
HAL Id: insu-02269700
https://insu.hal.science/insu-02269700

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Systematic Use of the AUTOSAR Standardized
Application Interfaces
A Ozhigin, M Golm, S Voget

To cite this version:
A Ozhigin, M Golm, S Voget. Systematic Use of the AUTOSAR Standardized Application Interfaces.
Embedded Real Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �insu-02269700�

https://insu.hal.science/insu-02269700
https://hal.archives-ouvertes.fr

 Page 1/8

Systematic Use of the AUTOSAR Standardized Application
Interfaces

A. Ozhigin1, M. Golm2, S. Voget3
1: OOO Siemens, St. Petersburg, Russia

2: Siemens Corporate Research, Princeton, USA
3: Continental Corporation, Regensburg, Germany

Abstract: The AUTomotive Open System
ARchitecture (AUTOSAR) initiative develops an
open standardized software architecture for
automotive electronics. The partnership is focused
on managing the growing complexity in the
development of automotive electric/electronic
architectures, with the aim of enabling new
technologies and improving development efficiency –
without making compromises on quality and
limitation of corporate identity.
AUTOSAR mainly concentrates in the
standardization on three pillars. First, a layered
architecture for electronic control units (ECU) is
defined and the lower layers, the basic software
(BSW), is standardized on module level. Second, a
methodology enables the configuration of systems
within a collaboration process between OEMs and
suppliers. Third, on the highest architectural layer,
SW-components and their application interfaces are
standardized.
Especially in this third pillar, the standard does not
structure the SW-components with respect to
functional vehicle models, neither for existing nor for
future ones. Therefore, the link between the
functional view on a vehicle and the SW architecture
is still missing.
This paper presents the standardized application
interfaces as part of the SW-architectures in usual
vehicles. We embed the interfaces into a new
framework that serves as a link between these SW-
architectures and functional vehicle models. As the
functional models are normally OEM specific and
differ from each other, the framework can be seen as
the necessary glue to realize different vehicles with
the help of the AUTOSAR standardized components.
The concept will be validated with the help of a
functional model developed by Siemens VDO
Automotive AG. This functional model serves as a
validation of the framework. One main advantage of
this framework is, that it enables the simulation of
the behaviour of the components, i.e. the ECUs, on
vehicle level.

Keywords: AUTOSAR, functional model, software
architecture

1. Introduction

The increasing total share of software in the field of
automotive systems resulted in high complexity and
high costs. This became more critical with non
standardized development processes and without
adequate networks. In addition, the incorporation of
third party software increased the complexity of
collaboration between companies.
An appropriate level of abstraction in the vehicle
software architecture modeling and appropriate
integration concepts were still missing. Architectures
did not reflect the effects of quality requirements. As
a consequence these often remained vague and
unexplored. The architectures grown up by the
single solution development strategy did not
represent long-term solutions.
In modern vehicles the realization of a lot of
functionality is distributed among several ECUs. E.g.
the software, that controls the lights of the indicator
functionality, is distributed over up to eight ECUs in
high end vehicles. Furthermore, some of the future
functionality is not realizable with a loose set of side
by side ECUs. E.g. drive-by-wire will need a very
close and safe interlocking of ECUs across different
domains. The traditional split of automotive functions
is more and more crossed by the upcoming
functionalities.
With respect to this background the leading
automobile companies and their 1st Tier suppliers
founded a partnership in 2003, which establishes an
industry-wide standard for the automobile-electronic.
AUTOSAR (AUTomotive Open System
ARchitecture) is leaded by 10 "Core Partners".
These are BMW Group, Bosch, Continental,
DaimlerChrysler, Ford Motor Company, General
Motors, PSA Peugeot Citroën, Siemens VDO,
Toyota Motor Corporation and Volkswagen.
AUTOSAR is set up as a partnership to define an
industry wide standard.

