

Climatology of SO2 and UV absorber at Venus' cloud top from SPICAV-UV nadir dataset

Emmanuel Marcq, Kandis Lea Jessup, Lucio Baggio, Therese Encrenaz, Yeon

Joo Lee, Franck Montmessin, Denis Belyaev, Oleg Korablev, Jean-Loup

Bertaux

To cite this version:

Emmanuel Marcq, Kandis Lea Jessup, Lucio Baggio, Therese Encrenaz, Yeon Joo Lee, et al.. Climatology of SO2 and UV absorber at Venus' cloud top from SPICAV-UV nadir dataset. Icarus, 2020, 335, pp.113368. 10.1016/j.icarus.2019.07.002. insu-02196097

HAL Id: insu-02196097 <https://insu.hal.science/insu-02196097v1>

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License](http://creativecommons.org/licenses/by-nc/4.0/)

Climatology of $SO₂$ and UV absorber at Venus' cloud top from SPICAV-UV nadir dataset.

Emmanuel Marcq^{a,∗}, Kandis Lea Jessup^b, Lucio Baggio^a, Thérèse Encrenaz^c, Yeon Joo Lee^d, Franck Montmessin^a, Denis Belyaev^e, Oleg Korablev^e, Jean-Loup Bertaux^{a,e}

 ${}^aLATMOS/CNRS/Sorbonne$ Université/UVSQ, 11 boulevard d'Alembert, F-78280 Guyancourt, France b South West Research Institute, Boulder, CO, USA ^cLESIA/CNRS/Observatoire de Paris, 5 place Jules Janssen, F-92195 Meudon, France d University of Tokyo, Kashiwa, Japan

^eSpace Research Institute (IKI), Russian Academy of Sciences, Moscow 117997, Russia

Abstract

Following our previous work (Marcq *et al.*, 2011, 2013), we have updated our forward radiative transfer code and processed the whole SPICAV-UV/Venus Express nadir dataset (2006-2014) in order to retrieve SO_2 abundance at cloud top – assuming a SO_2 decreasing scale height of 3 km and a ratio $SO/SO₂$ tied to 10% – as well as the imaginary index of scattering mode 1 particles, representative of the remaining UV absorption, since the OSSO vertical profile found by Frandsen et al. (2016) cannot account for our observations. Our main results mostly confirm and extend the validity of those discussed by Marcq *et al.* (2013), namely: (i) long-term variations of low latitude SO_2 at 70 km between \sim 100 ppbv (2007, 2009) and less than 10 ppbv (2014); (ii) in average, decreasing $SO₂$ with increasing latitude and depletion near the sub-solar point, consistent with a competition between advection and

Preprint submitted to Icarus June 18, 2019

[∗]E-mail: emmanuel.marcq@latmos.ipsl.fr

photo-chemical destruction; (iii) secular increase of mode 1 imaginary index at 250 nm, from 10^{-2} to $5 \cdot 10^{-2}$ between 2006 and 2010; (iv) if not related instead to long-term variability, a possible localized enrichment of $SO₂$ and UV brightness increase above the western slopes of Aphrodite Terra, consistent with Bertaux et al. (2016) supply mechanism through orographic gravity waves. This spatial and temporal variability underlines the need for a long term monitoring of Venus SO_2 and cloud top from ground-based facilities until the next generation of Venusian orbiters is operational.

Keywords:

Venus, atmosphere, Ultraviolet, observations, Atmospheres, composition

¹ 1. Introduction

 Sulphur dioxide is arguably the most variable species in Venus' cloud top atmosphere, on a large range of temporal and spatial time scales. The first 4 attempt to detect it in UV only yielded a 0.1 ppmv upper limit (Jenkins *et al.*, 1969). Yet, a decade later, Barker (1979) found between 0.1 and 0.5 ppmv of SO₂ using the same UV spectral range. The most extensive data set before Venus Express was acquired with UVIS onboard Pioneer Venus (Esposito ϵ et al., 1979; Esposito, 1984; Esposito et al., 1988), and revealed an important short term variability, as well as a long term decrease between 1978 and 1988. These long-term variations were interpreted as possible evidence for active volcanism, which would alter the thermal buoyancy of the lower atmosphere and allow for an intermittent resupply of SO_2 above Venus' clouds, where it ¹³ is photochemically destroyed. Meanwhile, IR measurements from Venera 15 ¹⁴ (Zasova *et al.*, 1993) and UV measurements from rockets (Na *et al.*, 1994)

 15 also evidenced a latitudinal gradient, with $SO₂$ increasing with increasing ¹⁶ latitude, consistent with a photochemical control of $SO₂$ since photolysis is ¹⁷ less effective at higher latitudes.

¹⁸ After a blank decade (1995-2005), Venus exploration (including cloud top 19 SO₂ monitoring) resumed with ESA *Venus Express*. Occultation measure-20 ments from SOIR (Belyaev *et al.*, 2008) allowed for a retrieval of SO_2 scale $_{21}$ height above the clouds, confirmed that SO_2 had returned to the relatively ²² high values of the early 1980s, and evidenced a reversal in the latitudinal gra- $_{23}$ dient of SO_2 . These features were confirmed by our first SPICAV-UV nadir ²⁴ measurements (Marcq et al., 2011, 2013), along with a long-term decrease 25 of low latitude SO_2 similar to the one observed by *Pioneer Venus*. In par-²⁶ allel, high spectral resolution measurements in the thermal IR using NASA ²⁷ IRTF (Encrenaz *et al.*, 2012, 2016, 2019), or in the UV using STIS/HST (Jes-²⁸ sup *et al.*, 2015) have confirmed and supported this trend, with two possible 29 SO₂ regimes above the clouds: a high abundance regime more prevalent in ³⁰ the early 1980s or late 2000s, with a large number of SO_2 plumes located ³¹ at lower latitudes and a negative latitudinal gradient, and a low abundance α regime with little to no SO_2 convective plumes, and a reversed latitudinal ³³ gradient more typical of the early 1990s or mid-2010s. The transition be-³⁴ tween these regimes can occur within a few Earth days (Jessup *et al.*, 2015), and accounts for the large short-term dispersion of the measurements. The 35 so long-term change in the relative prevalence of these two regimes explain the a long-term change in the average SO_2 latitudinal gradient that we observed a in our previous study (Marcq et al., 2013, Fig. 2). Nevertheless, the physical ³⁹ processes ruling both these regimes are still poorly known. Convective mix⁴⁰ ing with the lower atmosphere where SO_2 is always abundant – more than 41 100 ppmv near 30-40 km (Bézard et al., 1993; Marcq et al., 2008; Arney et al., 2014) is most certainly involved, but the reasons behind these variations of the convective mixing intensity are still debated, including possible episodic volcanism or other atmospheric processes.

 Following the recent progress in our knowledge of Venus clouds and hazes (Luginin et al., 2016), as well as in our processing of SPICAV-UV nadir spectra, we have completely rewritten our analysis pipeline and pro- cessed the whole of SPICAV-UV archive in order to complete and update our $SO₂$ climatology, as well as other derived observable parameters such as the mean UV brightness of the clouds. A short description of our data set $\frac{1}{51}$ in given in §2, and of our forward radiative transfer model in §3, since both $\frac{1}{52}$ were already extensively described in a previous paper (Marcq *et al.*, 2019). Our results about SO_2 and UV absorber variability is detailed in §4 and $_{54}$ their scientific implications further commented in §5, before we summarize and conclude in §6.

2. Observations

 Our data set and processing is detailed in our previous paper (Marcq et al., 2019). For the convenience of the reader, we summarize the main points below.

