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[1] The propagation of signals through the atmosphere plays a major role in the quality of
communications between ground terminals and satellites. Its characteristics have to be
known accurately for appropriate communications equipment to be selected. In the band
of frequencies used by operators in the future generation of satellites (beyond 20 GHz),
the quality of transmission is especially affected by the attenuation of received signals
because of rain, and by other less significant but much more frequent effects due to
atmospheric gases, and nonprecipitating water. These phenomena have a direct impact on
the availability ratio of a link between a ground terminal and a satellite. Our main goal
in this study is to measure the atmospheric attenuation, using dual-frequency ground-
based radiometers measuring the sky radiation at different pointing directions, so as to
perform a statistical study. A new algorithm, based on a neural approach, is thus developed
for estimating atmospheric attenuation, in various meteorological conditions, for several
elevation angles and for frequencies between 20 and 50 GHz, from dual-frequency
radiometric measurements. A validation of the obtained algorithm is performed on
Olympus experimental data for the 20 and 30 GHz channels. At the end of this paper some
applications are then presented to underline the usefulness of this new algorithm. The
applicability of the algorithm to satellite beacon calibration in Ka or Q band with accuracy
of 0.1 dB is shown. Preliminary joint statistics between attenuation at various pointing
directions obtained at 40 GHz show what improvement can be expected from satellite
diversity in the case of satellite constellations. INDEX TERMS: 6904 Radio Science: Atmospheric

propagation; 3359 Meteorology and Atmospheric Dynamics: Radiative processes; 3354 Meteorology and

Atmospheric Dynamics: Precipitation (1854); 3360 Meteorology and Atmospheric Dynamics: Remote

sensing; KEYWORDS: atmospheric attenuation, neural networks, propagation
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1. Introduction

1.1. Context

[2] The operators of communications satellites plan to
use frequency bands higher than 20 GHz. The develop-
ment of algorithms to allow the statistical study of
atmospheric attenuation at these frequencies using a
ground-based experimental device is thus of great inter-
est. The main areas of application of propagation
research at frequencies between 20 and 50 GHz are
fixed, and mobile, satellite communications system.

[3] Characteristics of atmospheric attenuation in the
frequency band of interest to this paper are two-fold. On
the one hand, atmospheric attenuation can cause a
significant degradation of the received signal (very large
attenuations are observed that can lead to signal loss
during severe storms). On the other hand, it shows a very
large spatial heterogeneity, especially with regard to rain.
Therefore, the effective use of this part of the spectrum is
possible only by implementing techniques to mitigate
atmospheric fading (up link power control, modulation
or adaptive coding and diversity).
[4] In the case of fixed satellites, the frequencies used

for IP-over-satellite and video-on-demand are primarily
Ku-band (12–14 GHz). Growing demand coupled with
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the need for growing bandwidth makes the use of Ka-
band (20–30 GHz) unavoidable for multimedia satellite
services. The next step is to move to higher frequencies
such as Q-band (36–46 GHz). Propagation studies at
these frequencies are thus needed [Arbesser-Rastburg,
2002]. This study makes it possible to characterize the
statistical behavior of the channel as a function of
frequency and elevation angle from the attenuation point
of view.
[5] For Ka-band mobile satellite communication sys-

tems, satellite constellations are subjected to atmospheric
attenuation, which is very inhomogeneous, especially in
the presence of rain or clouds. Using a technique known
as satellite diversity may solve this problem. The last part
of the present paper aims at quantifying the improvement
in terms of availability of a link if at least two satellites
are simultaneously visible from the same place, that is, if
the satellites of the constellation are numerous enough.
[6] In the near future satellite experiment will be

necessary for the exploration of Ka and Q band satellite
communication. The work presented in this paper,
among other things, aims at developing an algorithm
for satellite beacons calibration using brightness temper-
atures measured by dual-frequency radiometers.

1.2. Objectives and Methodology

[7] Our main goal is to determine the atmospheric
attenuation, in several directions, for frequencies between
20 and 50 GHz from radiometer brightness temperatures
measured at 20 and 30 GHz. Some Experiments per-
formed previously (OLYMPUS, ITALSAT) [Polonio
and Riva, 1998] or to be performed (SYRACUSE 3)
allow the attenuation of a link between a ground station
and a satellite to be directly estimated. They require
beacons on board the satellite so that at the present time
this kind of measurement remains relatively scarce. More-
over, for the study of satellite diversity, two or several
satellites would be necessary, thus increasing the cost of
the experiment.
[8] A more economic solution is proposed in this

paper, which consists in using two dual-frequency
ground-based radiometers measuring the sky radiation
at different pointing directions. The experiment, located
on the experimental site of Institut Pierre Simon
Laplace (near Paris), comprises two radiometers placed
side by side, associated with an additional spectroplu-
viometer, and other sensors (atmospheric pressure at
ground level, temperature). Sky brightness temperature
measurements are obtained at 23.8 and 31.7 GHz with a
RESCOM radiometer, for zenith angles between 0 and
60�, and at 23.8 and 36.5 GHz with the DRAKKAR
radiometer. Both are balanced Dicke radiometer. An
integration time of 1 s leads to a resolution of 0.3 K,
and a accuracy of 1.5K is obtained by using tip-
curve calibration. For each radiometer, one channel is

sensitive to water vapor absorption and the other to
liquid water absorption. Brightness temperatures are
then converted by means of the statistical model that
has been developed and validated as described below,
into atmospheric attenuation at various frequencies
ranging from 20 to 50 GHz. As explained later, the
main limitation of our approach is the difficulty to
estimate larger attenuations by means of ground-
based radiometers. A validation of the obtained results
by a comparison with attenuations measured during
the Olympus experiment allows this limitation to be
quantified.
[9] After some general considerations pertaining to

atmospheric attenuation (section 2) and the retrieval
algorithm using radiometric measurements (section 3),
this paper describes a new statistical neural-network
model for estimating the attenuation undergone by a
radio link between a terminal on the ground and a
satellite. The simulated database used to develop this
neural network algorithm is described in section 4.
Section 5 shows the performance of this new algorithm
at the 20 and 30 GHz using Olympus experimental data.
In the last part of this paper, applications of the algorithm
to carry out attenuation measurement campaigns are
presented.