2. The AUTOSAR concept

To fulfill the requirements in the “Main
Requirements” [1], the AUTOSAR consortium
defined a new development methodology for
automotive software and software architecture. The

 Page 2/8

development methodology is focused on a model-
driven development style. The software architecture,
as well as the ECU hardware and the network
topology, are modeled in a formal way, which is
defined in a metamodel that supports the software
development process from architecture up to
integration. All available modeling elements are
specified by the “AUTOSAR metamodel” [2]. The
metamodel is defined according to the rules of the
OMG Meta Object Facility [5].
According to AUTOSAR, software is composed of
AUTOSAR Software Components (SW-C) that
represent the application layer. During development
time these components communicate through a
Virtual Functional Bus (VFB) principle. During
runtime this VFB is implemented by a so called
Runtime Environment (RTE) which hides the lower
architectural layers, the Basic Software (BSW) [2],
[3] from the applications, i.e. the SW-Cs. Thus,
AUTOSAR Software Components encapsulate parts
of application functionality and are independent of
the infrastructure represented by RTE and BSW.
AUTOSAR infrastructure capabilities make SW-C
independent from the type of microcontroller, type of
ECU, location of the other SW-Cs with which the
component interacts and the number of component
instances. AUTOSAR Software Components are
capable of containing a set of logically
interconnected components. In such a case the
component is called a “composition”. In order to
support scalability and transferability of
functionalities across ECUs of different vehicle
platforms, besides all aspects of software
infrastructure, generic component concept and
development methodology, AUTOSAR standardizes
application software components and their
interfaces.
The envisioned development methodology starts by
defining the software architecture. An exemplary
software architecture can be seen in Figure 1.

CDPl

SoundSystem
 CDPlayer

 Radio SourceSelect

 ChannelSplit

 MP3

 AmplifierLef..

 AmplifierRig..

Figure 1: Example for software components and

connectors

The boxes represent the software components. At
the perimeter of the boxes the communication ports
of the software components are shown. A port with
an inward pointing triangle is a so called Required
Port. A port with an outward pointing triangle is a
Provided Port. Required ports are the data receivers
in a data flow-oriented communication, provided
ports are the senders. A provided port can be
connected with one or more required ports of other
software components. To be able to connect ports,
the interfaces of the two ports must be compatible.
There are two types of interfaces, sender/receiver
interfaces and client/server interfaces. A
sender/receiver interface supports message-based
communication, while a client/server interface
supports a remote-procedure-call-style of
communication.
A sender/receiver interface consists of a list of data
elements. Each data element has a name and a data
type.
The client/server interface consists of a list of
operations. Each operation has a signature,
consisting of a name and a list of parameters. Each
parameter is described by a name, a type and a
direction, which can be either in, out or in-out. The
details of all software component related modeling
elements are described in the “Software Component
Template Specification” [4].
The software architecture is defined without
consideration of the hardware on which the software
components will run on later. This means that two
software components might run on the same ECU or
on different ECUs. The communication between the
components is then either an intra-ECU
communication or an inter-ECU communication. To
abstract from this difference, AUTOSAR introduces
the VFB. The VFB can be seen as a software bus to
which all components are attached.
The hardware architecture is modeled in parallel to
the definition of the software architecture. AUTOSAR
allows for modeling the topology of a vehicle network
as well as the hardware of an ECU. An example of
this topology can be seen in Figure 2.

Engine
Management

Transmission

Gateway

ESP

PT-CAN

C-CAN

Figure 2: Exemplary network topology

The example shows two ECUs connected to a
powertrain CAN network (PT-CAN) and one ECU

 Page 3/8

connected to a chassis CAN network (C-CAN). The
two CAN busses are connected through a gateway.
Once the software architecture and the network
topology are defined, the software entities can be
mapped to the hardware entities. The Software
Component Template standardizes the format for
describing the software entities and is a very
important part of the AUTOSAR metamodel. It
defines how the software architecture is specified.

3. Application Interfaces

Besides the metamodel, which defines how an
application interface is described, AUTOSAR
specifies application interfaces as well. Standardized
application components are organized in a
hierarchical way [8]. The top hierarchical level
consists of the following functional domains:
• Powertrain;
• Chassis;
• Body;
• Safety;
• Multimedia, Telematics and HMI.
Structures are elaborated for the first three domains
in phase 1 of AUTOSAR which ended in 2006
The Body domain usually includes access
subsystem, visibility subsystem, comfort subsystem,
acoustic warnings etc. The Powertrain domain
coordinates torque producing, distributing and
consuming components (e.g. engine, transmission)
in close interaction with the chassis domain, which in
its turn is responsible for suspension, brakes, driving
dynamics and so on.
Multimedia, telematics and HMI and safety domains
were not elaborated in phase 1.
The top level decomposition into 5 domains is based
on a traditional structure of vehicle domain
decomposition rather than on flexible functional
vehicle model and thus couldn’t be considered as
the best way to represent software architecture.
Compositions done by the traditional structuring are
tending to represent rather currently available
products (such as ESP, ACC etc.) than generalized
view of software architecture. Such an approach
does not contribute to future development
prospective. Orientation on currently available
products can be considered as advantage in short
term since it allows for easy adaptation of existing
software to be used in AUTOSAR-based systems.
On the other hand, in long-term prospective such
approach can aggravate the implementation of new
functionalities and induce ambiguousness in their
referring to standardized components thus causing
interoperability and portability problems.
In further sections of this paper some functional
structuring approaches will be considered. The
application of their principles towards the AUTOSAR
application software architecture serves as a

measure to elaborate the possibility to link the
AUTOSAR application SW-Cs to a functional model.

