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Abstract 16 

Forest performance is challenged by climate change but higher atmospheric [CO2] (ca) 17 

could help trees mitigate the negative effect of enhanced water stress. Forest projections 18 

using data-assimilation with mechanistic models are a valuable tool to assess forest 19 

performance. Firstly, we used dendrochronological data from 12 Mediterranean tree 20 

species (6 conifers, 6 broadleaves) to calibrate a process-based vegetation model at 77 21 

sites. Secondly, we conducted simulations of gross primary production (GPP) and radial 22 

growth using an ensemble of climate projections for the period 2010-2100 for the high-23 

emission RCP8.5 and low-emission RCP2.6 scenarios. GPP and growth projections 24 

were simulated using climatic data from the two RCPs combined with: (i) expected ca; 25 
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(ii) constant ca = 390 ppm, to test a purely climate-driven performance excluding 26 

compensation from carbon fertilization. The model accurately mimicked the growth 27 

trends since the 1950s when, despite increasing ca, enhanced evaporative demands 28 

precluded a global net positive effect on growth. Modeled annual growth and GPP 29 

showed similar long-term trends. Under RCP2.6 (i.e. temperatures below +2ºC with 30 

respect to preindustrial values) the forests showed resistance to future climate (as 31 

expressed by non-negative trends in growth and GPP) except for some coniferous sites. 32 

Using exponentially growing ca and climate as from RCP8.5, carbon fertilization 33 

overrode the negative effect of the highly constraining climatic conditions under that 34 

scenario. This effect was particularly evident above 500 ppm (which is already over 35 

+2ºC), which seems unrealistic and likely reflects model miss-performance at high ca 36 

above the calibration range. Thus, forest projections under RCP8.5 preventing carbon 37 

fertilization displayed very negative forest performance at the regional scale. This 38 

suggests that most of western Mediterranean forests would successfully acclimate to the 39 

coldest climate change scenario but be vulnerable to a climate warmer than +2ºC unless 40 

the trees developed an exaggerated fertilization response to [CO2]. 41 
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Introduction 46 

Future climate will trigger changes in ecosystem functioning, including 47 

enhancement in forest vulnerability to water stress (Giorgi & Lionello 2008; van der 48 

Molen et al. 2011; Anderegg et al. 2015). Understanding how forests will respond to 49 

warmer conditions but under higher than present ca is crucial to assess future forest 50 

performance. Theoretically, plants should enhance growth and net primary productivity 51 

(NPP) by optimization of different functional traits in response to elevated [CO2] (i.e. ca 52 

levels way above present values, eCO2) if this was a limiting factor. In practice, rising ca 53 

has enhanced intrinsic water-use efficiency (iWUE) in forests but this was not generally 54 

translated on a net increase of growth, meaning that other factors such as water stress 55 

and/or nutrient limitation have overridden the potential positive effect of CO2 (Peñuelas 56 

et al. 2011; Keenan et al. 2013; Reichstein et al. 2013; van der Sleen et al. 2014; Kim et 57 

al. 2016).  58 

The net effect on tree growth of the interaction ‘Climate x CO2’ can depend 59 

nonlinearly on ca levels (Reichstein et al. 2013). Observational data show evidence up 60 

to current ca < 403 ppm whereas future emission scenarios project ca far above this level 61 

(IPCC 2014). Free-Air Carbon dioxide Enrichment (FACE) experiments were designed 62 

to address this issue. In these experiments [CO2] was elevated up to 600-800 ppm but 63 

they were carried out under current environmental conditions mostly on temperate 64 

forests (Battipaglia et al. 2013; De Kauwe et al. 2013; Baig et al. 2015; Kim et al. 2016; 65 

Norby et al. 2016). Thus, the effect of eCO2 on forest performance in relation to climate 66 

and other environmental factors needs to be addressed in other biomes where more 67 

constraining (warmer and drier) conditions are expected for the future (Giorgi & 68 

Lionello 2008; García-Ruiz et al. 2011; IPCC 2014). The role that CO2 could play to 69 

compensate the negative impact of increasing water stress on forests has long been 70 
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debated. Plants can coordinate different functional traits in response to eCO2 and 71 

drought-prone species at dry sites could benefit more from eCO2 (Medlyn & De Kauwe 72 

2013; Duursma et al. 2016; Kelly et al. 2016). Leaf-level responses are easier to predict 73 

than canopy or ecosystem-level responses (Fatichi et al. 2015). Consequently, there is 74 

still uncertainty on how the forest carbon cycle will adjust in the future because multiple 75 

interactive factors determine the net response of forests at different scales (Breda et al. 76 

2006; Niinemets 2010; van der Molen et al. 2011; Kattge et al. 2011).  77 

Vegetation models combine the effect of different stress factors on different 78 

functional traits to achieve a proper understanding of forest functioning. These models 79 

should be able to combine C-sink and C-source limitations to provide key information 80 

on how forests will develop in the future (Sala et al. 2012; McDowell et al. 2013; 81 