2. Atmospheric Attenuation

[10] In the microwave range, between 10 and 60 GHz,
atmospheric absorption is due to atmospheric gases and
hydrometeors [Ulaby et al., 1981]. In the Earth’s atmo-
sphere, oxygen and water vapor are the only constituents
that exhibit significant absorption bands in the micro-
wave spectrum [Liebe et al., 1993; Rosenkranz, 1998]. In
the microwave region, water vapor has rotational absorp-
tion lines at 22.235 and 183.31 GHz. The microwave
absorption spectrum of oxygen consists of a large num-
ber of absorption lines between 50 and 70 GHz and an
additional line at 118.74 GHz.
[11] The total gaseous absorption coefficient kg at

height z for a frequency f, is thus given by

kg f ; zð Þ ¼ kH2O f ; zð Þ þ kO2 f ; zð Þ Npkm�1
� �

: ð1Þ

For a given frequency, this coefficient depends on
temperature, pressure, and relative humidity, of the
atmosphere at height z.
[12] The interaction of electromagnetic radiation with

particles (such as those in clouds, fog, snow, or rain) may
involve both absorption and scattering. The volume
extinction coefficient is governed by the density, shape,
size distribution, and dielectric properties of the particles
contained in the volume.
[13] Clouds, on the other hand do not contain particles

with radii greater than 0.1 mm, so that the Rayleigh
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approximation is applicable at the considered frequencies
considered here [Ulaby et al., 1981]. For ice particles,
the imaginary part of the refractive index of ice is very
small. The attenuation due to ice clouds is thus negligible
relative to water clouds.
[14] Because raindrops are larger than drops in clouds,

ignoring scattering effects of rain in favor of absorption
is valid only over a limited combined range of rain rates
and frequencies. Thus, scattering effects are taken into
account in the simulation that has been performed here
(see section 4.2). However, for simplicity, scattering
effects are not taken into account in the following
equation. The extinction coefficients for clouds (kc) and
rain (kr) are equal to volume absorption coefficients and
for a given frequency they depend only on water content
and temperature at height z.
[15] The total absorption coefficient at height z thus

consists of contributions due to atmospheric gases,
clouds and precipitation. It is given by

ka f ; zð Þ ¼ kg f ; zð Þ þ kc k; zð Þ þ kr f ; zð Þ Npkm�1
� �

:

ð2Þ

For a zenith angle q smaller than 70�, a spherically
stratified atmosphere may be approximated by a planar
atmosphere. Thus, the optical depth t of the atmosphere
between 0 and z is given by

t f ; z; qð Þ ¼ sec qð Þ
Zz

0

ka f ; uð Þdu Np½ �: ð3Þ

The atmospheric transmissivity for the entire atmosphere
is defined by

t f ; qð Þ ¼ exp �t f ;1; qð Þð Þ: ð4Þ

When expressed in dB, the total atmospheric loss factor
1/t( f,q), becomes A( f, q), and is referred to as the
atmospheric attenuation.

A f ; qð Þ ¼ 4:343t f ;1; qð Þ dB½ �: ð5Þ

In fact, under clear-sky conditions (ka equals kg), the
atmospheric attenuation is relatively small (except for
50 < f < 70 GHz), and the involved absorbing
constituents (gases) are more or less horizontally
stratified. On the contrary, in the presence of clouds
and even more so in the presence in rain, the increase in
atmospheric attenuation is combined with an increase in
its horizontal variability. The statistical study of atmo-
spheric attenuations simultaneously measured at various
elevation angles will show the interest of the satellite
diversity technique. In the last part of this paper a
statistical study of attenuation for various pointing
directions simultaneously visible from a given point on

the ground is performed. Our aim is to check whether the
correlation between various pointing directions is
sufficiently small to make the technique of satellite
diversity valuable for frequencies between 20 and
50 GHz. In other words, by assuming that higher
attenuation values can be observed usually in a highly
heterogeneous atmosphere, the angular distance between
two different links, for which they are not both
simultaneously affected by rain, will be estimated.