4. Overview of existing approaches

In the literature one can find several concepts to
structure the functionality of a vehicle into a
consistent model. In this section we present two of
them.

4.1. Module Concept

The European funded project SPARC (Secure
Propulsion Using Advanced Redundant Control) [10]
dedicated to development of a safety decision
control system for an accident-avoiding vehicle
introduced a module-oriented concept. They
distinguish the following architectural layers [11]:
• Command layer - responsible for working out a

desired motion vector derived from the driver
inputs, supported by the human-machine
interface (HMI) and the advanced driver
assistance systems (ADAS);

• Co-ordination layer - creates a secure motion
vector for any driving situation by combining and
arbitrating the inputs from the driver and the
ADAS;

• Execution layer - consists of the steering system,
braking system, power pack and energy system
and maps the motion vector to physical reality by
means of actuator control.

Passenger Management functionalities are out of
scope of SPARC.
The basic principle emphasized in SPARC
architecture is separation of decision making
(command or strategic) layer and layer to realize
made decision (execution layer) which are glued
together via co-ordination layer. One of the goals of
the SPARC is to demonstrate the scalability (ability
to be used on the vehicle of different size) and
transferability (ability to be used on the vehicle of
different kind) of developed safety-related
functionalities ensured by the separation of three
layers.
Such kind of layered structure provides the high level
of abstraction for the interface between the part
responsible for working out of ultimate decision on
vehicle behavior in current situation and the part
which performs the execution of the decision by
means of control of actuators to the high abstraction
level. This allows making command layer software
entities independent of actual set and characteristics
of actuators and other means of control installed in a
particular vehicle and in that way facilitates their
reusability.
This approach can be extended to encompass all
vehicle systems [9]. In case of such extension the

 Page 4/8

vehicle architecture can be divided in 5 functional
modules:

1. User Interface
2. Infrastructure
3. Drivetrain/Chassis
4. Passenger Management
5. Driver Assistance

User Interface module is responsible for all
information interactions with driver and passengers:
capturing input data (including driving-related
intensions), transferring it to other modules, getting
feedback information and presenting it to users.
Driver Assistance module performs evaluation of
environment conditions basing on sensor data,
generates current motion strategy and combines it
with driver intensions arriving from user interface
module by means of arbitration logic. The output is
a motion vector to be implemented by
Drivetrain/Chassis module. This module
encapsulates the means of execution of required
motion vector, stability functions based on reactive
environment evaluation and energy creation and
management. Passenger Management carries out
all non-driver-specific tasks including infotainment,
climate control, passive safety, windows, roof, door
lock control etc. All mentioned modules are
interconnected through an infrastructure module
which provides energy, power and signal distribution,
means of communications with multiplexing and
gateways, means of wireless connectivity.
General modularization of the 5 module concept is
shown in the Figure 3.

Figure 3: Module Decomposition

Basic criteria for the module decomposition look
simple and clear enough, but there could be sensors
which are used together by driver assistance module
and drivetrain/chassis module, this fact results in
need of widening of interface between these
modules and blurs the boundary between them in

terms of assignment of components to a specific
module.
Whereas this structuring principle is based on the
effective implementation of the motion vector,
different structuring principles exist in literature. A
further one will be presented in the next chapter.