Fatichi et al. 2014; Anderegg et al. 2015; Walker et al. 2015). There is a constant need 82 

to improve the representation of hydrological, physical and biological processes in 83 

models. In addition, improvement of model performance needs to be achieved through 84 

benchmarking and data-assimilation (Peng et al. 2011; Pappas et al. 2013; Medlyn et al. 85 

2015; Prentice et al. 2015). Dendrochronological data have long been used to assess 86 

empirical relationships between climate and growth, which can be used as an indicator 87 

of tree fitness and performance (Fritts 1976). Process-based models can take into 88 

account the influence of CO2 on plant functional acclimation. Thus they can help to 89 

reduce uncertainty in growth projections but need continuous feedback from multiproxy 90 

data to ensure realism (Guiot et al. 2014; Walker et al. 2015). Dendrochronological 91 

records can be used to improve complex process-based models and help to assess forest 92 

dynamics under global change (Babst et al. 2014). Assessing forest dynamics is 93 

particularly challenging in ecosystems like those under Mediterranean climate (Morales 94 

et al. 2005) where two stress periods (cold in winter and drought in summer) limit plant 95 
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performance. Warmer winters could enlarge the growing season and promote higher 96 

photosynthetic rates (just in evergreens) but also higher respiration rates, whereas 97 

warmer summers would exert a negative impact (higher water stress) on forests.  98 

Modeling the net effect on trees of the balance between these two periods is critical to 99 

assess the future forest response to climate change.  100 

We analyzed the effect that forthcoming changes in climate and ca will yield over 101 

Mediterranean forests, which are expected to face a high vulnerability to future climate 102 

(Giorgi & Lionello 2008; García-Ruiz et al. 2011; IPCC 2014). We calibrated a stand 103 

mechanistic model using a network of tree-ring growth chronologies including an 104 

ensemble of species covering a wide ecological and geographic range to ensure realism 105 

and biological robustness when simulating future forest performance at the regional 106 

scale under different climate and ca scenarios. C-assimilation and C-allocation were 107 

explicitly controlled by climate and CO2 at different phenological stages (Misson 2004; 108 

Gea-Izquierdo et al. 2015). Importantly, the model includes a C storage pool to take into 109 

account carry-over effects and its daily scale can fit different limiting environmental 110 

conditions at different periods within and among years (Sala et al. 2012; Fatichi et al. 111 

2014). Thus, the net effect in response to the winter and summer stress periods was 112 

explicitly assessed. Forest projections were implemented using two contrasting 113 

representative concentration pathways (RCPs, van Vuuren et al. 2011). Using model 114 

simulations of future forest growth and GPP we addressed the following questions: (i) 115 

what will be the net effect of a warmer climate for Mediterranean forests?; (ii) to what 116 

extent could rising ca help compensate the expected negative effect of climate warming 117 

on forest growth and productivity? (iii) how will Mediterranean forests perform in 118 

relation to the maximum temperature threshold for future climate (i.e. +2.0ºC respect to 119 

preindustrial levels) agreed in the COP21 (http://www.cop21paris.org/)? 120 
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 121 

Material and Methods 122 

Forest sites: growth data for model calibration 123 

To calibrate the model at the regional scale we used dendrochronological data from 124 

77 forest sites including 12 Mediterranean tree species: 6 conifers and 6 broadleaves 125 

(App. 1). These data were either owned by the authors or obtained from databases 126 

(ITRDB, https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-127 

ring; DendroDB, https://dendrodb.eccorev.fr/framedb.htm). We explored the data to 128 

avoid chronologies where major site disturbances could have affected the decadal-to-129 

multidecadal growth variations. The chronologies included were older than 80 years in 130 

order to avoid the effect of juvenile growth (data used for calibration started in 1950) 131 

and ended later than 1995. Exceptionally, some sites ending before 1995 in Algeria 132 

were included to ensure enough data from that region. The resulting calibration period 133 

slightly differed across sites due to the different time-span of chronologies, but always 134 

fell between 1950 and 2010 and was greater than 40 years. For the analysis, ring-width 135 

growth data were transformed to basal area increments (BAI, cm2 year-1). One output 136 

from the model is C allocated to the tree stem (g C m-2 year-1). To make BAI and model 137 

output comparable for model calibration both data were normalized to unitless indices 138 

(Misson 2004; Gaucherel et al. 2008).  139 

 140 

Climate and ca: historical data and future scenarios  141 

Daily precipitation and temperature data used for model calibration for 1950-2010 142 

were either obtained from http://www.meteo.unican.es/datasets/spain02 (Herrera et al., 143 

2012) for Spain (20 km grid) or from http://hydrology.princeton.edu/data.php (Sheffield 144 

et al. 2006) for the rest (1º grid). Data were downscaled to match mean climatic local 145 
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values where these were available. For the future forest projections we used two 146 

greenhouse gas (GHG) radiative forcing scenarios developed for the Fifth Report of the 147 

IPCC (IPCC 2014), called RCPs (Van Vuuren et al. 2011). RCP8.5 (GHGRF<8.5 148 

W/m2) is the “business as usual” scenario. RCP2.6 is the most optimistic and stringent 149 

among RCPs, corresponding to strong mitigation policies with a GHG radiative forcing 150 

constrained to remain <2.6 W/m2. RCP2.6 is the only RCP limiting global warming to 151 