2.1. Data set

 Our data set consists in the whole archive of SPICAV-UV (Bertaux *et al.*, 2007) nadir or near-nadir spectra, from 170 to 320 nm at a spectral resolution $\epsilon_{\rm s}$ of 1 nm. There are 1508 such observations, from 2006-06-01 up to 2014-11-⁶⁴ 20. Coverage in local time and latitude is extensive except for the south ϵ ₆₅ polar region (Marcq *et al.*, 2019, their Fig. 1), with southern hemisphere ob-⁶⁶ servations dominated by near nadir *tracking pointing mode* observations over ⁶⁷ single spotsspot targets (implying continuously changing emission and phase ⁶⁸ angles along the orbit), whereas northern hemisphere observations consisted ⁶⁹ mainly in nadir-latitudinal scans (where emission angle is essentially zero ro along the orbbital track).

⁷¹ 2.2. Processing

 τ_2 The first steps of data processing are unchanged since Marcq *et al.* (2011), ₇₃ namely cosmic <u>ray</u> hit removal, dark subtraction, correction of electronic ⁷⁴ readout artifact, flat-fielding, wavelength assignment. Most recent progress ⁷⁵ come from a better knowledge of the instrument $\overline{PSFPoint}$ Spread Function π (PSF), especially at large distances from the center (far wings). Richardson- π Lucy deconvolution is now performed in order to clean the far wing con-⁷⁸ tribution, which enables the scientific use of spectra from 200 nm instead of ⁷⁹ 215 nm in our first analyses, which in turn enables to retrieve more observable ω parameters relative to Venus' clouds and SO₂.

⁸¹ Photometric calibration of the spectral radiance spectra was performed ⁸² from the CALSPEC catalog of bright UV stars observed in-flight (Bohlin \mathcal{E}_{ss} et al., 2014). From these calibrated spectral radiances, we computed the ⁸⁴ corresponding radiance factors $\beta(\lambda) = \frac{I(\lambda) \times \pi \text{ sr}}{F_{\odot}(\lambda)}$ where $I(\lambda)$ is the spectral ⁸⁵ radiance and $F_{\odot}(\lambda)$ a reference top-of-atmosphere solar spectral irradiance. ⁸⁶ These solar spectral irradiance were extracted from the SOLSTICE II database $87 \text{ (McClintock } et \text{ al., } 2005)$ at the corresponding date to account for the solar

⁸⁸ cycle variations. We also corrected a spectral feature in these solar spectra ⁸⁹ near 230-240 nm that our forward radiative transfer model was unable to ⁹⁰ reproduce, no matter the prescribed values of the atmospheric parameters.

⁹¹ 3. Forward Model

⁹² 3.1. Overview

 A detailed description of the forward radiative transfer we use is avail-⁹⁴ able in Marcq *et al.* (2019). For the sake of convenience, we present below a summary of its features and free parameters. The radiative transfer equa- tion solver we use is the pseudo-spherical version of DISORT (Dahlback and Stamnes, 1991) using 16 streams.

⁹⁸ 3.1.1. Aerosols

⁹⁹ The model encompasses the 50-110 km altitude range. We consider a 100 bimodal log-normal size distribution ($r_{\text{eff}} = 0.12$ and 0.8 µm respectively, 101 with an effective dimensionless variance of $\nu_{\text{eff}} = 0.15$) of aerosol particles $_{102}$ following Luginin *et al.* (2016).

¹⁰³ The vertical profiles for both modes that we consider are simplified from the same reference (Luginin *et al.*, 2016) a simplification from the retrieved tos profiles derived by Luginin et al. (2016) and can be seen in Fig. 1. Number ¹⁰⁶ density is capped for both particles at in the lower part the model (respectively $_{107}$ $2 \cdot 10^8$ and 10^8 particles/m³ for mode 1 and mode Above a altitude named Z_2

- α hereafter, mode 2), and the number density ratio $n_1/n_2 = 1000$ is fixed in the
- 109 . upper_particle_number_density_decreases_following_ $n_2(z \gtrsim Z_2) = 10^8 \exp(\frac{Z_2 z}{4.5 \text{ km}})$ _particles/m³.
- 110 Below this altitude, we have a constant, capped value $n_2(z \leq Z_2) = 10^8$) particles/m³.

Figure 1: Synthetic number density profiles for both particle modes. Z_2 is a free parameter in our model, which captures cloud top altitude variations.

in Mode 1 particles follow a similar profile, with a constant ratio $n_1/n_2 = 1000$ $\frac{1}{2}$ in the upper part of the model, and a cap at $2 \cdot 10^8$ particles/m³ in the $\frac{1}{2}$ lower part of the model. The altitude Z_2 above which mode 2 particles 114 decrease following a scale height of 4.5 km is a free parameter in our model, representative of which is related to the cloud top altitude variations – $\frac{1}{20}$ as the $\frac{2018}{a}$ as $\frac{1}{20}$ (250 nm), classically defined (Titov *et al.*, 2018) as the nadirea where and to one (consdering only particulate α is opacity). Numerical intergration yields $Z_{\text{TOP}}(250 \text{ nm}) = Z_2 + 4.95 \text{ km}$ for the above described extinction profiles.

120 The real refractive index of both modes is taken from Hummel *et al.* 121 (1988) for a 75% -25% H_2SO_4 - H_2O mixture. Imaginary indices for both modes ₁₂₂ are discussed in §3.2, the imaginary index of mode 1 particles at 250 nmbeing a_{τ} , $m_i(250 \text{ nm})$, being another free parameter.

¹²⁴ 3.1.2. Gaseous Species

¹²⁵ The gaseous species involved in absorption and/or scattering are dis- $_{126}$ played in Fig. 2. $CO₂$ Rayleigh and absorption cross-section is unchanged 127 since Marcq *et al.* (2013). SO_2 and SO cross-sections were compiled from 128 various sources by Jessup *et al.* (2015), and we use the same. New gaseous 129 species that we consider is O_3 and OCS, whose UV absorption cross-sections 130 are taken from Sander *et al.* (2011) .

¹³¹ CO² vertical profile is computed from hydrostatic equilibrium assum-¹³² ing VIRA-2 temperature profile (Moroz and Zasova, 1997). <u>Following recent</u> as intercomparison between observations and models (Vandaele et al., 2017a; Marcq et al., 2018) ¹³⁴ we consider that SO_2 vertical profile is capped at 150 ppmv in the lower ¹³⁵ part of the model, and decreases according to a scale height of 3 km in the ¹³⁶ upper part of the model. Its mixing ratio at 70 km is a free parameter of our ¹³⁷ model. <u>Since we cannot distinguish individual SO</u> and SO₂ absorption lines 138 at SPICAV-UV spectral resolution, we have to assume that SO vertical profile ¹³⁹ is tied $\frac{at\text{ }t}{\text{ }t}$ 10% of SO₂, according to the average values dervied from higher 140 spectral resolution HST/STIS measurements (Jessup et al., 2015). OCS ver-¹⁴¹ tical profile is taken from Haus *et al.* (2015), and O_3 is considered uniformly ¹⁴² mixed between 55 and 70 km. Its mixing ratio in this range is an optional ¹⁴³ free parameter of the model.

 144 O₃ measurements is the main topic addressed by Marcq *et al.* (2019). O₃ ¹⁴⁵ absorption is considered only when including it yields a substantial reduction ¹⁴⁶ in the reduced χ^2 (namely, 5.5). We adopt the same criterion in the present $_{147}$ study. Example of a fitted spectrum with and without O_3 can be found ¹⁴⁸ in Marcq *et al.* (2019, their Fig. 2) Marcq *et al.* (2019, their Fig. 3).

¹⁴⁹ 3.2. Model Sensitivity

150 The modeled effect of varying SO_2 (Fig. 3) is easy to understand: since SO₂ has two broad electronic absorption bands peaking near 215 and 280 nm, respectively, these two absorption bands have a relative depth that becomes more pronounced with increasing $SO₂$ abundance. However, it is noteworthy that the SO_2 influence extends throughout the whole spectrum, even though the cross-section is a continuum between 240 and 270; nm reaching a local $_{156}$ minimum near 240 nm. Sensitivity of the inferred radiance factor to SO_2 absorption in the 240-270 nm region is a telltale sign that multiple scattering is prevalent, so that most backscattered photons have traveled through long $_{159}$ enough optical paths into deep, SO_2 -rich atmospheric layers that its smaller absorption cross-section is partially offset. This is important when consider-ing SO² measurement proxies such as image ratios between 280 and 240 nm:

Figure 3: Synthetic radiance factors for a cloud top altitude of 74 km, $m_i(250 \text{ nm}) = 10^{-2}$ and varying SO_2 abundances. The considered geometry is pure nadir viewing, with a solar zenith angle of 30[°].