3. Attenuation Retrieval by Means of a

Radiometer

3.1. Brightness Temperature

[16] The basic principle of radiometry is that a fixed
relation exists between the absorption of a medium and
its spontaneous emission of thermal radiation. A
radiometer is a passive receiver, which measures, in a
given direction, the electromagnetic energy radiated by
the medium. In our case, each component of the
atmosphere (gases, hydrometeors) will contribute some
of this radiation, to which it will be necessary to add
the cosmic radiation background. For a nonscattering
atmosphere, the sky brightness temperature measured at
the ground surface is given by the radiative transfer
equation [Chandrasekhar, 1960]

TB f ; qð Þ ¼ Tc t f ; qð Þ þ sec qð Þ
Z1

0

T zð Þ exp �t f ; z; qð Þð Þ

	 ka f ; zð Þdz K½ �; ð6Þ

where T(z) is the physical temperature at height z and Tc
is the cosmic background.
[17] The above formulas show that attenuation and

brightness temperature depend on the same atmospheric
parameters (temperature, pressure, water vapor, cloud
liquid water and precipitation profiles). In the presence
of rain, scattering effects have to be added in the
radiative transfer equation, as explained in section 4.2.
[18] The main limitation of this approach, which con-

sists in using radiometers to measure atmospheric attenu-
ation, is that large values of attenuation cannot be
correctly estimated for two reasons:
[19] First, large attenuations are predominantly caused

by rain, so that the water films and flows occurring on the
radiometer reflectors modify their reflection coefficient,
thus making the radiometer measurement erroneous. For
this reason, blowers have been added to the radiometers
used in the present experiment to allow measurements to
be carried out during small rain events and immediately
after rain events.
[20] Second, because of a saturation phenomenon: if

the atmospheric optical depth t(q) increases, the electro-
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magnetic radiation due to the upper atmospheric layers
are strongly attenuated by the lower layers, so that
the radiometer mainly receives radiation originating from
the lower part of the atmosphere. Figure 1 shows the
variation of brightness temperature at 21 and 36 GHz and
atmospheric attenuations estimated at 20, 30, 40 and
50 GHz for a homogeneous rain layer at different rain
rates. These curves were all obtained for the same
pointing direction, namely, a zenith angle q of 60�. The
higher the rain rate of the layer, the smaller the brightness
temperature increase, whereas the attenuation continues
to increase regularly. For high brightness temperatures,
this saturation phenomenon, combined with the effect of
measurement uncertainty, leads to an increase in the
uncertainty of attenuation retrieval. Even in the absence
of rain or thick clouds, a previous study [Bosisio and
Mallet, 1998] had underlined the nonlinearity of the
relationship between brightness temperature and inte-
grated atmospheric contents.

3.2. Existing Models for Small Attenuations

[21] These models have been developed and used to
estimate the attenuation due to the atmosphere with a
very high precision (0.1 dB), but only in periods of clear
sky.
3.2.1. Classical Approach
[22] The effective temperature, Tm, which is a profile -

and frequency - dependent quantity, is defined as

Tm fð Þ ¼ sec qð Þ
1� t f ; qð Þ

Z1

0

T zð Þ exp �t f ; z; qð Þð Þ

	 ka f ; zð Þdz K½ �: ð7Þ

Using this quantity and the radiative transfer equation (6),
the total attenuation (5) can also be written as

A f ; qð Þ ¼ 10 log
Tm fð Þ � Tc

Tm fð Þ � TB f ; qð Þ

� �
dB½ �: ð8Þ

This model assumes that Tm is known. It is generally
considered to be constant (280 K). This model is
accurate only for very small attenuations that correspond
to the clear-sky condition (i.e., when TB 
 Tm). As
shown in Figure 2, this assumption is not valid when it is
desired to increase the validity range of the model to
cloudy or slightly rainy situations. This has been
confirmed by the fact that the effective temperatures
Tm computed for various meteorological conditions
provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF), see section 4.1 for more
details, shows a great variability depending on the
climatic zones.
3.2.2. C.N.E.T Model
[23] This model [Mallet and Lavergnat, 1992] was

developed in the context of the Olympus Propagation
Experiment (OPEX) [1994]. It was used to calibrate the
measurements, of the OLYMPUS 20 and 30 GHz
beacon, carried out with the French ground station,
and had been specifically developed for estimating the
attenuation in periods of clear sky with an accuracy of
0.1 dB:

t f ; qð Þ ¼ a f ; qð Þ*TB21
þ b f ; qð ÞTB31

þ g f ; qð Þ: ð9Þ

This model assumes a linear relation between atmo-
spheric transmissivity and the two brightness tempera-
tures (in kelvins) at 21.3 and 31.7. The atmospheric
attenuation is thus derived using equations (4) and (5).

Figure 1. Brightness temperature of the sky and attenuation for frequencies between 20 and
50 GHz, and zenith angle of 60�, as a function of rain rate.
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Sets of coefficients (a, b, g) were determined for
various frequencies and elevation angles of the satellite.
Because of the lack of radiometer measurements
collocated with atmospheric soundings, simulated
databases have been used to obtain these coefficients.
A large set of vertical profiles (of pressure, temperature,
humidity) obtained from radiosoundings, have been
associated with 14 standard cloud models. A radiative
transfer model able to simulate brightness in clear or
cloudy conditions has been used to build a sufficiently
large database. However, this linear model is no longer
applicable for the present study because its validity range
is restricted to small attenuations, between 0 and 1 dB at
20 GHz, since it was developed specifically for beacon
calibration, in order to retrieve clear-sky attenuation.