+2°C relative to the pre-industrial level. We used a multimodel ensemble of 19 152 

simulations for RCP2.6 and 18 simulations for RCP8.5 performed by 13 climatic 153 

institutes (see App. 2). The global climate models have a coarse resolution, from one to 154 

more than five degrees depending on the model. There is often some mismatch between 155 

the stand level and input climatic data (Körner 2003; Potter et al. 2013; Pappas et al. 156 

2015). This was minimized as possible by downscaling climate scenarios to match the 157 

shared period of the historical data. Under RCP8.5 the projected climate for our study 158 

sites describes a relative increase in mean annual temperature (MAT) of +5.0ºC and a 159 

decrease of over 40% in mean annual precipitation (MAP) by 2100 respect to current 160 

values. Under RCP2.6 the projected climate forecasts a mean increase in MAT of 161 

+1.0ºC by 2068, stabilizing thereafter, with no decrease in MAP respect to current 162 

conditions (App. 3). 163 

 164 

The process-based model MAIDEN  165 

The vegetation model MAIDEN (Fig. 1) was originally developed to be used with 166 

dendrochronological data by being calibrated to both time series of radial growth and 167 

estimates of transpiration from sap-flow experiments (Misson 2004). Recently, the 168 

model has been further developed to be used with evergreen Mediterranean taxa with a 169 

multiproxy approach using gross primary productivity (GPP) estimates from Eddy 170 
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covariance stations and plot growth data (Gea-Izquierdo et al. 2015). Inputs are daily 171 

climatic data (precipitation, maximum and minimum temperatures) and ca. In addition  172 

 173 
Fig. 1. Outline of MAIDEN. Only GPP (gross primary production) and biomass 174 

allocated to the stem (used to calibrate the model sitewise) estimates (blue boxes) are 175 

reported along the manuscript. Daily output of each variable is generated based on the 176 

input data of day i. ‘Weather’ corresponds to daily integrals of precipitation as well as 177 

maximum and minimum daily temperatures. GPP and ‘Stomatal conductance’ are 178 

functions of CO2, whereas variability within the other processes is mostly driven by 179 

meteorological inputs directly or indirectly (e.g. SWC). For more details on the 180 

functions and processes outlined see Misson (2004) and Gea-Izquierdo et al. (2015). 181 

 182 

the model requires as input different site related physiographic characteristics and 183 

species functional traits (see Gea-Izquierdo et al. 2015 for details). The processes within 184 

the model are mainly functions of climate, CO2 and soil water availability (hence water 185 
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stress). The model acts at the stand level calculating carbon and water fluxes (Fig. 1) 186 

using a coupled photosynthesis-stomatal conductance model. It uses the standard 187 

biochemical model of Farquhar et al. (1980) in which photosynthesis is driven by the 188 

most limiting between Rubisco-limited activity and electron-transport. Stomatal 189 

conductance is also estimated using a widely used equation as a function of vapor 190 

pressure deficit (VPD, Leuning 1995). After GPP and autotrophic respiration have been 191 

estimated carbon is allocated to different tree components. Photosynthesis and 192 

allocation are driven by decoupled non-linear (daily) functions of climate. Thus growth 193 

is not only a direct function of C availability and the model is designed to address in 194 

time not only C-source but also C-sink limitations, which is an important step required 195 

to achieve more robust and realistic vegetation models (Muller et al. 2011; Sala et al. 196 

2012; Fatichi et al. 2014). The model is particularly sensitive to water stress by 197 

implicitly modeling as functions of climate and water stress some functional and 198 

demographic traits such as leaf area, carbon allocation, leaf- and canopy-level 199 

photosynthesis and transpiration (Muller et al. 2011; Gea-Izquierdo et al. 2015; 200 

Duursma et al. 2016; Kelly et al. 2016). [CO2] only affects photosynthesis and stomatal 201 

conductance, i.e. leaf area or respiration are direct functions of climate but not CO2. A 202 

brief outline of the model is shown in Fig. 1. 203 

 204 

Model calibration and ecological coherence of the parametric space 205 

Calibration of complex multiparametric models is necessary to improve model 206 

performance and because of the presence of collinearities between parameters and 207 

absence of an exact solution (Prentice et al. 2015). To ensure good model performance, 208 

it is important to assess the functional coherence of parameters to be calibrated. In 209 

addition to calibration, it is desirable to run independent validations particularly when 210 
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models are fitted for prediction purposes. Nevertheless, we could not run an 211 

independent crossvalidation for two reasons: (1) we calibrated against annual growth 212 

(i.e. we had a number of observations between 40 and 60) estimates by integrating 213 

annually the daily estimates from the model, therefore our data was too short to be split 214 

in two, (2) a jackknife was intractable both computationally and also because 215 

continuous (daily) time data series are needed to run the model, i.e. in case individual 216 

years were left out the model could not calculate the carbon and water dynamics needed 217 

to compute the complete time series at each site.  218 

We implemented a species-specific approach rather than using plant functional 219 

types (PFTs) as it is often applied in ecosystem models (Kattge et al. 2011; Atkin et al. 220 

