station belongs to a pair the ,  distances remain almost unchanged 
compared to the 	 , .  

Table 1   Indicators of dissimilarity between the six ,  pairs for ,  and  warping paths. 

 
Distance 

[km] 
 warping path  warping path  warping path 

Pair of stations ,   
,[mm. h ] , τ  [min] ,[mm/h] , ,  

,
[ /ℎ] 

,
Trappes/ Le Bourget 34.78 6.35 -0.05 30 5.05 0.61 3.82 0.81 

Trappes / Roissy 44.84 4.24 -0.03 42 2.58 0.75 1.53 0.91 

Le Bourget/ Roissy 10.41 4.42 0.65 12 3.84 0.79 3.27 0.83 

Trappes/ Nangis 77.96 2.24 0.17 -30 2.14 0.35 1.68 0.64 

Le Bourget/ Nangis 60.44 6.08 -0.04 60 6.09 0.21 5.38 0.51 

Roissy/ Nangis 61.36 3.86 -0.06 60 3.83 0.15 3.07 0.62 
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Fig. 9   a Sequences  of points = ,  defined by eq. 6 for the  warping path for the pairs of stations Trappes/ 
Le Bourget and Trappes/Nangis. The grey lines represent the alignments between the two time series. b  Same figure than 
a but with the  warping path. 
 

Fig. 10  a warping path for the pair of stations Trappes/ Le Bourget. b warping path for the pair of stations Trappes/Nangis. c 
the obtained time lags for the pair of station Trappes and Le Bourget. d  the obtained time lags for the pair of station Trappes 
and Nangis 
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Their corresponding , ,  cross-correlations 
remain meaningless. Finally, we can conclude that the 
use of a constant time lag (warping path ) does not 
make it possible to estimate good indicators 
representing the dissimilarities between the stations.  
After outlining these findings, we performed the IMs-
DTW on the six different pairs and we analyzed the 
warping paths . Figures 10 a and b show the 
sequences  of points   of  for the pairs 
Trappes/ Le Bourget and Trappes / Nangis. 
In the case of the pair Trappes/ Le Bourget, the 
assumption of a dynamic warp improves the 
associations of the points  of the sequence  unlike 
with   warping path where the matching respects the 
general behavior even if there are some association 
mismatches. For example, the second Le Bourget peak 
recorded at the 118 time index is associated to a zero 
rain rate value in the time series of Trappes while the 

 made a better association by associating the peak 
in Le Bourget Time series with a peak in the Trappes 
time series.  In a general way, the IMs-DTW was able 
to find a better matching of all the couples of points 
(see Fig. 10 c and d). The algorithm realizes good 
matching, associating together the beginning and the 
ending times of rainy periods, their peaks and 
intra/inter-event dry periods independently of the 
considered situation. Table 1 column 8 provides the 
distances ,  for the six ,  pairs while 
column 9 provides the correlation coefficients , . 
When considering a dynamic warping path, the 
compared time series are not as dissimilar as suggested 
by the classic approaches. For the six pairs, the 
dissimilarities ,  decrease and become 
smaller than the ones calculated with the two other 
warping paths (  or ). In the same way, the 
correlation coefficient increase and become much 
more important especially for the 3 pairs Trappes/ Le 
Bourget, Trappes/ Roissy, and Le Bourget/ Roissy. 
For the first three pairs, where the same rain cell is 
observed, the IMs-DTW was able to spot the 
similarities between the time series as depicted by the 
dissimilarities  or the correlation coefficients 

. Indeed whatever the considered pair the 
dissimilarities are smaller than with  or  warping 
paths. The same is true for the correlation coefficients, 
which are higher. For the last three pairs, where the 
time series represented two different rain cells, the 
IMs-DTW allows an alignment of the rain patterns. 
Thus the dissimilarities decreased and the correlation 
coefficients increased but to a lesser extent. 
 