3.3. A New Approach

[24] The aim here is to extend this previous model so
as to estimate atmospheric attenuation at a given fre-
quency f and a given zenith angle q from two measured
brightness temperatures. Similarly to the previous model,
the output of the new algorithm is transmissivity, the
atmospheric attenuation being computed according to

equations (4) and (5). Now, the problem to be solved is
to derive a law of the following form:

t f ; qð Þ ¼ F TB1
qð Þ; TB2

qð Þ; sec qð Þ; f½ �; ð10Þ

where f ranges from 20 to 50 GHz, and q, from 0� to 60�.
[25] The inputs TB1(q) and TB2(q) are a pair of bright-

ness temperatures measured at frequencies f1 and f2 for a
zenith angle of q. Frequency f1 is within the water vapor
absorption line (near 22 GHz) and frequency f2. is
located between the water vapor and oxygen absorption
lines (between 30 and 40 GHz); thus one channel is
sensitive to the water vapor contribution and the other, to
the liquid water contribution. The frequency pairs con-
sidered in this paper are given in section 1.2. The zenith
angle q corresponding to the measurement direction and
the frequency f at which the attenuation had to be
estimated are also inputs to the new model so as to
avoid an interpolation, which would otherwise be needed
when the model coefficients are computed only for a
finite number of angles and frequencies. The atmo-
spheric transmissivity depends on the atmospheric thick-
ness, so that the cosecant of the zenith angle is used as an
input. A possible improvement by using other param-
eters, such as ground pressure or temperature, has also
been tested, but has not proved to be significant for f <
50 GHz and thus, will not be reported here.
[26] As explained above, the linear assumption used

in the previous model is no longer valid in case of
heavy clouds [Bosisio and Mallet, 1998] or rain. It is
indeed advisable to take into account the saturation
effect on the measurement of the brightness temper-
atures by introducing a nonlinearity into the model. For
this reason, we chose to use an artificial neural network
(NN) approach whose ability to model nonlinearity is
well known [Haykin, 1999]. However, this approach,
like most statistical methods, is particularly sensitive to
the statistical representativeness of the database used for
the development. The two following paragraphs are
devoted to the development of this new algorithm, while
the next part describes how the data are simulated and is
followed by a description of the new model itself.

4. Simulated Database

[27] As explained in the next section, NNs must be
trained to process inputs before they can be used in a
given application. This training is performed in a super-
vised manner and involves the development of a training
base. Thus, a very large database containing the NN
input data (TB1

(q), TB2
(q), sec(q), f ) and corresponding

targets (t( f, q)) is generated. The scarcity of in situ
meteorological data concerning cloud systems implies
tackling this problem through simulated data. It is thus a
matter of computing, for many different meteorological

Figure 2. Distribution of effective temperature Tm at
20 GHz for different climatic areas: (a) the equator,
(b) medium latitudes, and (c) poles.
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situations, on the one hand the ground-based radiometer
measurements, and on the other hand, the quantities to be
retrieved (attenuations or transmissivity).

4.1. Selected Atmospheric Profiles

[28] The atmospheric profiles are obtained from the
European Centre for Medium-Range Weather Forecasts
(ECMWF) model [Tiedtke, 1993]. Initially, 42,000 data
points were available, corresponding to the 36-hour
forecast experiment performed on 10 and 16 February
1998. Each data item consists in profiles of temperature,
pressure, moisture, cloudy liquid water, cloud cover,
precipitation rain and ice, for 31 altitude levels with a
spatial resolution of 0.5� � 0.5�.
[29] The variety of situations is ensured by the global

geographic coverage. In fact, a previous study [Gérard
and Eymard, 1998] has shown that even if only a few
days are considered, the global coverage is representative
of the natural seasonal variability of the atmospheric
parameters. A specific processing is performed in order
to obtain a statistically representative subset. This reduc-
tion in the number of samples is imposed because of the
large computing time involved and also because of the
natural distribution of meteorological situations. As can
be expected smaller, atmospheric attenuations correspond
to the most frequently occurring meteorological situa-
tions. Therefore, a NN trained on such a data set will only
be able to correctly learn the relation (10) that corre-
sponds to weak attenuation. The problem to be solved is
to reduce the number of data only in areas of large
probability density, while preserving the least frequent
cases. The difficulty in this selection resides in the
dimension of the data space. In fact, each data item
consists in seven atmospheric profiles with 31 vertical
layers, so that the initial data space dimension is greater
than 200. A reduction in this dimension is first done by
extracting 13 quantities characteristic of each data item
(such as water vapor integrated content, cloud liquid water
content, rain rate, ground temperature and pressure, . . .).
A selection is then performed by using a representation
of the whole data set with a Self-Organizing Map
(SOM). Algorithms proposed by Kohonen [2001] have
been used to obtain such a map. As explained by Haykin
[1999] in a book devoted to neural networks, a SOM has
three properties: (1) The SOM algorithm is able to
represent a large set of input data by finding a smaller
set (a map) of prototypes (neurons), so as to provide a
good approximation of the original input space. (2) The
computed map is topologically ordered, that is, the
spatial location of each neuron corresponds to a partic-
ular domain or feature of the input data. (3) The obtained
map reflects the variation in the statistics of the input
distribution; in other words, SOM map is able to approx-
imate the probability distribution function of the input
data set.

[30] SOM maps may thus be viewed as a nonlinear
generalization of the principal component analysis. In our
case a 2-D map of 23 � 23 neurons has been generated.
Each of the 529 neurons corresponds to a cluster of
neighbor profiles in the input space. The number of
profiles retained in each cluster depends on the density
of the considered cluster. Finally, 5268 profiles were
retained. The aim of this selection is double: to keep
the maximum variety of atmospheric profiles, and the
need to over-represent rare cases so as to be able to
develop neural network algorithms capable of retrieving
attenuation in a large range of values.