 $\frac{1}{62}$ the image at 240 nm, though not dominated by SO_2 gaz-gas absorption, is $_{163}$ also not independent from the spatial $SO₂$ variations.

 At Venus' cloud top, the observed SO_2 absorption band is primarily re-165 lated to the column density above the cloud top (Marcq *et al.*, 2011, 2013). Thus, altering the cloud top altitude results in a change in the total $SO₂$ col- umn density above the cloud top, according to the assumed vertical profile $_{168}$ of SO_2 number density. The primary effects of altering the cloud top alti-¹⁶⁹ tude while making no change to SO_2 vertical profile would therefore be very similar to the results displayed in Fig. 3, because the direct outcome of the change in the cloud top altitude is a change in the $SO₂$ column density above that altitude. However, as Fig. 4 shows, changing the cloud top altitude will impact the total absorption occuring in the two SO_2 electronic absorption

Figure 4: Synthetic radiance factors for $m_i(250 \text{ nm}) = 10^{-2}$, and varying SO₂ abundances as well as cloud top altitudes $\frac{1}{250}$ am. The considered geometry is pure nadir viewing, with a solar zenith angle of 30° .

¹⁷⁴ bands differently, because the 280 nm band has a lower cross-section than ¹⁷⁵ the 215 nm band. Thus, for example, increasing the cloud top altitude re- 176 sults in a lower relative depth for the 280 nm SO_2 absorption band compared ¹⁷⁷ to the 215 nm band. Similarly, the lower cross-section of the 280 nm band ¹⁷⁸ allows that band to probe deeper into the atmosphere than the 215 nm band. 179 Notably, at lower altitudes both Rayleigh scattering and $CO₂$ absorption are ¹⁸⁰ stronger.

¹⁸¹ Altering the imaginary part m_i of the refractive index of mode 1 parti-¹⁸² cles yields the expected outcome, namely lowering the albedo when particles ¹⁸³ are darker (Fig. 5). However, altering the spectral slope of this mode 1 ¹⁸⁴ absorption results in a spectral distortion very much alike that of chang- $\frac{1}{185}$ ing the cloud top altitude. This resulted in a fitting degeneracy when if we ¹⁸⁶ tried to fit both the mode-1 absorption spectral slope and cloud top altitude 187 together. We therefore chose to keep <u>only</u> the cloud top altitude as a fit-188 ted parameter, and adopted a spectral dependency fixed spectral slope for $m_i(\lambda) = m_i(250\;\text{nm}) \times \exp\left(\frac{\lambda-250\;\text{nm}}{40\;\text{nm}}\right)$ where the exponential function $\text{m}_i(\lambda)$ $\frac{1}{2}$ only $m_i(250 \text{ nm})$. The 40 nm slope accounts for the decreasing mode 1 single-191 scattering albedo with increasing wavelength. Using this relationship fixed ¹⁹² $\frac{40 \text{ nm}}{200}$ value, our low latitude cloud top average altitude near 250 nm was $\frac{1}{2}$ then in agreement with the most recent IR measurements (Ignatiev *et al.*, ¹⁹⁴ 2009) that do not suffer from this degeneracy. The This 40 nm value is 195 slightly less steep than our previous estimate of about 34 nm (Marcq *et al.*, ¹⁹⁶ 2011), which can be explained by our updates to the spectral calibration 197 of radiance factors (Marcq *et al.*, 2019). At first, we assumed that this de-¹⁹⁸ pendency applied to both particle modes, but this assumption resulted in ¹⁹⁹ spurious correlations between effective airmass and cloud top altitude as well ²⁰⁰ as imaginary refractive index retrievals – mode 2 particles contribute more ²⁰¹ to backscattering at smaller airmass since they dominate at lower altitudes. ²⁰² Empirically, we found that assuming a constant, fixed imaginary refractive $_{203}$ index of 10^{-3} for mode 2 particles minimized such spurious correlations.

 Since this fixed value is much larger than the imaginary refractive index ²⁰⁵ of pure H_2SO_4 - H_2O solutions in this wavelength range, this may be indica- tive of two different UV absorbers: one, well mixed with mode 2 and mode 1 particles and with little spectral dependency between 200 and 300 nm, and the other one, mixed with mode 1 particles only and horizontally vari- able, absorbing more towards longer wavelengths. This latter absorber is likely the same absorber than the infamous near UV-blue absorber peaking Figure 5: Synthetic radiance factors for a cloud top altitude of 74 km, SO_2 volume mixing ratio of 50 ppbv at 70 km and varying $m_i(250 \text{ nm})$. The considered geometry is pure nadir viewing, with a solar zenith angle of 30° .

₂₁₁ near 365 nm, our retrieved imaginary indexes in the 10^{-2} - 10^{-1} range and ²¹² spectral slope being in agreement with recent determinations of this imag-²¹³ inary refractive index over a larger spectral range extending to the visible $_{214}$ range (Pérez-Hoyos *et al.*, 2018).

²¹⁵ We will further discuss the scientific implications in §5.1.

²¹⁶ 4. Results

- 217 4.1. <u>Retrieval uncertainties</u>
- above described forward model is then compared to 30-s binned
- ese SPICAV-UV observations through a Levenberg-Marquardt iterative algorithm (Newville *et al., 2014*)
- ²²⁰ . Three parameters are always fitted, namely: SO₂ mixing ratio at 70 km,
- $z₂₂$ and $m_i(250 \text{ nm})$. $Q₃$ mixing ratio is also fitted when its inclusion results

 $\frac{1}{2}$ in a significant reduction in residual χ^2 – the interested reader should refer ₂₂₃ to Marcq *et al.* (2019) for further details about O_3 in the SPICAV-UV nadir data set. 224

225 The Levenberg-Marquardt algorithm yields a covariance matrix, from α which $1 \cdot \sigma$ statistical uncertainties are derived for each fit, along with the esidual reduced χ^2 . The median reduced χ^2 of the whole dataset is 16.6 228 (which indicates that systematic errors do exist, and/or that the observatoinal ²²⁹ uncertainity may be underestimated). Hereafter, we only consider our fits valid if their $\chi^2 \leq 50$. 230

 \ln ln this valid dataset, the median relative $1 \cdot \sigma$ uncertainty on SO_2 retrievals ²³² is 38%, substantially less than the 3-order of magnitude spatial and temporal α variability of SO_2 (§4.2, §4.3.1): the lowest $3 \cdot \sigma$ detection of SO_2 is about ²³⁴ 0.6 ppb, and the highest values on the order of 1000 ppbv. Similarly, the as median relative $1 \cdot \sigma$ uncertainty on m_i retrievals is 25%, also substantially ase less than its spatial and temporal variability (§4.2, §4.3.2). Finally, the ast median relative uncertainty on our cloud top altitude retrievals is on the order of 1 km. 238

²³⁹ 4.2. Temporal variability

²⁴⁰ The long term evolution over the whole extent of *Venus Express* of our $_{241}$ retrieved cloud top SO_2 and imaginary index of mode 1 particles are shown ²⁴² respectively on Fig. 6 and 7. We restricted the analysis of $\text{Since most } SO_2$ ²⁴³ temporal variability to lower latitudes only so that we do not encompass any $_{244}$ bias in latitude , since SO_2 and latitude are correlated in our data set $\mathrm{content}$ ²⁴⁵ is actually located below $\pm 20^{\circ}$ in latitude (see §4.3), we will discuss hereafter ²⁴⁶ the temporal variabilty of SO_2 temporal variability only in this low-latitude

 $_{247}$ $_{247}$ $_{248}$. The most striking features in both retrieved parameters are: (i) short-²⁴⁸ term dispersion is much larger than retrieval uncertainties, and spans two $_{249}$ orders of magnitude for $SO₂$ and one for the imaginary index; (ii) despite ²⁵⁰ this short-term variability, longer term trends can be observed.