2015; Pappas et al. 2016). We applied the model at the regional scale and to different 221 

species to analyze forest performance under future climate and ca. Data-assimilation 222 

was used to apply the model to different ecological conditions and species (Peng et al. 223 

2011; Medlyn et al. 2015). Overall, the growth data did not show a positive trend 224 

whereas ca increased steadily in the calibration period (1951-2010). Therefore, by 225 

calibrating the model site-wise using non-detrended (but normalized) growth data and 226 

observed ca levels we assured that the model excluded an artificial carbon fertilization 227 

effect on past growth. Additionally, to avoid overestimation of photosynthesis and get 228 

unbiased simulations (Schaefer et al. 2012), we ensured that maximum GPP daily 229 

integrals yielded within ranges given in Baldocchi et al. (2010): 4-6 g C m-2 day-1 for 230 

evergreens and of 10-14 g C m-2 day-1 for deciduous species. Similarly, we constrained 231 

annual GPP and NPP estimates to be within those measured for similar ecosystems (see 232 

Table 3 in Falge et al. 2002 and Table 3 in Luyssaert et al. 2007). Species Specific leaf 233 

area (SLA) was obtained from Mediavilla et al. (2008) and Kattge et al. (2011).  234 
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Here, within the processes in Fig. 1 we show those functions with parameters 235 

involved in the calibration phase. For more details, we refer to the original model in 236 

Misson (2004) and the updated modified last version in Gea-Izquierdo et al. (2015). 237 

(i) 	"#(%) =
(

()*+,(-./01·(345(/)6-./078))
																																																																																	 [E1] 238 

(ii) =>((i) = (1 − exp	(D>E./-F · GHI(%)) · Jexp J−0.5 · N
OPQR(/)6STUVP8

STWX
Y
Z
[[									 [E2] 239 

(iii) =>Z(i) = (1 − exp	(]^>E./-F · GHI(%)) · _exp _−0.5 · J
OPQR(/)6-FTUVP8

-FTWX_UVP8
[
Z
aa				[E3] 240 

(iv)   =c(i) = d1 − exp	(]^cFeES · fEgh(%)i · _exp_−0.5 · J
345(/)

-FjWX_Pk7WU
[
Z
aa															 [E4] 241 

"#  is a soil water stress function affecting stomatal conductance. a31, a32 and a4 are 242 

allocation functions for two different phenological periods (3 and 4). a31 is related to the 243 

leaves and a32 to the stem, whereas a4 determines C allocation between the stem and 244 

storage. SWC is soil water content and Tmax is daily maximum temperature. We 245 

calibrated soilip from [E1]; D>E./-F  and D>FeES  from [E2]; ]^>E./-F  and ]^>FeES  from 246 

[E3]; and ]^c-m_E./-F	and	]^cFeES	from [E4]. The rest of parameters were set following 247 

Gea-Izquierdo et al. (2015). All parameters except soilip (which is related to the 248 

stomatal response) help to define carbon allocation in relation to soil water content and 249 

air temperature during the active period. 250 

We calibrated these model parameters taking into account variability in functional 251 

traits and the response to climate of plant processes related to site and species. To 252 

address the local phenotypic response of species (Montwé et al. 2016), some of those 253 

parameters (≤7) described in the previous paragraph were calibrated site-wise using 254 

maximum likelihood principles and a global optimization algorithm (Gaucherel et al. 255 

2008; Gea-Izquierdo et al. 2015). A maximum of 7 allocation parameters from [E1] to 256 

[E4] were optimized depending on species by comparing normalized annual integrals of 257 
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modeled C allocation to the stem and normalized annual growth series. We calculated 258 

different statistics to check the goodness of fit: the coefficient of determination (R2), the 259 

linear correlation (ρ), and the correlation (rlow) between filtered (using splines with a 260 

50% frequency cutoff of 30 years) observed and modelled growth. rlow was calculated to 261 

analyse the model capability to mimic the interannual and decadal growth trends. To 262 

discuss the validity of our modelling exercise and since we could not run an 263 

independent verification to the calibration conducted, coherence of the intersite 264 

multiparametric space was analysed by exploring the ecological significance of 265 

parameters compared to different site characteristics including latitude, longitude, 266 

altitude, precipitation, temperature, and Penman-Monteith potential evapotranspiration 267 

(PET), which was calculated for each site following Allen et al. (1998). The 268 

relationship between the 7 model parameters fitted at each of the 77 sites and the mean 269 

site ecological covariates was explored through pointwise correlations: (i) using site 270 

individual indices; (ii) using the principal components (PCs) of the 7 x 77 matrix 271 

(Legendre & Legendre 1998).  272 

 273 

Forest performance under climate change and different ca scenarios 274 

Once the model had been calibrated we implemented forest projections at the 77 275 

sites using simulated climatic data generated under RCP2.6 and RCP8.5. To discuss the 276 

effect of ca on the net response of forests to climate change we compared two type of 277 

forest simulations driven by the multimodel climatic scenarios:  278 

(i) ‘fertilization’ scenario: with ca levels expected for RCP2.6 and RCP8.5. 279 

(ii) ‘non-fertilization’ scenario: using climate from RCP2.6 and RCP8.5 but constant ca 280 