4.2. Radiative Transfer Model Used to Construct
the Databases

[31] A radiative transfer model [Moreau et al., 1999]
applied to the selected profiles allowed the construction
of a large simulated database. This model determines the
radiative transfer of radiation through a horizontally
stratified atmosphere, also referred to as a one-dimen-
sional plane-parallel model. It uses the discrete ordinate
eigenanalysis method [Tsang et al., 1985] to solve the
radiative transfer equation. Concerning the absorption of
gases (oxygen and water vapor), Liebe’s Microwave
Propagation Model [Liebe et al., 1993] was selected in
accordance with the results of English et al. [1994] for
computing the atmospheric attenuation. For frequencies
below 60 GHz, the scattering effect of clouds is negli-
gible, so that the cloud liquid water is considered as
being comprised of Rayleigh particles. For rain, the
particles are thus assumed to be spherical and the
components of the scattering matrix are computed using
Mie’s theory, with the Marshall and Palmer [1948] law
for the particle size distribution. A noise, uniformly
distributed between �1.5 K and +1.5 K, was added to
simulated brightness temperatures; this corresponds to
measurement uncertainty.
[32] For each of the 5268 selected profiles the bright-

ness temperatures (6) at radiometer frequencies f1 and f2
and the transmissivity (4) are computed for 27 different
values of frequency ( f = 18.5, 20, 20.7, 21.3, 22.5, 23.8,
25, 26, 27, 28, 29, 30, 31.7, 32, 33.5, 35, 36.5, 37, 38,
39, 40, 41.4, 43, 45, 47, 50 and 51 GHz) and 9 zenith
angles (q = 0�, 30�, 50�, 52.7�, 55�, 52.7�, 55�, 57.7� and
60�) so as to obtain cosecant values that are approxi-
mately regularly spaced. Finally, a set of 27 � 9 �
5268 = 1280124 triplets (brightness temperature at f1 and
f2 frequencies, and transmissivity) is thus computed.

5. Algorithm for Attenuation Measurement

5.1. Training of Neuronal Model (MLP)

[33] Several theoretical results prove the usefulness of
NNs as a universal approximator [Cibenko, 1989; Hornik
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et al., 1989]. NNs are capable of learning from examples
and do not require a priori assumptions about the
function that they approximate. However, theory shows
the existence of an architecture, but it does not indicate
how to choose it.
[34] The neural network used to model the relationship

given in (10) is a Multi-Layered Perceptron (MLP). A
neuron is a nonlinear, parametric and bounded, algebraic
function. A MLP applies an algebraic function to its
inputs, by combining the functions performed by each
of its neurons. A neuron is defined by its state oi, its
connection weights wij to neurons located upstream, and
its activation function f. It carries out following operation:

oi ¼ f sið Þ with si ¼
Xn
j¼1

wijoj: ð11Þ

The use of nonlinear activation functions f makes it
possible to obtain nonlinear statistical models.
[35] A NN is defined by its architecture and weights.

In other words, it is characterized by its topology,
namely, the number of inputs, outputs and hidden neu-
rons, the chosen activation function f, and how neurons
are interconnected. A MLP consists of successive layers
(a layer is a set of nonconnected neurons). All connec-
tions are directed from lower to upper layers. Neurons of
the first hidden layer derive their state from the inputs of
the model with their assigned weights. Neurons of other
layers derive their state from the outputs of the previous
layer with their own weights.
[36] For a fixed architecture, the set of functions

defined by the network depends on set of weights W of
its various connections. A particular architecture thus
generates a family of functions:

<p ! <q

x ! y ¼ F W ; xð Þ:
ð12Þ

The estimation of the weights, which constitutes the
learning process, requires a wide set, D, of input/output
pairs corresponding to the system to be modeled by the
NN. In our case,

D ¼ xi; yið Þ; i ¼ 1 . . .Nf g

where

x ¼ TB1
qð Þ; TB2

qð Þ; sec qð Þ; f½ �

y ¼ t q; fð Þ:

8><
>: ð13Þ

The optimal architecture obtained is described in
Figure 3. Finally, two different neural networks with
the same architecture (two hidden layers of 18 neurons
each) were trained. So as to obtain two different sets of
weights: A first neural network has been trained on
frequencies between 18 and 25 GHz and the second one

on frequencies between 25 and 50 GHz. In fact due to
gaseous absorption we observe a high nonlinearity near
the 22.5 GHz water vapor line and above 40 GHz
(oxygen absorption lines). This separation in to two
different frequency ranges provides better performance
than a global network.
[37] The learning step consists in determining the

weights W by minimizing a cost function, i.e., a
measure of the mismatch between target values and
predicted values. The expression of this empirical cost
function J(W ) is the following least squares error
function:

J Wð Þ ¼
XN
i¼1

yi � F W ; xið Þð Þ2: ð14Þ

To approach the minimum of this multidimensional cost
function, a gradient technique, which is an iterative
optimization method, adapted to MLP by gradient back-
propagation [Bishop, 1995], is used. Cross-validation
tests, based on a procedure referred to as the early
stopping method of training [Haykin, 1999], allowed us
to control the quality of the minimum estimation and of
generalization. Theory shows that, if the architecture of
the MLP is well chosen, the minimization of J(W ) is
achieved correctly, and the observation set is consistent
with the true field of variables, the MLP giving an
accurate approximation of the mean fields of the
variable y. Specifically:

F x;Wð Þ � E Y=x½ �:

In the present case, E[Y/x] is the conditional average of
transmissivity. This allows one to fit the desired
nonlinear transfer function using noisy data.