 F_{251} For SO_2 , the overall trend consists in an overall decline by a factor 5 to ²⁵² 10 from 2007 (about 80 ppbv) 80 ppby in median) to 2014 (about 10 ppbv). ²⁵³ This steady decline is not monotonous though: after the peak in 2007, surges $_{254}$ in SO_2 can observed in 2009, 2012, and late 2013. This trend is consistent ²⁵⁵ with our previous findings for 2006-2012 (Marcq et al., 2013), except for the ²⁵⁶ 2009 peak that was not noticed at the time, probably due to an insufficient ²⁵⁷ number of analyzed observations compared to our extensive analysis pre-²⁵⁸ sented here. Comparison with STIS/HST retrievals (Jessup *et al.*, 2015) and ²⁵⁹ with TEXES retrievals (Encrenaz *et al.*, 2012, 2016), extrapolated at 70 km assuming a scale height of 3 kmis excellent, and a sex fully consistent with ₂₆₁ the statistical dispersion of SPICAV-UV retrievals, which highlights the fact ₂₆₂ that these "snapshot" observations are actually representative of the median ₂₆₃ state of cloud top SO₂ as observed statistically by SPICAV. More gener-²⁶⁴ ally, these variations are in agreement with the inter-comparison of available 265 SO₂ measurements detailed by Vandaele *et al.* (2017b), as well as recent $_{266}$ UVI/Akatsuki results (Lee *et al.*, 2017).

 Regarding UV darkness (as measured through mode 1 imaginary index at 250 nm), the long term trend can be divided in two time periods: first a 5- ²⁶⁹ fold increase from 2006 ($\sim 10^{-2}$) until 2010 ($\sim 5 \cdot 10^{-2}$), and then a constant, darker plateau from 2011 onward until the end of the mission in late 2014. These variations are most pronounced at lower and mid-latitudes, latitudes

Figure 6: Temporal evolution of SO_2 mixing ratio at 70 km for latitudes lower than 30° . The red line stands for the moving median value, and white diamondsare TEXES /squares show other SO₂ mixing ratios from Encrenaz *et al.* (2016) measurements in the same time interval.

₂₇₂ above 60° seem less affected by this trend. Here also, these results compare $_{273}$ well with our previous results (Marcq *et al.*, 2013) where we accounted for ²⁷⁴ this UV darkening through a fitted scaling factor, but also with the 40% UV ₂₇₅ albedo darkening observed in 2006-2011 by *Venus Express*/VMC at 365 nm $_{276}$ (Lee *et al.*, 2015). This agreement between two diffrent instruments (VMC ²⁷⁷ and SPICAV) and the fact that the albedo latitude variation trends inferred ²⁷⁸ from either the VMC and SPICAV data sets are consistent, even though ₂₇₉ the binning and the reduction of the two data sets is are unique lead us to ²⁸⁰ believe that this darkening is genuine, and not an artifact from the aging of ²⁸¹ the SPICAV UV detector.

Figure 7: Temporal evolution of mode 1 imaginary refractive index at 250 nm. The red line stands for the moving median value. Absolute latitude is color-coded.

$282 \quad 4.2.1. \quad SO_2 \, periodogram$

 The $SO₂$ variations observed in Fig. 6 suggest they may exhibit some periodicity. In order to discuss them more quantitatively, we computed a $_{285}$ Lomb-Scargle periodogram of both SO_2 mixing ratio as well as its logarithm $_{286}$ (since we present all of our SO_2 results in a logarithmic scale). Lomb-Scargle periodograms are well suited when the temporal sampling of measurements is uneven (as it is the case here), but may exhibit "ghost" harmonics for integer multiple values of the genuine frequency.

 These periodograms are shown in Fig. 8. Assuming that genuine fre- $_{291}$ quencies would show up in both SO_2 and $log(SO_2)$ periodograms, we find that our frequency signal is dominated by a 400 Earth day period (and its ghost harmonics near 200, 135 and 100 days) component, that can be seen $_{294}$ between the SO_2 surges in Fig. 6. A 110-day long component is also visible,

Figure 8: Lomb-Scargle periodogram of low-latitude SO_2 in log and linear scales. Periods discussed in the main text are shown in dashed, with the 400-day period and its ghost harmonics shown in dashed black.

 295 close to the solar day on Venus surface, suggesting a link between SO_2 vari-²⁹⁶ ations and local solar time at the surface reminiscent of the similar period 297 seen by Bertaux *et al.* (2016) for the UV brightness as observed by VMC. $_{298}$ We present the correlation between topography and SO_2 in more detail in ²⁹⁹ §4.3.1.

 Other possible periods that are significantly above noise include a 155 Earth day component, as well as medium term components (40, 17 and 6 Earth days). Noticeably, a 4-day period is absent, implying that SO_2 patches are shorter lived than the super-rotation period at cloud top.

4.3. Spatial variability

 $\sqrt{4.3.1.}$ SO_2

 The binned latitudinal distribution of our SO_2 retrievals is shown in Fig. 9. The main features from our previous analyses (Marcq *et al.*, 2013, 2011) are still valid, namely: (i) there is a large dispersion, spanning more than two orders of magnitude at lower latitudes and about one order of magnitude at $_{310}$ higher latitudes (ii) the median SO_2 value is larger at lower latitudes (typ- $_{311}$ ically 5 to 100 ppbv, median 20 ppbv below 30 $^{\circ}$), due to the occurrence of SO₂ "plumes" (above 100 ppbv) that do not occur at higher latitudes. The observed latitudinal pattern remains consistent with the $SO₂$ gas distribution being dominantly controlled by a Hadley-cell type circulation as reported pre- viously (Jessup and Mills, 2019; Vandaele *et al.*, 2017b; Jessup *et al.*, 2015; Marcq *et al.*, 2013 , 2011) – thus is linked to large-scale (or deep) convective $_{317}$ mixing process. The broad range of SO_2 abundance values observed at each latitude points to the perpetual competition between general circulation and 319 the LST dependent photochemical destruction of SO_2 (Marcq *et al.*, 2013) which may produce order of magnitude changes in the cloud top abundances on a time scale of several Earth days (corresponding to 1-2 hours of LST considering the zonal super-rotation at cloud top) particularly at low lati- tudes. The SPICAV-observed variability patterns are fully consistent with other measurements in UV from HST/STIS (Jessup *et al.*, 2015) or in IR 325 with IRTF/TEXES (Encrenaz et al., 2012, 2016).

 Our comprehensive data set also allows us to study the variability of SO₂ with respect to local solar time as shown in Fig. 10. A local minimum near noon (between 10am and 2pm) is evidenced. Interestingly, TEXES

Figure 9: SO_2 mixing ratio at 70 km with respect to latitude $\frac{for \ all \ LSt \ values}{\sqrt{equ \ LSt}}$. The red line stands for the $\frac{10^{\circ}}{200}$ moving boxcar median value, and red error bars for the $1 \cdot \sigma$ statistical dispersion.

 329 measurements also confirm the inefficiency of upwelling $SO₂$ plumes in the $330 \quad 10h$ to 14h local time interval (Encrenaz *et al.*, 2019). We further discuss the 331 SO₂ and overall UV brightness variations with respect to local solar time in ³³² §5.2.