4.2. CARTRONIC

CARTRONIC is proposed by Robert Bosch GmbH
as an “open architecture for networking the control
systems of an automobile” [7]. It introduces systems,
components and communications as the elements of
the architecture. System is considered as a set of
components and communications that are integrated
by function. Communications include orders,
responses, requests and inquiries. Order is a direct
instruction to the receiving component to perform
particular action. Response with the reason is sent
by receiving component if the order cannot be
fulfilled. Component can also inquire for necessary
information and request another component to do
something.
Possible communications between systems and
components are restricted with the following
structuring rules [7]:

1. A component can only get an order from one
single source component (hierarchical flow of
orders);

2. Inquiries and requests are possible on the same
layer and upwards into higher layers.

The first rule supports the avoidance of conflicts
between different orders and clear allocation of
responsibilities in the structure. It also implies the
presence of a coordinator component in each
subsystem which dispatches orders to the
embedded components. The second rule contributes
to the component interchange and reuse.
CARTRONIC distinguishes 3 types of components
according to their functional roles:
• coordinators – perform resource management,

conflict detection and resolution etc.;
• components with mainly operational tasks –

execute orders, report resource requirement,
provide resources etc.;

• information providers.
CARTRONIC functional architecture is based on the
following principles:
• each system is made up of self-contained

components with a minimal number of physical
interfaces;

• each system/component fulfills clearly defined
tasks autonomously by obtaining information and
initiating orders;

• superordinated decision makers are used to
coordinate systems/components, they derive one
single decision from the competing results;

• orders are propagated hierarchically from initiator
to actuator;

 Page 5/8

• the interfaces of each system/component are
known to as many other systems/components as
necessary and as few as possible.

On the high abstraction layer the structure of the
entire vehicle consists of one vehicle coordinator,
four components with operational tasks (control of
power unit, control of vehicle motion, control of body
and interior and control of electrical supply system)
and four information providers (environment, traffic,
vehicle and user), see Figure 4.

Figure 4: CARTRONIC Vehicle Architecture

Although CARTRONIC principles constitute an
effective way to manage vehicle electronic systems
complexity their software implementation in the
straightforward way can encounter the following
difficulties:
• high complexity of coordinators (mostly in power

unit, vehicle motion and vehicle coordinator due
to strong dependencies between power unit and
vehicle motion),

• high communication overhead between
coordinators and coordinators and other
components.

Such concentration of complexity and
communications in coordinator components can
jeopardize the fulfillment of timing and memory
consumption constraints.

5. Combined framework for AUTOSAR software
architecture

The major difference of architectural approaches
described above consists in the fact that Module
Concept has an underlying use case as a
background when CARTRONIC is based on
traditional vehicle structure partitioning. The use
case implied by 5 Modules comprises independent
operation of driver assistance system, arbitration of
their decisions against captured driver’s intensions

and implementation of arbitration outcome by vehicle
drivetrain. A framework to be applied to the
AUTOSAR-based software architecture can be
composed as a combination of mentioned
approaches.
The top level structure of the framework can be
inherited from 5 Modules, first of all, the idea of
separation of strategic layer responsible for making
decisions on vehicle motion vector and execution
layer responsible for the implementation of the
motion vector is to be adopted.
Hierarchical rules of CARTRONIC can be used in
definition of internal structures of the modules. Due
to integration of all components controlling chassis
and powertrain into a single Drivetrain module the
overhead caused by complexity and communication
concentration in coordination components will be
mitigated. Generalized view of the architecture
framework combined from 5 module concept with
CARTRONIC principles is shown in Figure 5
(infrastructure module is not shown).

Figure 5: Combined framework

The driver assistance module should encompass
components whose task consist in making decision
on the motion direction counting on safety and
comfort concerns, current motion parameters, driver
decisions and environmental information.
Drivetrain/chassis module consists of the
components directly controlling the chassis and
powertrain systems basing on driver assistance
module requests, providing necessary level of
stability in requested motion vector, sensing the
parameters of engine(s), brakes, suspension etc.
User interface module includes all components
responsible for getting driver and passenger
intensions and information (from steering wheel,
pedals, switches, knobs other controls) and
presenting information to users (telltales, displays,
feedback devices). Passenger management module
contains components which are not concerned to the
vehicle motion and interactions with users.
Alignment of AUTOSAR software architecture with
generic framework like described above will provide
some means to establish the links with arbitrary (i.e.
OEM-specific) vehicle-level functional model.