= 390 ppm after 2010. 281 

We report GPP in addition to growth projections. Future growth trends were assessed 282 
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Group n 
 R2  r  rlow 
 Mean (sd) Max (Min)  Mean (sd) Max (Min)  Mean (sd) Max (Min) 

Broadleaves 22  0.343 (0.168) 0.643 (0.0)  0.675 (0.084) 0.821 (0.483)  0.728 (0.185) 0.929 (0.114) 
Conifers 55  0.356 (0.141) 0.710 (0.073)  0.676 (0.070) 0.855 (0.537)  0.786 (0.156) 0.968 (0.249) 
Total 77  0.353 (0.148) 0.710 (0.0)  0.675 (0.074) 0.855 (0.483)  0.769 (0.165) 0.968 (0.114) 
Table 1. Mean values of goodness of fit statistics. n= number of forest sites; R2=coefficient of determination; r=coefficient of correlation; 283 

rlow=coefficient of correlation of filtered data (see material and methods for details). 284 

 285 
Fig. 2. Map showing the coefficient of determination (R2) and correlation (ρ) between dendrochronological data and modeled stem growth data 286 

using MAIDEN at the 77 forest sites. R2 is shown in (a) whereas ρ in (b). For R2 we split in four classes: 0≤R2<0.15; 0.15≤ R2<0.3;  287 

0.3≤R2<0.45; 0.45≤ R2. For ρ in: 0.45≤ ρ <0.5; 0.5≤ ρ <0.6; 0.6≤ ρ <0.7; 0.7≤ ρ. Triangles depict conifers, whereas circles broadleaves. 288 

-10
-5 0 5 10

15
2030

32

34

36

38

40

42

44

46

48

Broadleaves
Conifers

Europe

Africa

N

Mediterranean Sea

Longitude

La
tit
ud
e

R2 <0.15 <0.3 <0.45 >0.45

(a)

-10
-5

0 5 10
15

2030

32

34

36

38

40

42

44

46

48

Broadleaves
Conifers

Europe

Africa

N

Mediterranean Sea

Longitude
La
tit
ud
e

ρ
<0.5 <0.6 <0.7 >0.7

(b)



 
 

14 

through the slope of simple regressions between simulated growth (or GPP) for a given 289 

scenario and site against year for the periods 2010-2100, 2010-2050 and 2051-2100. 290 

 291 

Results 292 

Model calibration across western Mediterranean forests 293 

The model fit against the calibration data is shown in Fig. 2 and Table 1 and the 294 

parameters fitted in App. 4. Importantly, data used to calibrate the model did not show 295 

an overall significant increase in growth, hence did not suggest evidence of a global net 296 

carbon fertilization effect during the last decades (Table 2). The observed growth trends 297 

were highly correlated with the model output (ρ and particularly rlow in Table 1). 298 

Correlation between model output (carbon allocated to the stem) and growth data was in 299 

average 0.67 whereas mean R2 was 0.36 (Table 1). The multiparametric space of the 77 300 

fitted models was explored through PCA. The eigenvalues corresponding to the three 301 

first principal components (PCs) were over the mean, hence significant according to the  302 

Kaiser-Guttman criterion (Legendre & Legendre 1998). These three PCs including the 7 303 

parameters fitted in the calibration phase explained 60.9 % of the variability (PC1 24.7 304 

%, PC2 19.7 % and PC3 16.6%). PC1 was mostly related to parameters linked to 305 

humidity: a positive relation with moisture parameters such as soilip and !"#$%_'()$*, and 306 

a negative one with !"+'()$* (not shown). PC2 was mostly related to parameters linked 307 

to temperatures: positively with !"#*,'- and negatively with .+*,'-	and !"+*,'-. PC3 308 

was positively correlated with the humidity parameter .+'()$*	(not shown). The 77 309 

parameters and the PCs (2 and 3) showed some significant relationships with the site 310 

ecological characteristics (Fig.3). Most of the site-based relationships between the fitted 311 

parameters and the ecological characteristics of the 77 sites were linked to site 312 

temperatures (Fig. 3), whereas almost no significant relationships were found with the 313 
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other tested covariates (e.g. site precipitation or PET). These relationships suggest the 314 

existence of some ecological coherence within the parametric space fitted for the 77 315 

forest sites, which would support the robustness of the model parameterization used. 316 

 317 
Fig. 3. Ecological coherence of model parameters at the 77 forest sites (only those 318 

relationships that were significant are shown): (a) PC2 and site Tmax; (b) PC3 and site 319 

Tmin; (c) st3temp and site Tmin. 320 

 321 

Growth-GPP projections under changing climate and ca 322 

The model allocates carbon to different plant compartments driven by different non-323 

linear functions of environmental variability, hence it allows some decoupling between 324 