333 The SO_2 periodgram (§4.2.1) suggest that SO_2 and surface topography 334 may be correlated. Therefore, we have mapped our SO_2 retrievals with re-³³⁵ spect to latitude and geographic longitude in Fig. 11. Besides the latitudinal 336 trend already discussed, we notice a possible SO_2 enhancement located down-337 wind of the western edge of the large equatorial high-altitude plateau known 338 as Δ *phrodite Terra* in the 30°-45° range. Similarly, the SO₂ volume mixing 339 ratio observed by HST at low latitudes in the 0°-45°E longitude range was 340 an order of magnitude higher than directly over *Aphrodite Terra* (Jessup and

Figure 10: SO_2 mixing ratio at 70 km for latitudes below 20° with respect to local solar time. The red line stands for the -hour moving boxcar median value, and red error bars for the $1\cdot\sigma$ statistical dispersion.

 Mills, 2019). Yet TEXES measurements also displayed on Fig. 11 fail to re- $_{342}$ port such an increase of $SO₂$ over the same ground location. Although the 70 km values inferred from TEXES data do not match the statistical averaged 344 SPICAV values, a trend of increased SO₂ plumes at 0[°]-30[°]E vs. 60[°]-140[°]E is distinctly evident in the TEXES data (Encrenaz *et al.*, 2019, their Fig. 346 8). One should also note that the polar orbit of *Venus Express* implies that diffrent longitudes were observed at different dates, so that longitudinal and temporal variablity cannot be retrieved separately from these maps.

4.3.2. UV brightness

 We have also investigated the correlation between topography and the retrieved absorption of mode 1 particles shown in Fig. 12 to determine if

Figure 11: Map (latitude vs. longitude) of SO_2 mixing ratio at 70 km. The contour lines follow topographic elevation $-Aphrodite$ Terre is peaking near $90^{\circ}E-0^{\circ}$. Crossed hatching indicated lack of meaningful data. Red diamonds show co-located day side TEXES retrievals, with red crosses showing the TEXES observations footprint.

³⁵² relationships between the albedo and the underlying topography proposed 353 by Bertaux *et al.* (2016) are supported by our data, and to determine how $_{354}$ the observed albedo trends might relate to the retrieved SO_2 abundances. $\frac{w}{250}$ nm) exhibit and walues of $m_i(250 \text{ nm})$ exhibit and anti-correlation with the UV brightness of the cloud top (once SO_2 absorption ³⁵⁷ is taken into account). Comparison of Figures 11 and 12 highlights that 358 directly over Aphrodite Terra (60°-140°E, 15°S) where relatively SO_2 VMRs ³⁵⁹ have been retrieved, the m_i values are low, suggesting a bright cloud top – ³⁶⁰ this results confirms that the cloud top is brighter over Aphrodite but the $_{361}$ anti-correlation between the cloud top albedo and the SO_2 gas abundance 362 does not support that the abundance of both components (SO₂ and UV ³⁶³ absorber) is controlled solely by linked vertical transport process (see §5).

³⁶⁴ Fig. $\frac{11 - 12}{2}$ also indicates that high m_i values are retrieved at lower lati-³⁶⁵ tudes, which is expected since convective activity is strongest at these lati-³⁶⁶ tudes due to the enhanced solar heating (Peralta *et al.*, 2007; Titov *et al.*, ³⁶⁷ 2008, 2012). However, strong longitudinal variability in the cloud top bright-³⁶⁸ ness is observed within the low latitude region sampled by SPICAV; and the ³⁶⁹ inferred brightness distribution is not symmetric with respect to the equator. 370 Additionally, as already mentioned, the polar orbit of *Venus Express* leads ³⁷¹ to an uneven longitudinal sampling with respect to observation date, so that ₃₇₂ the observed distribution pattern may also be linked to <u>long-term</u> temporal ³⁷³ variability.

³⁷⁴ In terms of local time and latitudinal variability, Fig. 13 shows that (i) ³⁷⁵ UV brightness increases with increasing latitude, reaching a high plateau $10:376$ near 60 \degree N; and (ii) UV brightness is lower between 10:00 and 16:00 at lower

Figure 12: Map (latitude vs. longitude) of mode 1 imaginary refractive index at 250 nm. The contour lines follow topographic elevation \angle Aphrodite Terre is peaking near 90° E-0°. Crossed hatching indicates lack of meaningful data.

Figure 13: Pseudo-map (latitude vs. local solar time) of mode 1 imaginary refractive index at 250 nm. Hatched areas indicate lack of meaningful data

 latitudes (below 30 $^{\circ}$). Both these patterns in latitude and local solar time are already known from previous studies (Titov *et al.*, 2008, 2012; Lee *et al.*, 2015). These already known trends, plus the fact that minimum UV bright-380 ness (correlated with maximum m_i values) is reached near 14:00 and not exactly at noon lead us to discard a spurious correlation of our retrievals with respect to airmass, which may occur if the assumed extinction vertical profiles are not representative of the real ones.

4.3.3. Cloud top altitude

 Variations of cloud top altitude with respect to latitudes are shown in 386 Fig. 14. The average low latitude cloud top altitude (defined as $\tau(250 \text{ nm}) =$ 1 nadir level) we find is 73 ± 2 km in good agreement with already known

388 values (Ignatiev *et al.*, 2009; Pérez-Hoyos *et al.*, 2018). This is not surprising, since we adjusted the spectral slope of the UV absorber precisely to match $\frac{390}{2}$ this mean value (see §3.2). The already known decrease of cloud top altitude towards higher latitudes (Ignatiev *et al.*, 2009) is also observed, although the amplitude – about 10 km from equator to pole here instead of about 3 km according to Ignatiev *et al.* (2009) – is somewhat larger, and starts 394 at lower latitudes $(30^{\circ}$ instead of 50°). Nevertheless, due to the aforemen- tioned degeneracy between the spectral slope and cloud top altitude, reach- ing a qualitative agreement for this poorly constrained parameter retrieval is satisfactory, considering the need to keep as few free fitted parameters as ³⁹⁸ possible in our forward model. <u>Please note that simultaneous and co-loacted</u> assence ER cloud top measurements would remove such a degeneracy, and allow for 400 a detailed investigation of the spatial and temporal variability of the aerosol spectral slope...

5. Discussion

5.1. UV absorption

5.1.1. Nature of UV absorber

 As already mentioned in §3.2, we suspect that our retrievals of the imagi- nary refractive index of mode 1 particles is directly related to the local abun-407 dance of the infamous UV absorber. Unfortunately, the only spectropscopic 408 spectroscopic constraint we were able to derive is the spectral slope-related ⁴⁰⁹ parameter of 40 nm. Such $\frac{a_n}{a_n}$ decrease of UV single scattering albedo with increasing wavelength in the SPICAV UV range is compatible with a large number of candidates for the UV absorber, including the most recent mix-

Figure 14: Cloud top altitude with respect to latitude. The red line stands for the $\frac{10^{\circ}}{200}$ binned moving boxcar median value, and red error bars for the $1 \cdot \sigma$ statistical dispersion.

⁴¹² ture of cis- and trans-OSSO suggested by Frandsen et al. (2016). Actually, we ⁴¹³ first tried to fit the average UV brightness not through the refractive index ⁴¹⁴ of mode 1 particles, but with peak OSSO concentration following the theo-⁴¹⁵ retical vertical profile given by Frandsen et al. (2016) peaking near 62 km. It ⁴¹⁶ appeared then that we could not reach a satisfactory fit, the amount of OSSO ⁴¹⁷ required to match the mean albedo was at up to two orders of magnitude ⁴¹⁸ larger than the peak abundance given reported by Frandsen et al. (2016, ⁴¹⁹ about 10 ppbv), and in such a case suppressed all other gaseous spectral 420 signatures (SO_2, SO, O_3) except for CO_2 . So, if the unknown UV absorber ⁴²¹ were indeed OSSO, its vertical abundance profile and abundance would differ α_{422} significantly from the theoretical values given by Frandsen *et al.* (2016).