 Page 6/8

6. Application of framework to the AUTOSAR-
based software architecture

6.1. General Considerations

To make use of a framework in connection with
AUTOSAR-standardized components the links
between these two representations are to be
established. In general case the task consists in the
mapping of one hierarchical set of interconnected
entities (AUTOSAR standardized SW-Cs) to another
one (framework). Due to differences in structuring
principles of these models most likely the direct one-
to-one links could not be preserved for all SW-Cs: for
some of them additional considerations of their
internal structure and decomposition in order to
distribute a component between several modules of
target framework will be required. The goals of
mapping are to find the way how the SW-Cs are
linked to the entities of a framework, to determine
which parts of functionalities are covered by
particular SW-Cs and where are the boundaries of
different functional domains of the framework within
SW-Cs.
It is important to have criteria for decomposition
which is based on the characteristics of the
framework structure. For the first iteration in order to
find initial assignment of AUTOSAR components to
target modules (one-to-one or one-to-many) and to
ascertain the necessity of decomposition of
particular components the criterion of functionality
can be used. It consists in comparison of the sets of
functionalities associated with functional modules
and software components. Presence of equivalent
functionalities will indicate the necessity to establish
a link between entities under consideration. The
functional criterion is not quite strict to cope with all
ambiguities and controversial issues of the mapping,
this makes it a simple guideline to be used on initial
stages. It does not provide enough means to find
exact ways of software entities decomposition and
does not allow for setting of the boundaries of
framework modules within them.
Another criterion which potentially can give more
precise results is the criterion of interfaces between
the framework entities. To apply this criterion, the
framework structure should be considered in regard
of interfaces between the entities. The prerequisite
for interface-based decomposition is the strict and
unambiguous definition of those interfaces within a
framework. The internal structure of software entities
is to be analyzed in order to reveal particular layers
where the interface is equivalent or consistent to the
interface between framework entities. Disclosed
interface layer will represent the required boundary.

6.2. Application example: Adaptive Cruise Control

The functionality of ACC is described in [6] as
carrying out a part of longitudinal control strategy
basing on information about forward vehicles, own
vehicle and drivers command. Basic intention of the
ACC longitudinal control strategy is the automatic
control of vehicle speed (in some range) to maintain
either a time gap to a forward vehicle or to maintain
the set speed, whichever speed is lower. Further the
ACC with speed control, time gap control and active
brake control capabilities will be considered as the
most general case. The functional structure of ACC
according to [6] is shown in Figure 6.

Figure 6: Structure of the ACC according to ISO

15622

The following functionalities are associated with the
ACC component:
• Determining of ACC-specific vehicle state
• Sensor data processing and surrounding vehicle

detection
• Selection of target vehicle for time gap control
• Time gap control acceleration request calculation
• Speed control acceleration request calculation
• Active strategy selection
• Comfort acceleration arbitration (including

forming comfort-related requests to brake and
transmission systems)

The list shows that overall ACC functionality crosses
the boundary of top level domains in the AUTOSAR
representation: input data for ACC are provided by
sensors from Chassis and Powertrain domains, as
well as the actuators for longitudinal control
implementation are belonging to the same two
domains. Thus, in AUTOSAR specification more
than one SW-C will be involved in the overall ACC
operation.
Consideration of the ACC functionalities and
definition of reference model shows, that most likely
they are to be split between Driver Assistance and
Drivetrain modules. Interface analysis is required to
find the boundary within the component.
As follows from the description of the 5 modules, the
interface between Driver assistance module and
Drivetrain module is described as “motion vector”.
For such interface the most appropriate level of
interface abstraction is the level of physical motion

 Page 7/8

parameters as speeds (longitudinal and lateral),
accelerations, yaw rates etc. The SW-Cs intended to
form ACC acceleration request and to arbitrate it
with acceleration requests from other comfort- and
safety-related ADAS are to be referred to the
strategic Driver Assistance module and SW-Cs
concerned to the implementation of supplied
acceleration request - to the Drivetrain module. More
thorough consideration by domain experts is
required to determine exact boundary in accordance
with formulated guidelines.

6.3. Principles shown in a demonstrator

The principles considered in the previous sections
were realized in a demonstrator. The main
functionality is cruise control. This is especially of
use to show the principles of AUTOSAR and the
functional model concepts as it is a function that
needs data from several sensors out of different
domains, has a central – domain independent –
responsibility to process the data and uses several
output devices. With that, this function has many
aspects that are suitable to show several of the main
objectives of AUTOSAR. But to show the interaction
with other functionality, additional applications are
realized as ASW components. These are air
conditioning, wiper washer, window lifter, and central
door locking.
The demonstrator consists of a set of four ECUs with
reduced functionality and an additional PC. They are
connected via a high speed CAN. Three of them are
based on NEC V850 hardware and one on TriCore
µC. The PC is used for the central control of the
whole functionality, restbus simulation and HMI
purposes. On the V850 ECUs an ICC31 AUTOSAR
BSW stack is implemented. On the TriCore µC an
ICC2 implementation of the AUTOSAR BSW stack is
realized. Each ECU takes over a specific role in the
network. One takes over the responsibility of a real-
time server, one of an engine control unit, one of a
body control unit and one of an instrument cluster
control unit. Sensors and actuators are connected
via CAN to one of the ECUs.