GPP, NPP and secondary growth. In this sense, 59% and 80% of the simulations 325 

presented correlations between GPP and growth higher than 0.5 for RCP2.6 and 326 

RCP8.5, respectively (App. 5). Thus the majority of sites showed a good agreement 327 

between interannual GPP and growth (i.e. generally the modeled interannual variability 328 

of growth was driven by that of GPP). Furthermore, the growth trends (long-term, 329 

multiannual) were of similar sign (positive, negative or neutral) as those of GPP (Table 330 

sitios_red2$Tmax

pe
ce

s_
pa

r[
, 2

] ρ = 0.258
p  =  0.023

(a)-3
-2
-1
0
1
2
3

14 16 18 20 22 24

-3
-2
-1
0
1
2

sitios_red2$Tmin

pe
ce

s_
pa

r[
, 3

]

ρ = -0.290
p = 0.010

(b)

2 4 6 8 10 12 14 16
-200
-100
0

100
200

sitios_red2$Tminpa
rs
_r
ed
_f
3$
bu
d_
tm
ax

ρ = -0.287
p =  0.011

(c)

Tmin (ºC)

Tmax (ºC)

st
3 t
em
p

PC
3

PC
2



 
 

16 

Group Observed 
past Growth  

Growth projections 2010-2099 
Allowing fertilization (i.e. predicted ca)  No fertilization (i.e. ca = 390 ppm) 

GPP Growth  GPP Growth 
2010-2050 2051-2099 2010-2050 2051-2099 2010-2050 2051-2099 2010-2050 2051-2099 

Broadleaves 0.79 
(0.96) 

RCP2.6 

0.60 c 
(2.03) 

-0.62 c 
(0.38) 

0.35 b 
(0.71) 

-0.24 d 
(0.16) 

 -2.2 a 
(2.75) 

0.26 a 
(0.47) 

-0.65 b 
(0.89) 

0.08 a  
(0.18) 

Conifers 0.17 
(0.71) 

0.78 c 
(1.98) 

-0.98 d 
(1.42) 

0.14 c 
(0.31) 

-0.08 c 
(0.13) 

 -3.64 b 
(3.92) 

-0.02 b 
(0.82) 

-0.34 a 
(0.38) 

0.02 b  
(0.11) 

Total 0.35 
(0.83) 

0.73 
(1.98) 

-0.88 
(1.22) 

0.20  
(0.47) 

-0.13 
(0.16) 

 -3.21 
(3.67) 

0.06 
(0.74) 

-0.43 
(0.58) 

0.04 
(0.13) 

            

Broadleaves 0.79 
(0.96) 

RCP8.5 

2.11 b 
(2.20) 

3.21 b 
(2.79) 

0.93 a 
(0.96) 

1.37 a  
(1.13) 

 -4.32 c 
(3.14) 

-5.48 c 
(2.42) 

-1.30 c 
(1.11) 

-1.05 d 
(0.73) 

Conifers 0.17 
(0.71) 

3.38 a 
(1.74) 

3.75 a 
(2.51) 

0.37 b 
(0.45) 

0.78 b 
(0.62) 

 -5.68 d 
(3.77) 

-6.4 d 
(3.21) 

-0.61 b 
(0.46) 

-0.57 c 
(0.53) 

Total 0.35 
(0.83) 

3.02 
(1.96) 

3.60 
(2.58) 

0.53 
(0.68) 

0.95 
(0.83) 

 -5.29 
(3.63) 

-6.11 
(3.02) 

-0.81 
(0.77) 

-0.71 
(0.63) 

 331 

Table 2. Growth trends as estimated by the slopes of linear regressions between growth (slopes in cm2·year-2) or GPP (slopes in g C m-2 year-2) 332 

and year. Mean slopes are shown for observed past growth and for projected growth and GPP for the periods 2010-2050 and 2051-2099.  333 

Standard deviations are between parentheses. One-way ANOVA differences between broadleaves and conifers (RCP2.6 and RCP85, i.e. 4 levels) 334 

within columns are depicted with different letters. 335 
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336 
Fig. 4. Example of growth projections at one Quercus pyrenaica site (QUPY3 in 337 

App.1). Trends (i.e. linear regressions between mean growth and year) for 2010-2050, 338 

and 2051-2099 are shown with green lines for the ‘fertilization’ (red line) and ‘non-339 

fertilization’ (blue line) scenarios. These trends correspond to the slopes reported in 340 

Table 2, Fig. 5 and Fig. 6. Shaded areas behind annual mean growth values (!"; thick 341 

black line is mean past growth) correspond to the confidence intervals for the mean 342 

calculated as !" ± 1.96 · )*+"/√. ()*+"  is the combined standard deviation of the model 343 

estimates and the variability among climatic scenarios; n is sample size). ca values 344 

([CO2]) corresponding to the two scenarios considered (i.e. RCP2.6, RCP8.5) are shown 345 

as thin black lines.  346 

 347 

2). GPP projections exhibited steeper trends (both positive and negative) for 348 

Mediterranean conifers (all evergreen species), whereas the growth trends were steeper 349 

for broadleaves (mostly deciduous) than for conifers (Table 2). An example of a model 350 

simulation and how the reported trends (i.e. slopes) were calculated is depicted in Fig. 351 