Figure 15: Scatter plot between imaginary index of mode 1 particles at 250 nm and SO_2 mixing ratio at 70 km

5.1.2. Correlation with SO_2

⁴²⁴ We already reported (§4.3) that low SO_2 abundances were observed within 2 hours of the subsolar point, and similarly the lowest UV brightness (min- imum absorber abundance) was detected in the afternoon hours. The long- term trends are opposite too, with an observed secular decrease for SO_2 , and secular increase of the UV absorption, see §4.2). This points to an anti- correlation between SO_2 and UV absorption that is confirmed in Fig. 15: 430 although the statistical dispersion for both SO_2 and the imaginary refrac- $_{431}$ tive index $m_i(250 \text{ nm})$ is large, there is an average decrease of one order 432 magnitude for m_i relative to an increase of SO_2 of two orders of magnitude. Such an anti-correlation using VMC 365 nm observations with respect to 434 our previous estimates of SO_2 (Marcq *et al.*, 2013) was reported by Lee *et al.* (2015), as well as using high spectral resolution (line-resolving) retrievals of SO_2 and SO with HST/STIS from Jessup *et al.* (2015). Therefore, we can safely dismiss that correlation would be a spurious artifact due to parasitic trends in the photometric calibration of SPICAV-UV spectra. There are two possible, non-mutually exclusive physical explanations already reported (Es-440 posito, 1984; Jessup *et al.*, 2015) and supported by this study: (i) injections of $SO₂$ and $H₂O$ from the deep atmosphere lead to an increased formation $_{442}$ rate of uncontaminated H_2SO_4 , UV-bright haze particles above the UV ab- $\frac{443}{443}$ sorber; and (ii) on longer time scales, SO_2 is a precursor species to the UV 444 absorber, so that there is a possible conversion of $SO₂$ into a sulfur-bearing UV absorber – SO₂ and the UV absorber being competing reservoirs of sulfur in such a case.

⁴⁴⁷ 5.1.3. Comparison with VMC

 $\frac{448}{448}$ Our SPICAV retrievals of m_i (mode 1 imaginary index) show a greater ⁴⁴⁹ level of longitudinal variation of the unknown UV absorber than inferred $\frac{450}{450}$ from VMC (Lee *et al.*, 2015; Bertaux *et al.*, 2016); for example, Fig. 12 does ⁴⁵¹ not indicate that Aphrodite is a region where the cloud top albedo is uniquely ⁴⁵² bright compared to all other longitudes, unlike what is indicated by Bertaux 453 et al. (2016). Similarly, the latitude variation at southern latitudes is more ⁴⁵⁴ complex than what is seen in VMC at southern latitudes. On the other hand, ⁴⁵⁵ the latitudinal variations inferred from the SPICAV analysis at northern lat-⁴⁵⁶ itudes shows the expected pattern of low latitudes darker than high at for ⁴⁵⁷ almost all longitudes. These complexities complex spatial patterns are likely ⁴⁵⁸ more readily discernible in the SPICAV data, because these data may be ⁴⁵⁹ used to distinguish between different particle modes (effectively segregating $\frac{460}{460}$ distinguishing between mode 2 H₂SO₄ particles mostly conservative scatter-

⁴⁶¹ ing $\overline{\text{from and}}$ mode 1 absorption), while VMC traces only the total absorption ⁴⁶² in the 365 nm band, thus likely to include both mode 1 and mode 2 contri-463 butions. <u>Moreover, SPICAV</u> reconstructed maps include long-term temporal 464 variations due to the slow Venus Express orbital swath precession relative 465 to longitude and/or local solar time, which may explain the overall larger variability seen by SPICAV compared to instantaneous VMC maps. 466

⁴⁶⁷ 5.2. Requirements for deep vertical mixing

 $\frac{468}{100}$ Since SO_2 transient enhancements and correlated UV brightenings are 469 caused by local upwellings – also called "plumes" by e.g. Encrenaz et al. (2016) , clues to the processes that support the observed SO_2 spatial dis- $_{471}$ tributions and the impact of $SO₂$ enhancement plumes can be derived by ⁴⁷² considering the LST, latitude and longitude patterns revealed in the statisti- $_{473}$ cally averaged data. As described in §4.3 and shown in Fig. 11, regions of SO_2 $_{474}$ enhancements have been observed primarily at latitudes smaller than 30° ex-⁴⁷⁵ cept at *Aphrodite Terra* longitudes (60[°]-140[°]E) where the SO₂ enhancement 476 extends to 40°S so that on average the SO_2 abundance from 0° tp 40°S is $_{477}$ higher than observed at the same latitudes in the 160° -240°E region. Addi-⁴⁷⁸ tionally, on average a very strong enhancement region is typically observed μ_{19} downwind from Aphrodite at 30-45°E. On the other hand, depletion of SO_2 480 noted between 10:00 to 14:00 local solar time (Fig. 10) implies that at these 481 local solar times replenishment of the cloud top $SO₂$ abundance via large-⁴⁸² scale mixing cannot keep up with the high rate of photochemical loss that ⁴⁸³ would dominate at these local solar times at low latitude.

 ϵ_{484} The prevalence of Venus' cloud top SO_2 abundance to peak at low lat-485 itudes was already noticed in our first analysis (Marcq *et al.*, 2011, 2013), and was then linked to the general meridional circulation causing upwelling at lower latitudes and downwelling at higher latitudes. Therefore, the com- bined SPICAV, TEXES and HST results confirm that the mechanism driving transient plume formation differs distinctely from shallow sub-solar mixing and deep Hadley-cell circulation processes.

491 The observed increase in SO_2 abundance in the 0 \degree to 40 \degree S latitude re-⁴⁹² gion at longitudes intersecting *Aphrodite Terra* relative to what is observed at similar latitudes upwind provides further evidence to the unexpected connec- tion between surface topography and cloud top (Bertaux *et al.*, 2016; Peralta et al., 2017). In general, the current analysis shows that statistically on aver-⁴⁹⁶ age SO_2 is high at low latitudes from 40° to 120° E relative to other longitudes ϵ_{497} except at 30°-45°E (downwind from Aphrodite) where the SO₂ abundance is on average higher than at Aphrodite. We still do not completely understand 499 what controls the overall SO_2 longitudinal variation (provided it is genuine and not an artifact from our temporal-longitudinal sampling). Nevertheless, $\frac{501}{2}$ the relative increase in SO_2 between the region downwind of Aphrodite and directly over Aphrodite are consistent with the differences in wind speed within those two specific regions and the anticipated vertical wind speed reso sponse proposed by Bertaux *et al.* (2016) , as we already suggested in $\S 4.2.1$ sos while discussing the possible 110-day period in SO_2 . The differences in wind speed between these two regions are likely linked to the impact of gravity waves (Navarro *et al.*, 2018) momentum deposition on cloud top zonal wind speeds as proposed by Bertaux *et al.* (2016).

 $_{509}$ Interestingly, Encrenaz *et al.* (2016) does not see any SO_2 plume over this location (see Fig. 11), which highlights that while the discussed $SO₂$ enhance₅₁₁ ment over the western slopes of *Aphrodite Terra* is on average higher than other longitude regions, other transient phenomena may also be relevant, such as local time effects shown in Fig. 13. In fact, TEXES measurements $_{514}$ were acquired above *Aphrodite Terra* at 13:30 local time, further confirming ₅₁₅ that transient plume activity is suppressed directly over *Aphrodite* near local noon. Similarly, STIS observations from Jessup and Mills (2019) show that increased 245 nm cloud top darkening occurs over regions of low elevation 2 hours LST prior to local noon, but these increases are not observed at similar 519 local times directly over Aphrodite Terra.

6. Conclusion

 Our analysis of the full SPICAV-UV nadir data set has been performed by fitting the observed radiance factors with respect to $SO₂$ abundance at cloud top and UV absorption of mode 1 particles. Our previous conclusions about SO_2 (Marcq *et al.*, 2011, 2013) are mostly confirmed: in average, SO_2 is found to be decreasing with increasing latitude, from typically 5-100 ppbv at 70 km near the equator to 2-20 ppby polewards of 60° N and S. Statistical dispersion is therefore much larger at lower latitudes, consistent with the location of transient SO_2 plumes as seen by other observers (Encrenaz *et al.*, 2016). The 5-fold secular decrease in equatorial SO_2 reported by Marcq $\frac{1}{201}$ et al. (2013) between 2007 and 2011 is now found to extend until 2015 at least, albeit with a previously unreported secondary maximum in 2009. A minimum near subsolar point is also found in average, likely caused by the locally higher photochemical depletion rate.