5.2. Generalization on Simulated Data

[38] In the following, the performance of the model is
obtained in a general case on a subset of data that was

Figure 3. Architecture of the neural network developed.
Four inputs: a pair of brightness temperatures TB at two
different frequencies f1 and f2, the cosecant of zenith
angle q and the frequency ( f ). One output: the atmo-
spheric transmissivity at frequency f and zenith angle q.
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not used during the learning step, the test set. The
quality of the obtained model is considered with respect
to the statistical and physical results it leads to. Figure 4
shows the evolution of the bias and standard deviation
of the error function of attenuation obtained for 20, 30,
40 and 50 GHz, respectively, for all considered zenith
angles. It should be noted that error increases with
increasing attenuation, either due to atmospheric con-
tent or length of atmospheric path (zenith angle). For a
20 GHz attenuation lower than 7 dB and a 40 GHz
attenuation lower than 15 dB results are reasonable.
This corresponds to clear or cloudy sky conditions as
well as to some rainy events. The higher the zenith
angle, the more likely these limits will be reached for
small rain rates because of the saturation phenomena
described in section 3.1.
[39] So as to check whether the neural network cor-

rectly models the underlying physics, we have verified

for numerous profiles that the relation between the
radiometer measurements and the atmospheric transmis-
sivity at different frequencies and different angles was
well represented by the networks. Figure 5 shows the
attenuation versus frequency for two different zenith
angles (q = 0� and 60�) and for two particular samples
corresponding to small (Figure 5a) and large (Figure 5b)
attenuation situations, respectively.
[40] Solid curves are those given by the statistical

model (new NN algorithm) and the curves marked with
circles by the physical one (radiative transfer model
described in section 4.2). As can be seen, the non-
linearity of the relation between measurements and
transmissivity is well represented by the networks. The
gaseous absorptions are correctly estimated for frequen-
cies below 45 GHz as evidenced by the presence of the
water vapor and oxygen absorption lines in Figure 5a.
For frequencies in the neighborhood of the oxygen

Figure 4. Generalization error of the NN attenuation model at 20, 30, 40 and 50 GHz obtained on
simulated data. The thick line corresponds to the error bias, and the thin line corresponds to the
standard deviation error as a function of attenuation.
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resonance region, the algorithm requires an improve-
ment, for instance by taking ground pressure into
account. A better solution would be to use a radiometer
having with a third channel near 50 GHz, but in this case
another algorithm would have to be developed. Rain
attenuation present in the second sample (Figure 5b) is
correctly estimated for zenith angles equal to zero (i.e.,
for a small thickness of the atmosphere). When the
thickness of the rain layers increases (i.e., for higher
zenith angle) and in particular for frequencies higher than

30 GHz, attenuation becomes more sensitive to the
presence of rain, leading to very high attenuation (higher
than 15 dB). In that case, the algorithm should not be
used, except if a weak accuracy is accepted, because, as
mentioned in the previous statistical study, strong under-
estimation are observed. The algorithm cannot be used in
such cases except if a good accuracy is not required.
However, for many applications in the field of tele-
communications, it is very useful to have a good knowl-
edge of attenuations in Ka-band only up to 10 dB. This

Figure 5. Attenuation versus frequency obtained for two particular atmospheric profiles
corresponding to (a) low and (b) high attenuation situations, respectively. In each figure part the
two curves correspond to two zenith angles: (bottom) 0� and (top) 60�.
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would be the case, for example, of Very small Aperture
Terminals (VSAT).

5.3. Confronting the Model to Measured Data

[41] The NN attenuation model was applied to the
derivation of atmospheric attenuation at different fre-
quencies from the brightness temperatures measured by
the dual-frequency radiometer RESCOM during the
Olympus Propagation Experiment (OPEX ) [1994]. For
the two beacon frequencies (20 and 30 GHz), the
obtained attenuations, derived from the radiometer mea-
surements, are compared with those directly measured
between the satellite and the ground station (see

Figure 6). These data have been collected during five
consecutive months (May–September 1992) by the
French Olympus ground station in Gometz la Ville (near
Paris) for a zenith angle of 60�.
[42] With this measured data set, the algorithm gives a

good agreement between beacon and radiometer attenu-
ations, when it is smaller than 6 dB (10 dB) for 20 GHz
(30 GHz). For higher attenuations an increase in bias is
observed like in results presented above for simulated
data (Figure 4). This is deemed as validating the NN
attenuation models at 20 GHz and 30 GHz, even if
scatter noted for the measured data is, of course, more
significant than with simulated data.

Figure 6. Generalization error of the NN attenuation model at (a) 20 and (b) 30 GHz obtained on
actual data measured during the Olympus experiment. The thick line corresponds to the error bias,
and the thin line corresponds to standard deviation error as a function of attenuation.
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[43] No direct validation can be performed for the
other frequencies. However, the good agreement
observed with the 20 and 30 GHz beacon measure-
ments also provides an a priori validation of the data-
bases used to develop the different algorithms.
Atmospheric profiles and the radiative transfer model
used being identical for all frequencies between 20 and
50 GHz, this partial validation is an evidence of the fact
that the results obtained are also relevant for the other
channels.
[44] Moreover, for these higher frequencies the validity

range of the attenuation algorithm will increase. In fact,
as explained in section 3.1 this limitation comes from the
saturation phenomenon observed on measured brightness
temperatures themselves. Saturation starts from a 20 GHz
attenuation of 6 dB, corresponding to a 50 GHz attenu-
ation of about 20 dB (see Figure 1).
[45] It is not easy to compare with others algorithms

because they are not devoted to strong attenuations, i.e.,
for rainy conditions or in presence of heavy clouds. In
clear-sky condition (low attenuation) the performances
of our algorithm are very similar to those of other
algorithms. However, our algorithm contrary to others,
is not devoted to particular frequency and elevation
angle, but can be used for any frequencies between
20 and 50 GHz.

6. Applications

[46] In this section some applications of this new NN
attenuation model are presented.