4. Model simulations yielded the greatest GPP and growth in more mesic sites, as 352 

expected (App. 6). 353 
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According to our projections forest growth would not be much altered when 354 

assuming the low emission RCP2.6 scenario with predicted ca (Fig. 5). Under the ca 355 

pathway from RCP2.6, which reaches the ca maximum (446 ppm) in 2051, the model 356 

simulates a slight increase in growth up to 2050 followed by a slight decrease (Table 2). 357 

The resulting overall trend up to 2100 depends on site conditions: most forests exhibited 358 

non-significant or reduced trends under RCP2.6 for both ca scenarios (Fig. 5, 6). 359 

However, for the ‘non-fertilization’ scenario, model simulations suggested significant 360 

negative growth trends for some coniferous sites e.g. in Southern France and Eastern 361 

Spain (Fig. 6). Therefore the results of the model mostly suggested that forests would 362 

acclimate at the regional scale to the climate proposed by RCP2.6. Yet, negative local 363 

impacts for some coniferous species would pop up when constraining the carbon 364 

fertilization effect. 365 

Climate simulations under RCP8.5 forecast a much warmer scenario with less 366 

precipitation than RCP2.6 (App. 3). In response, forest growth projections under this 367 

scenario showed a different picture to that described for RCP2.6. For the ‘non-368 

fertilization’ scenario (i.e. constant 390 ppm) future forest growth trends would be 369 

negative across all the western Mediterranean. Both conifers and broadleaves would 370 

suffer huge decreases in GPP and growth concurrent with the increase in PET expected 371 

under RCP8.5. These negative trends were much steeper than those for RCP2.6 (Table 372 

2) and in some cases converged towards zero. In contrast, under the coherent ca pathway 373 

(exponential increase in ca to 935 ppm in 2100) for RCP8.5, the model suggested that 374 

plants would not only compensate the more stressing climate but also that growth and 375 

GPP would be enhanced across the study region regardless of species (Fig. 6; Table 2).  376 

In average RCP8.5 predicts for the studied area in average a +2ºC warmer climate 377 

(with ca = 504 ppm) and a slight MAP reduction by 2050 (App. 3) compared to present  378 
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 379 

Fig. 5. Future growth simulations trends using climatic scenarios RCP2.6 (a) and RCP8.5 (b), with predicted (increasing) ca between 2010 and 380 

2099. Trends are estimated as the slopes of the linear regressions between stem biomass growth and year (see Fig. 4). Symbols are scaled as a 381 

function of the slope value. Red symbols correspond to negative trends whereas blue symbols to positive trends. Solid symbols correspond to 382 

significant trends (α=0.05) whereas empty symbols to non-significant trends. 383 
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384 
Fig. 6. Future growth simulations trends between 2010 and 2099 using climatic scenarios RCP2.6 (a) and RCP8.5 (b), with constant ca = 390 385 

ppm. Trends are estimated as the slopes of linear regressions between stem biomass growth and year (see Fig. 4). Symbols are scaled as a 386 

function of the slope value. Red symbols correspond to negative trends whereas blue symbols to positive trends. Solid symbols correspond to 387 

significant trends (α=0.05) whereas empty symbols to non-significant trends. 388 
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values (i.e. +2.8ºC compared to preindustrial levels). This is over the reduction goal in 389 

greenhouse emissions for COP21 (http://www.cop21paris.org/) established below +2ºC, 390 

which otherwise would be achieved in RCP2.6. Simulations under RCP8.5 suggested a 391 

negative impact in growth and GPP of climate unless this was compensated by an 392 

exaggerated fertilization effect of eCO2. The higher the temperature, the more evident 393 

and widespread this negative impact would become (Fig. 5, 6; Table 2). In contrast, 394 

when allowing fertilization, the greatest positive growth trends (i.e. a greater net 395 

fertilization effect) would arise after 2050 with ca levels >500 ppm (Table 2). Growth 396 

trends after 2050 were steeper than those before 2050 for the ‘fertilization’ scenario 397 

(mean difference 0.42, p<0.001) but not for the ‘non-fertilization’ scenario (mean 398 

difference 0.09, p=0.403). This highlights the larger influence in simulated growth and 399 

GPP of eCO2 (positive) compared to that of expected high temperatures (negative). 400 

 401 

Discussion 402 

Forest future in a warmer western Mediterranean region: what is the role of ca? 403 

Trees can enhance productivity and modify some anatomical and physiological 404 

traits (e.g. iWUE) in response to eCO2 but it is not known how they will perform under 405 

future climate and ca (Medlyn & De Kauwe 2013; Duursma et al. 2016; Kelly et al. 406 

2016). A positive net effect of eCO2 on trees can be hampered by the limiting effect of 407 

other environmental constraints such as nitrogen (N) availability and water stress (De 408 