 $_{534}$ UV absorption $(Fig, 13)$ displays the familiar pattern of comparatively

 brighter mid-to-high latitudes compared to lower latitudes (Titov *et al.*, 2018), along with an already known darkening in the 12:00-14:00 local time range at low latitudes (Titov *et al.*, 2012). Long-term evolution of UV dark- $\frac{2006}{2011}$, followed by ₅₃₉ a variable, yet in avergae average darker UV albedo between 2011 and 2015. Such a behavior is reminiscent of the other UV-sensitive instrument on board v_{F2} venus V_{F2} Express, namely VMC (Lee *et al.*, 2015, 2019).

 We have also investigated possible correlations with topography. Since longtudinal and temporal sampling are correlated to the slowly precessing Venus Express polar orbit, such correlations are hard to disentangle from ₅₄₅ temporal variability. With this *caveat* in mind, topographic signature of *Aphrodite Terra* is possibly seen both in SO_2 , with high SO_2 levels reported 547 direcly downwind of *Aphrodite Terra* in the 30[°]-45[°]E zonal region, and in UV brightness with a comparatively brighter cloud top above and downwind ₅₄₉ from *Aphrodite Terra*. Both findings are consistent with VMC studies of UV albedo (Bertaux *et al.*, 2016) and SO_2 behavior as seen by STIS/HST (Jessup $_{551}$ et al., 2015), and explained through coupled variations in vertical mixing and zonal wind speed through momentum deposition from topography-induced ⁵⁵³ gravity waves over the western edge of *Aphrodite Terra*.

 In any case, the high temporal and spatial variability of both SO_2 and UV absorption over a large span of temporal (from days to decades) and spatial (from regional to planetary) scales highlight the need to continue ₅₅₇ the monitoring of Venus after the end of *Venus Express*, from orbiters like Akatsuki and Earth-based observations, at least until the next generation of ⁵⁵⁹ UV instruments on board Venus orbiters may take over the legacy of Venus ₅₆₀ Express at some point in the late 2020s to early 2030s.

Acknowledgements

 We wish to acknowledge the support of CNES and ESA for this work. As a result from this support, it is planned to deliver to ESA Planetary Science Archives (PSA) both the day side nadir UV albedo spectra and the columns of $SO₂$ and ozone derived from SPICAV/Venus Express mission. EM, JLB, FL and FM acknowledge support Programme National de Plantologie (AT- MARVEN grant) during this analysis. DB, OK and JLB wish to acknowledge the support of the Ministry of Education and Science of Russian Federation grant 14.W03.31.0017. KLJ acknowledges support for her contributions to this work were provided through NASA Venus Climate Orbiter, Participating Scientist Program grant number NNX16AK82G.

 Arney, G., Meadows, V., Crisp, D., Schmidt, S.J., Bailey, J., Robinson, T., 2014. Spatially resolved measurements of H₂O, HCl, CO, OCS, SO₂, cloud opacity, and acid concentration in the Venus near-infrared spectral windows. Journal of Geophysical Research (Planets) 119, 1860–1891.

 Barker, E.S., 1979. Detection of $SO₂$ in the UV spectrum of Venus. Geo-phys. Res. Lett. 6, 117–120.

 Belyaev, D., Korablev, O., Fedorova, A., Bertaux, J., Vandaele, A., Montmessin, F., Mahieux, A., Wilquet, V., Drummond, R., 2008. First observations of $SO₂$ above Venus' clouds by means of Solar Occultation in the Infrared. Journal of Geophysical Research (Planets) 113, 1–10.