In a general way, the IMs-DTW will find an optimal 
path minimizing the distance between two time series, 
however, the question is: is there a physical sense 
behind the  warping path? In other words, is it 
possible to use  to deduce if two rain time series 
are produced by the same rain cell? In the affirmative, 
can the deduced delays be linked to the time for the rain 

cell to move from one station to another? In this case, 
the dissimilarity ,  could be interpreted as a 
measurement of the spatio-temporal evolution of the 
same rain cell between the different locations. Indeed, 
if the assumption of a rain cell displacement is verified, 
the warping path  should have a mean behavior 
that is more or less comparable to . Let us introduce 
the average time difference delay  which is the 
average value of the lags estimated from  during 
a rain event and  the associated standard deviation. 
Table 2 allows comparing  and  (obtained 
previously in Table 1) for the six ,  pairs. In 
addition, the estimated advection velocity is estimated 
by dividing the geographical distance by  . 
 
Table 2   Time delay reported from Table 1 , the average 
time difference , the corresponding standard deviations   
and the estimated advection velocity for the 6 pairs , . 

 

Pair of 

stations ,  

 [ ]  

[min] 

 

[min] 

the estimated 

advection 

velocity [ . ] 
Trappes/ 

Le Bourget 
30 37 12.66 15.60 

Trappes / 

Roissy 
42 45 12.78 16.29 

Le Bourget 

/ Roissy 
12 8 4.14 21.90 

Trappes / 

Nangis 
-30 11 66.53 118.98 

Le Bourget 

/ Nangis 
60 106 51.78 9.49 

Roissy / 

Nangis 
60 97 40.08 10.58 

 
For the three first pairs, as expected the average time 
difference  is quite close to the time delays  
and the standard deviations  remain low. In such a 

way the coefficients of variations (  are 

much smaller than unity (respectively 0.34, 0.28, 0.51). 
In addition, the estimated advection velocities (Table 2 
last column) are quite homogeneous and in agreement 
with the velocities obtained by radar measurements 
(not shown). For the last three pairs,  and  
are very different and the standard deviations  are 
much higher than previously. This example illustrates 
that the standard deviation   and the difference τ -  are good indicators to decide whether or 
not the warping path  is due to the same rain cell 
and thus can be interpreted as time lags. 
In order to characterize and compare the precipitation 
time series, a large number of features derived from 
rain rates are commonly used. In Dilmi et al. [32], the 
authors show that among the many existing parameters 
a rain event can be fairly well described using only five 
parameters. Among these parameters, four parameters 
are commonly used in meteorology or hydrology 
namely the event duration, the rain rate peak, the rain 
event depth, and the standard deviation while the last 
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one called the absolute rain rate variation is less used. 
The values of these five characteristics are shown in 
Table 3 for the June 10, 2009, rain event. 
 
Table 3   Main features of the four considered time series 
 

 Trappes 
Le 

Bourget 
Roissy Nangis 

Event 

Duration 

[6 min] 

86 85 84 85 

Rain 

amount 

[mm] 

10 17.4 13.2 3.2 

Standard 

deviation of 

rain rates 

[mm.h-1] 

0.2536 0.7174 0.44 0.01 

Maximum 

of rain rate 

[mm.h-1] 

16 44 26 8 

Absolute 

rain rate 

variation of 

order 0.5 

53.20 66.12 52.46 27.21 

 
Except for the event duration, we observed an 
important discrepancy of the obtained features. The 
time series with the most dissimilar characteristics 
being that of Nangis. The pair Trappes /Roissy presents 
the most similar characteristics, and it is interesting to 
note that the IMs-DTW provides for this pair the lower 
dissimilarity (1.53 mm.h-1) and the higher correlation 
coefficient ,  (0.91). Trappes and 
Roissy are the most similar rainfall time series. 
Concerning the pair Roissy / Le Bourget whose 
stations are located close to each other (10 km) the 
maximum rain rates values given by Table 3 suggest 
that the most intense part of the rain cell has passed 
over the Bourget station but not above Roissy, giving 
higher rain rates to the former. Nevertheless, their 
features remain close as suggested by the IMs-DTW 
dissimilarity (3.27 mm.h-1) and its correlation 
coefficient , , (0.83).  
Contrarily to the previous indicators, commonly used, 
the IMs-DTW dissimilarity takes the temporality of the 
rain event into account. Even if, not made explicit, it is 
well suited for physical phenomena such as advection 
(time shift between series) or diffusion (warping of the 
time series). 
 