1 AUTOSAR defines three implementation
conformance classes (ICC). ICC1 is the black box
view on the BSW. ICC3 is the module level view on
the BSW. In ICC2 several modules are combined
into different clusters.

HMI-PC

CAN / LIN

AUTOSAR COM

Cruise control
Algorithm

Body Control
Unit

µC: V850
BSW: ICC3

EngineControlUn
it

µC: TriCore
BSW: ICC2

RealTimeServer
µC: V850

BSW: ICC3

Instrument
Cluster

µC: V850
BSW: ICC3

Figure 7: Cruise control demonstrator

The whole system is placed in two transportable
suitcases, such that it can be used for
demonstrations to the customer. Each of the
involved subdomains can now illustrate how the
specific ECU works in the cross domain network of
AUTOSAR ECUs.

7. Conclusion

Attempts to arrange the architecture of AUTOSAR-
based vehicle system using the arbitrary functional
model along with its structuring principles require
finding of appropriate mapping between AUTOSAR
architecture and target model, i.e. determination of
correspondence between their entities.
In general case mapping of SW-Cs to the entities of
different functional models will require consideration
of their internal structure since necessity of further
decomposition is anticipated.
To find the optimal way of mapping, two criteria can
be used: functional equivalence and interface
consistency. Well defined interaction patterns, clear
and strict structuring principles of target functional
model become key factors in successful mapping.
In this paper a couple of approaches from the
automotive world were described to form a sort of
reference functional framework. Its application was
demonstrated on an example of Adaptive Cruise
Control.
Usually the OEM is the developer and owner of the
functional model of a vehicle and the supplier
develops the software on subsystem level. To
improve the reuse of this software, the supplier has
an interest to map the software components to as
many functional models from different OEMs as
possible. The framework presented in this paper
enables the mapping of functional models on vehicle
level with hierarchies of AUTOSAR software
compositions. It will be used to embed the
implementations of software components to the
functional models in future series projects.

8. References

 Page 8/8

[1] AUTOSAR Main Requirements, Version 2.0.1,

AUTOSAR Consortium, 2006

[2] AUTOSAR Technical Overview, Version 2.0.1,
AUTOSAR Consortium, 2005

[3] AUTOSAR Glossary, Version 2.0.1, AUTOSAR
Consortium, 2005

[4] AUTOSAR Software Component Template,
Version 2.0.1, AUTOSAR Consortium, 2006

[5] Meta Object Facility (MOF) Core Specification,
Version 2.0, Object Management Group, 2006

[6] ISO 15622: Transport information and control
systems - Adaptive Cruise Control systems -
Performance requirements and test
procedures

[7] CARTRONIC – An Open Architecture for
Networking the Control Systems of an
Automobile, Torsten Bertram, Rainer Bitzer,
Rainer Mayer, Asmus Volkart, Robert Bosch
GmbH

[8] A. Gilberg: The long terms impacts of
AUTOSAR on development costs and quality
management of tomorrow's vehicles;
International Automotive Electronics Congress,
Paris, 2007.

[9] Frédéric Holzmann, Adaptive Cooperation
between Driver and Assistant System:
Improving Road Safety, Springer Verlag,
Berlin, 2007

[10] Secure Propulsion Using Advanced Redundant
Control (SPARC); eSafety of road and air
transport initiative; 2006.

[11] SPARC Deliverable D3: Specification
document on SPARC interfaces and
architecture, Version 1.0, Michael Armbruster,
Matthias Feiler, Frederic Holzmann, Joahim
Irion, Ansgar Maisch, Armin Sulzmann,
Manfred Thanner, The SPARC Consortium

9. Glossary

ACC: Adaptive Cruise Control
ADAS: Advanced Driver Assistance Systems
ASW: Application Software
AUTOSAR: Automotive Open System Architecture
BSW: AUTOSAR Basic Software
ECU: Electronic Control Unit
HMI: Human-Machine Interface
RTE: AUTOSAR Runtime Environment
SW: Software

SW-C: AUTOSAR Software Component
VFB: AUTOSAR Virtual Functional Bus
VLC: Vehicle Longitudinal Control