- Bertaux, J.L., Khatuntsev, I.V., Hauchecorne, A., Markiewicz, W.J., Marcq, E., Lebonnois, S., Patsaeva, M., Turin, A., Fedorova, A., 2016. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves. Journal of Geophysical Research (Planets) 121, 1087–1101.
- ⁵⁸⁷ Bertaux, J.L., Nevejans, D., Korablev, O., Villard, E., Quémerais, E., Neefs, E., Montmessin, F., Leblanc, F., Dubois, J.P., Dimarellis, E., Hauchecorne, A., Lef`evre, F., Rannou, P., Chaufray, J.Y., Cabane, M., Cernogora, G., Souchon, G., Semelin, F., Reberac, A., van Ransbeek, E., Berkenbosch, S., Clairquin, R., Muller, C., Forget, F., Hourdin, F., Talagrand, O., Rodin, A., Fedorova, A., Stepanov, A., Vinogradov, I., Kiselev, A., Kalinnikov, Y., Durry, G., Sandel, B., Stern, A., G´erard, J.C., 2007. SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere. Plan. and Space Sci. 55, 1673–1700.
- B´ezard, B., de Bergh, C., Fegley, B., Maillard, J.P., Crisp, D., Owen, T., Pollack, J.B., Grinspoon, D., 1993. The abundance of sulfur dioxide below the clouds of Venus. Geophys. Res. Letters 20, 1587–1590.
- Bohlin, R.C., Gordon, K.D., Tremblay, P.E., 2014. Techniques and review of absolute flux calibration from the ultraviolet to the mid-infrared. Pub-lications of the Astronomical Society of the Pacific 126, 711.
- Dahlback, A., Stamnes, K., 1991. A new spherical model for comput- ing the radiation field available for photolysis and heating at twilight. Planet. Space Sci. 39, 671–683.
- Encrenaz, T., Greathouse, T.K., Marcq, E., Sagawa, H., Widemann, T.,
- B´ezard, B., Fouchet, T., Lef`evre, F., Lebonnois, S., Atreya, S.K., Lee,
- Y.J., Giles, R., Watanabe, S., 2019. HDO and $SO₂$ thermal mapping on
- $\frac{608}{200}$ Venus. IV. Statistical analysis of the SO₂ plumes. A&A 623, A70.
- Encrenaz, T., Greathouse, T.K., Richter, M.J., DeWitt, C., Widemann, T., Bézard, B., Fouchet, T., Atreya, S.K., Sagawa, H., 2016. HDO and SO_2 thermal mapping on Venus. III. Short-term and long-term variations be-tween 2012 and 2016. A&A 595, A74.
- Encrenaz, T., Greathouse, T.K., Roe, H., Richter, M., Lacy, J., B´ezard, B., $_{614}$ Fouchet, T., Widemann, T., 2012. HDO and $SO₂$ thermal mapping on μ_{5} Venus: evidence for strong SO₂ variability. A&A 543, A153.
- Esposito, L.W., 1984. Sulfur dioxide Episodic injection shows evidence for active Venus volcanism. Science 223, 1072–1074.
- Esposito, L.W., Copley, M., Eckert, R., Gates, L., Stewart, A.I.F., Worden, H., 1988. Sulfur dioxide at the Venus cloud tops, 1978-1986. J. Geo-phys. Res. 93, 5267–5276.
- Esposito, L.W., Winick, J.R., Stewart, A.I., 1979. Sulfur dioxide in the Venus atmosphere - Distribution and implications. Geophys. Res. Lett. 6, 601–604.
- Frandsen, B.N., Wennberg, P.O., Kjaergaard, H.G., 2016. Identification of OSSO as a near-UV absorber in the Venusian atmosphere. Geo-phys. Res. Lett. 43, 11.
- Haus, R., Kappel, D., Arnold, G., 2015. Radiative heating and cooling in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations. Planet. Space Sci. 117, 262–294.
- Hummel, J.R., Shettle, E.P., Longtin, D.R., 1988. A new background strato- spheric aerosol model for use in atmospheric radiation models. Technical 632 Report. OPTIMETRICS INC BURLINGTON MA.
- Ignatiev, N.I., Titov, D.V., Piccioni, G., Drossart, P., Markiewicz, W.J., Cottini, V., Roatsch, T., Almeida, M., Manoel, N., 2009. Altimetry of the Venus cloud tops from the Venus Express observations. Journal of Geophysical Research (Planets) 114, E00B43.
- Jenkins, E.B., Morton, D.C., Sweigart, A.V., 1969. Rocket Spectra of Venus μ_{638} and Jupiter from 2000 TO 3000 Å. ApJ 157, 913.
- Jessup, K.L., Marcq, E., Mills, F., Mahieux, A., Limaye, S., Wilson, C., Allen, M., Bertaux, J.L., Markiewicz, W., Roman, T., Vandaele, A.C., Wilquet, V., Yung, Y., 2015. Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck. Icarus 258, 309– 336.
- Jessup, K.L., Mills, F.P., 2019. On Venus' Cloud Top Chemistry, Convective Activity and Topography: A Perspective from HST. Icarus under revision.
- Lee, Y.J., Imamura, T., Schr¨oder, S.E., Marcq, E., 2015. Long-term vari- ations of the UV contrast on Venus observed by the Venus Monitoring Camera on board Venus Express. Icarus 253, 1–15.
- Lee, Y.J., Jessup, K.L., Perez-Hoyos, S., Titov, D.V., Lebonnois, S., Per- alta, J., Horinouchi, T., Imamura, T., Limaye, S., Marcq, E., Takagi, M., Yamazaki, A., Yamada, M., Watanabe, S., Murakami, S., Ogohara, K., McClintock, W.M., Holsclaw, G., Roman, A., 2019. Long-term variations of Venus' 365-nm albedo observed by Venus Express, Akatsuki, MESSEN-
- GER and Hubble Space Telescope. ApJ under revision.
- Lee, Y.J., Yamazaki, A., Imamura, T., Yamada, M., Watanabe, S., Sato, T.M., Ogohara, K., Hashimoto, G.L., Murakami, S., 2017. Scattering Properties of the Venusian Clouds Observed by the UV Imager on board Akatsuki. AJ 154, 44.
- Luginin, M., Fedorova, A., Belyaev, D., Montmessin, F., Wilquet, V., Ko- rablev, O., Bertaux, J.L., Vandaele, A.C., 2016. Aerosol properties in the upper haze of Venus from SPICAV IR data. Icarus 277, 154–170.
- Marcq, E., Baggio, L., Lef`evre, F., Stolzenbach, A., Montmessin, F., Belyaev, D., Korablev, O., Bertaux, J.L., 2019. Discovery of cloud top ozone on Venus. Icarus 319, 491–498.
- Marcq, E., Belyaev, D., Montmessin, F., Fedorova, A., Bertaux, J.L., Van- α ₆₆₆ daele, A.C., Neefs, E., 2011. An investigation of the SO_2 content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus 211, 58–69.
- Marcq, E., Bertaux, J.L., Montmessin, F., Belyaev, D., 2013. Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere. Nature Geoscience 6, 25–28.
- Marcq, E., B´ezard, B., Drossart, P., Piccioni, G., Reess, J.M., Henry, F., 2008. A latitudinal survey of CO, OCS, H₂O, and SO₂ in the lower at- mosphere of Venus: Spectroscopic studies using VIRTIS-H. Journal of Geophysical Research (Planets) 113, 0–+.
- Marcq, E., Mills, F.P., Parkinson, C.D., Vandaele, A.C., 2018. Composition and Chemistry of the Neutral Atmosphere of Venus. Space Sci. Rev. 214, 677 $\#10$.
- McClintock, W.E., Rottman, G.J., Woods, T.N., 2005. Solar-Stellar Irradi- ance Comparison Experiment II (SOLSTICE II): Instrument Concept and Design. Springer New York, New York, NY. pp. 225–258.
- Moroz, V.I., Zasova, L.V., 1997. VIRA-2: a review of inputs for updating the Venus International Re ference Atmosphere. Advances in Space Research 19, 1191-1201.
- Na, C.Y., Esposito, L.W., McClintock, W.E., Barth, C.A., 1994. Sulfur dioxide in the atmosphere of Venus. 2: Modeling results. Icarus 112, 389– 395.
- Navarro, T., Schubert, G., Lebonnois, S., 2018. Atmospheric mountain wave generation on Venus and its influence on the solid planet's rotation rate. Nature Geoscience 11, 487–491.
- Newville, M., Stensitzki, T., Allen, D.B., Ingargiola, A., 2014. LMFIT: Non-
- Linear Least-Square Minimization and Curve-Fitting for Python.
- Peralta, J., Hueso, R., S´anchez-Lavega, A., 2007. Cloud brightness distri- bution and turbulence in Venus using Galileo violet images. Icarus 188, 305–314.
- Peralta, J., Hueso, R., S´anchez-Lavega, A., Lee, Y.J., Mu˜noz, A.G., Kouyama, T., Sagawa, H., Sato, T.M., Piccioni, G., Tellmann, S., Ima- mura, T., Satoh, T., 2017. Stationary waves and slowly moving features in ₆₉₈ the night upper clouds of Venus. Nature Astronomy 1, 0187. 1707.07796.
- P´erez-Hoyos, S., S´anchez-Lavega, A., Garc´ıa-Mu˜noz, A., Irwin, P.G.J., Per- alta, J., Holsclaw, G., McClintock, W.M., Sanz-Requena, J.F., 2018. Venus Upper Clouds and the UV Absorber From MESSENGER/MASCS Observations. Journal of Geophysical Research (Planets) 123, 145–162. 1801.03820.
- Sander, S.P., Abbatt, J., Barker, J.R., Burkholder, J.B., Friedl, R.R., Golden, D.M., Huie, R.E., Kolb, C.E., Kurylo, M.J., Moortgat, G.K., Orkin, V.L., Wine, P.H., 2011. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation number 17. Technical Report. Jet Propulsion Laboratory.
- Titov, D.V., Ignatiev, N.I., McGouldrick, K., Wilquet, V., Wilson, C.F., 2018. Clouds and Hazes of Venus. Space Sci. Rev. 214, 126.
- Titov, D.V., Markiewicz, W.J., Ignatiev, N.I., Song, L., Limaye, S.S.,
- Sanchez-Lavega, A., Hesemann, J., Almeida, M., Roatsch, T., Matz, K.D.,
- Scholten, F., Crisp, D., Esposito, L.W., Hviid, S.F., Jaumann, R., Keller,
- H.U., Moissl, R., 2012. Morphology of the cloud tops as observed by the Venus Express Monitoring Camera. Icarus 217, 682–701.
- Titov, D.V., Taylor, F.W., Svedhem, H., Ignatiev, N.I., Markiewicz, W.J., Piccioni, G., Drossart, P., 2008. Atmospheric structure and dynamics as the cause of ultraviolet markings in the clouds of Venus. Nature 456, 620–623.
- Vandaele, A.C., Korablev, O., Belyaev, D., Chamberlain, S., Evdokimova, D., Encrenaz, T., Esposito, L., Jessup, K.L., Lef`evre, F., Limaye, S., 2017a. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and vari-ability. Icarus 295, 16–33.
- Vandaele, A.C., Korablev, O., Belyaev, D., Chamberlain, S., Evdokimova, D., Encrenaz, T., Esposito, L., Jessup, K.L., Lef`evre, F., Limaye, S., Mahieux, A., Marcq, E., Mills, F.P., Montmessin, F., Parkinson, C.D., Robert, S., Roman, T., Sandor, B., Stolzenbach, A., Wilson, C., Wilquet, V., 2017b. Sulfur dioxide in the Venus Atmosphere: II. Spatial and tem-poral variability. Icarus 295, 1–15.
- $_{730}$ Zasova, L.V., Moroz, V.I., Esposito, L.W., Na, C.Y., 1993. SO_2 in the Middle Atmosphere of Venus: IR Measurements from Venera-15 and Comparison to UV Data. Icarus 105, 92–109.