Since the rain is a multiscale phenomenon subject to 
non-stationarity the time scale are conditioned on the 
context. The hierarchical fitting of the algorithm 
enables it to find the similarity where it lies. The 
algorithm is well balanced since it forbids the released 
constraint of the FastDTW. Indeed, since rain at a 
given time scale is conditioned on larger scales, this 
highlights the coherence through a range of scales. 
Two time series are similar if they behave coherently 
both in time scales and in time. 
 

This aspect which is not commonly used is well fitted 
for rain time series which are known to display 
multifractal properties. 
 
4 Conclusion 
 
The present study focused on the comparison of rainfall 
time series through the use of the concept of 
dissimilarity. Unlike conventional approaches that 
define a number of features to describe a physical 
process, the time warping approach provides a measure 
of dissimilarity between two time series without going 
through this step. This kind of approach was first 
developed for signal processing and in particular for 
speech recognition. The basic concept of dynamic time 
warping (DTW) is to associate the samples of a time 
series with those of another by warping the time so that 
the distance between the two time series is minimal. 
Precipitation is characterized by a multifractal 
behavior leading to strong inhomogeneities and strong 
variability in rainfall rate. Therefore, at a fine 
resolution, time series obtained from devices located 
close enough to each other can differ significantly 
while maintaining common features such as the overall 
shape of the event. We showed that the DTW in a 
multiscale framework (IMs-DTW) by comparing 
rainfall time series at different time scales allows 
taking into account (at least partially) these features. 
Indeed, the multiscale approach of the algorithm that 
constrains fine-scale associations by the association of 
sequences on a larger scale is well suited to time series 
composed of subsequences in which scale relations 
exist, as in multifractal objects, thus allowing 
distributions of local statistics not to be identically 
distributed.  As another specificity rain time series 
encompass a great number of zeros among which a set 
of non-null rainfall rates belonging to a specific time 
interval defined as a rainfall event. An important issue 
for precipitation studies is to ensure that non-zero 
rainfall rates from a rainfall event are not associated 
with another event. Again, the multiscale approach 
helps to distinguish rain events from each other and 
thus allows to correctly associate the samples in each 
time series.  
When considering intra-event rain samples the analysis 
of the warping path provides useful information, 
especially for rain cells monitoring. Indeed, we have 
shown that if the same rain cell is at the origin of the 
two time series the associated warping path has a 
regular behavior which can be more or less considered 
as a time shift corresponding to the travel time of the 
cell rain from one meteorological station the other. The 
analysis of the warping path regularity is thus a good 
indicator to detect a rain cell passing through. When a 
rain gauge network is available, the calculation of the 
warping path between each pair of stations allows the 
identification of the rain cell through the network and 
thus, analyzing the warping paths offers a good tool for 
rain cell tracking. Moreover, the dissimilarity analysis 
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will provide information on the spatio-temporal 
distortion of the rain cell as it moves.   
Finally, since the proposed algorithm is derived from 
the FastDTW algorithm but with more restrictive 
constraints, it also significantly reduces the 
computation time compared to the standard DTW 
algorithms but also to a certain extent compared to the 
FastDTW algorithm (radius equal to 1). 
This work was primarily dedicated to the ability to use 
DTW algorithms to provide a pertinent measure of 
dissimilarity for rainfall time series. In future works, 
we will focus on applications using the IMs-DTW in 
the framework of precipitation such as rain cell 
tracking or rain events clustering [34, 37].  
The code source (in Python) and rain gauges data set 
are available on the GitHub deposit at the following 
address: https://github.com/djallelDILMI/IMs-DTW. 
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