6.1. Attenuation Statistics

[47] Our new NN attenuation model has been
applied to RESCOM measurements made during the
Olympus experiment. The experimental data used here
were obtained between May and October 1992 in
Gometz-la-Ville (France). Figure 7 shows the statistics,
in time percentage, for the cumulated attenuation
obtained at different frequencies. A threshold of, for
example, 8 dB is reached during 0.16%, 0.41%, 0.88%
and 2.15% of the time for frequencies equal to 20, 30,
40 and 50 GHz, respectively. This amounts to more
than 7 days per year for the 50 GHz channel. These
curves underline the difficulty encountered when using
Ka or Q-band or higher frequencies for telecommuni-
cations applications.
[48] Figures 7a and 7b make it possible to compare

statistics obtained at 20 and 30 GHz, on the one hand,
directly using the beacons of the Olympus satellite, and
on other hand, with the NN model applied to radiometer
measurements. Here again, the limitation in the estima-
tion of strong attenuations is observed. The underesti-
mation of larger attenuations makes it difficult to use the
rightmost part of these curves. However, for attenuations

lower than 10 dB a good agreement is observed with
Olympus results, which is useful for most studies on
communications satellite systems.

6.2. Beacon Calibration

[49] Because of the limitation of the approach pre-
viously mentioned, high atmospheric attenuation can
only be determined accurately with the aid of a satellite
beacon signal. Naturally, this can be done only for a
particular frequency and a particular zenith angle. For
future experimental satellite with Ka and Q bands
beacons on board, it is important to determine the
0 dB level relative to which the atmospheric attenu-
ation is measured. In fact, this no-attenuation level is
not constant because the transmitted signal shows daily
variations caused by possible satellite motions and
temperatures changes. To separate daily variations of
the satellite beacon signal from propagation effects, a
dual-frequency radiometer is thus used to perform
accurate measurements of clear-sky attenuation inde-
pendently of satellite variations. The model described
above in section 3.2.2, as previously pointed out has
been developed in the context of the Olympus experi-
ment to calibrate the beacon signal using the radiom-
eter system, under clear-sky conditions, with an
accuracy of more than 0.1 dB. The NN model devel-
oped in this paper is well suited to atmospheric
attenuation retrieval from radiometer measurements to
perform the calibration of the Ka and Q bands beacons.
Considering the performance of the present model for
beacons frequencies of 20.7 and 41.4 GHz (corre-
sponding to frequencies band allocated to this kind
of study) and zenith angles between 30 and 60� and
for clear-sky attenuation estimation only, the error
distribution shown in Figure 8 was obtained. The aim
of 0.1 dB accuracy is thus always reached for the
20 GHz channel. For the 41.4 GHz channel an
accuracy of 0.2 dB is reached, which is a good but
required result for the study of link impairment to be
performed during this coming experiment.

6.3. Satellite Diversity for Satellite Constellation

[50] In the considered frequency band, strong rain
results in temporary unavailability of the radio link.
However, atmospheric liquid water in clouds or rain
has the property of being spatially heterogeneous, with
rain cells of a few square kilometers only. Thus, using a
technique known as satellite diversity can solve tempo-
rary radio link unavailability. It is clear that gains in
service availability through satellite diversity would be
more significant if the various links behaved in an
uncorrelated manner or, if they presented low correlation
values, which are more likely to occur when the angular
separation between links is large. The correlation coef-
ficient for different angular separations of links is thus
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useful to evaluate the benefits of satellite diversity. In
view of the quantification of this correlation, a measure-
ment campaign is in progress, using two radiometers, as
described below. Preliminary results obtained between
July 2000 and February 2001 are presented in this
section.
[51] Two radiometers placed side by side measure the

atmospheric attenuation simultaneously for two differ-
ent pointing directions. The RESCOM radiometer is a
scanning radiometer that performs measurements at
23.8 and 31.7 GHz frequencies and the DRAKKAR
radiometer measurements are obtained at 23.8 and

36.5 GHz. The NN model presented in this paper has
been applied to these brightness temperatures to derive
the atmospheric attenuation at four frequencies (20, 30,
40 and 50 GHz).
[52] Since we only want to study the effect of atmo-

spheric heterogeneity, the attenuations used in the next
paragraphs are normalized so as to make them indepen-
dent of atmospheric thickness, i.e., of elevation angle.
The normalized attenuation is given by

AN f ; qð Þ ¼ A f ; qð Þ
cos qð Þ : ð15Þ

Figure 7. Exceedance time percentages of attenuation estimated by means of the Olympus
beacons (thin) or deduced from radiometer measurements by means of the NN model (thick).
Frequencies of (a) 20, (b) 30, (c) 40, and (d) 50 GHz are shown.
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With normalized attenuation, the differences observed
between two directions can be attributed mainly to
spatial heterogeneity of rain or clouds.
6.3.1. Case Study
[53] Figure 9 shows for a particular event the interest

of satellite diversity in case of inhomogeneous atmo-
sphere. 40 GHz attenuations estimated from DRAKKAR
measurements in the zenith direction are plotted on the
x axis, and 40 GHz normalized attenuations estimated
from RESCOM simultaneous measurements at a zenith

angle of 60� in the west direction are plotted on the y axis.
These measurements are obtained at the beginning of a
rain event and thus correspond to a period of increasing
attenuation. At the beginning, the atmosphere is homo-
geneous and the two normalized attenuations are equal to
0.5 dB. When the rain cell approaches the experimental
site, the attenuation estimated on the slant path increases
abruptly, whereas the attenuation measured in the vertical
direction remains constant. Little by little, the precipitat-
ing cell moves on, and the vertical path also becomes

Figure 8. Distribution of the NN model error (a) on the 20.7 GHz attenuation, and (b) on the
41.4 GHz attenuation retrieved from brightness temperatures measured at 21.3 GHz and 31.6 GHz.
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affected by strong attenuation. The end of this event
could not be represented because a water layer was
present on the radiometer reflector, was not too thick
to be removed by the blower system. This typical case
shows how satellite diversity can increase the quality of
the link.
6.3.2. Statistical Study
[54] Joint statistics between atmospheric attenuations

measured in various pointing directions are presented in
Figure 10 for the 40 GHz channel. These statistics are
obtained for two paths in the east/west directions. The
four different subplots corresponds to q1 = 5�, 18�, 23�
and 41�. For each pair of angles (q2 = �q1) the correlation
coefficient r(q1,q2) is given. When the distance between
the two paths increases the effect of heterogeneity also
increases, which explains the increased scattering around
the bisecting line. For an angular separation between
paths increasing from 10� to 82� the correlation coeffi-
cient r decreases from 0.98 to 0.8.
[55] Figure 11 shows, for the four considered frequen-

cies, the improvement in terms of the exceedance time
percentage of the attenuation brought about by satellite
diversity. Statistics of cumulated attenuation obtained in
one pointing direction are compared with those obtained
when a second pointing direction is simultaneously
available. In this second case, a ‘‘diversity attenuation’’
is defined as the smaller of the two attenuations obtained

on the two directions. The attenuation considered alone
corresponds to a path with a hypothetical satellite located
towards the west. The technique of satellite diversity is
applied in the case when two hypothetical satellites are
simultaneously visible towards the west and the east. The
two ground-satellite paths have a zenith angle of 40�.
[56] Results obtained for this particular configuration

showed a significant improvement in service availability
thanks to the diversity effect. At 20 GHz (30 and 40 GHz,
respectively) with only one satellite, the attenuation is
greater than 7 dB (16 and 30 dB, respectively) during
0.01% of time, whereas it is brought back to 4 dB (8.5
and 16 dB, respectively) if the two satellites are judi-
ciously used, that is, if the less attenuated path is always
used. The statistics computed here show that the mean
attenuation at 0.01% of time with two satellites (A2

0.01%)
is related to the one obtained with one satellite only
(A1

0.01%) by the following law:

A0:01%
2 ¼ r qð Þ A0:01%

1 with

r 40�ð Þ ¼ 0:56

r 16�ð Þ ¼ 0:66

r 10�ð Þ ¼ 0:96

r 0�ð Þ ¼ 1:

8>>>>>>>><
>>>>>>>>:

ð16Þ

Figure 9. Evolution of the 40 GHz attenuation at two pointing directions: The zenith attenuation
is shown on the x axis, and the attenuation measured for a 60� zenith angle towards the west is
shown on the y axis.
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The variation of coefficient r(q) is relatively independent
of frequency with a variation of less than 5% for
frequencies between 20 and 50 GHz.
[57] When the zenith angle q decreases, r(q) tends

towards 1. As could be expected, for q equal to 0, both
paths are identical. This diversity coefficient is related to
atmospheric heterogeneity, so that it increases when the
path separation decreases (that is for increasing q). Only
partial results are presented here to show the applications
of the present NN model, but satellite diversity is a wide
subject that would need a more in-depth study, which is
outside the scope of the present work.

7. Conclusion

[58] A large and statistically representative simulated
database allows a NN attenuation model to be developed.

This model estimates the atmospheric attenuation for
frequencies between 20 and 50 GHz from dual-beam
radiometer data for any pointing direction. The optimal
model is a MLP with four inputs (brightness temper-
atures measured at frequencies near 22.5 and 30 GHz,
the cosecant of the zenith angle and frequency), two
hidden layers with 18 neurons each and one output (the
atmospheric transmissivity).
[59] This statistical model has been successfully vali-

dated for the 20 and 30 GHz channels through a
comparison between the modeled atmospheric attenua-
tion derived from radiometer measurements and attenu-
ation directly measured on satellite beacons (Olympus).
[60] Under clear-sky conditions, this new model gives

an accuracy better than 0.1 dB at 20 GHz and better than
0.2 dB at 41 GHz. It can thus be used for satellite beacon
calibration in Ka or Q bands. For other atmospheric

Figure 10. Joint statistics between atmospheric attenuation observed for four different pairs of
angles (q1, �q1) at 40 GHz. The corresponding correlation coefficients are given. Angle pairs, from
left to right, and top to botton: 5�, 18�, 23�, 41�. See color version of this figure at back of this issue.
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conditions (clouds or rain), the validity range of this new
model is much wider than other existing models.
[61] This new model, when applied to radiometer

measurements, will allow the simultaneous study of one
or several links, and thus make it possible to take
attenuation correlation effects into account. This ap-
proach can be used to use correlation coefficient data as
inputs to statistical propagation models for evaluating
diversity gain.
[62] The preliminary statistical results obtained at

40 GHz shows the interest of satellite diversity, with a
diversity gain ranging from 1 to 0.56 for zenith angles
from 0� to 40�.
[63] The model presented in this study is available in

MATLAB1 on direct request from the authors.
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Figure 10. Joint statistics between atmospheric attenuation observed for four different pairs of
angles (q1, �q1) at 40 GHz. The corresponding correlation coefficients are given. Angle pairs, from
left to right, and top to botton: 5�, 18�, 23�, 41�.
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