Kauwe et al. 2013; Reichstein et al. 2013; Fernández-Martínez et al. 2014; Walker et 409 

al. 2015; Kim et al. 2016). A positive feedback of eCO2, e.g. in leaf area (if a steady-410 

state has not been achieved yet; Körner 2006) and NPP, has been reported under current 411 

climate conditions in temperate forests where non-climatic factors such as N availability 412 

were limiting (Medlyn et al. 2015; Walker et al. 2015; Kim et al. 2016). In contrast, 413 
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Duursma et al. (2016) did not observe any change in leaf area in response to eCO2 when 414 

leaf area was limited by water availability (i.e. like in our model). Therefore, depending 415 

on the most limiting factor, different ecosystems seem to express different responses to 416 

eCO2 under current climatic conditions. 417 

As reflected by our model during the observational period (see Gea-Izquierdo et al. 418 

2015 for iWUE), the effect of recent rising ca has generally produced an enhancement in 419 

iWUE but not in growth rates (e.g. Peñuelas et al. 2011; Keenan et al. 2013; Saurer et 420 

al. 2014; van der Sleen et al. 2014). Furthermore, studies reporting past growth 421 

enhancement within the last 150 years (e.g. at species-specific high-elevation sites) did 422 

not consider ca as the main factor triggering that growth increase (Salzer et al. 2009; 423 

Gea-Izquierdo & Cañellas 2014). According to our results, most Mediterranean forests 424 

would mitigate the optimistic RCP2.6 scenario either with or without C-fertilization. 425 

Hence, forests would mostly endure the +2°C warming limit set within the Paris’ 426 

Agreement (http://www.cop21paris.org/). In contrast, projections under high-emission 427 

RCP8.5 would forecast big changes in forest performance. Simulations reflected a very 428 

negative impact of climatic conditions under RCP8.5 and a non-fertilization scenario, 429 

whereas they suggested a dominant positive effect of eCO2 at the regional scale 430 

(particularly for ca > 500 ppm) when allowing fertilization even under the very limiting 431 

climatic conditions of RCP8.5. The observed positive trends following a Temperature x 432 

eCO2 interaction were not unexpected, because the Farquhar model ensures large direct 433 

responses to eCO2 since Rubisco-limited photosynthesis responds fast to enhanced ca 434 

(Reichstein et al. 2013; Friend et al. 2014; Baig et al. 2015; Walker et al. 2015; Norby 435 

et al. 2016). Yet, this fertilization effect both for GPP and growth under RCP8.5 looks 436 

unrealistic (Körner 2006; Friend et al. 2014; Baig et al. 2015; Kelly et al. 2016).  437 
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The future long-term response of forests is uncertain but we expected no positive 438 

net effect of eCO2 on plant growth under very strong water-limitations (van der Molen 439 

et al. 2011; Girardin et al. 2012; Baig et al. 2015). Nevertheless, this was only reflected 440 

for RCP8.5 by the non-fertilization scenario. Photosynthesis is a saturating function of 441 

intercellular CO2 (Kelly et al. 2016) and according to Körner (2006) saturation is 442 

expected at levels similar to those of RCP8.5 in 2100 (circa 1000 ppm). Likely, the 443 

model does not downregulate assimilation enough under high ca or underestimates the 444 

limiting effect of other interacting factors (e.g. light, nutrients, water stress, hydraulics) 445 

on e.g. maximum carboxylation. This was addressed empirically by setting a limit at 446 

390 ppm but a more detailed understanding of the physiological processes in relation to 447 

eCO2 would definitely help to improve model forecasts. A global negative response of 448 

Mediterranean forests to intense warming unless there is an exaggerated C-fertilization 449 

effect is, thus, evident in our results. Importantly, this implies negative consequences 450 

for forest performance and means that a positive effect of milder winters (e.g. earlier 451 

growing season or enhanced winter assimilation in evergreens) would not counteract the 452 

negative effect of longer stressing summers. There is an ample debate on the actual 453 

factors causing tree death, but it seems that a combination of interrelated C-related 454 

traits, hydraulically-related features and climate-related impacts of biotic agents should 455 

govern the forest decline and mortality processes (Sala et al. 2012; McDowell et al. 456 

2013; Aguadé et al. 2015; Anderegg et al. 2015). Regardless of the final causal factor/s, 457 

steep negative growth trends like those under RCP8.5 and no-fertilization strongly 458 

suggest changes in stand dynamics and composition and ultimately enhanced mortality 459 

at some sites (Bigler et al. 2006; van der Molen et al. 2011; Gea-Izquierdo et al. 2014).  460 

 461 

Forest growth projections under climate change and eCO2: utilities and uncertainties  462 
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Models need continuous refinement to achieve robustness, reliability and realism 463 

(Prentice et al. 2015). Forecasts of tree growth are a valuable tool to understand forest 464 

performance under climate change but there are many sources of uncertainty within 465 

model performance and data-assimilation that need discussion (Friend et al. 2014). 466 

Caveats in models include: (i) current knowledge of the physiological processes; (ii) 467 

model implementation and parameterization (including scale-dependent constraints); 468 

(iii) uncertainty of model outputs outside the calibration range (Pappas et al. 2013; 469 

Prentice et al. 2015). Additionally, changes in plasticity of functional traits and plant 470 

acclimation processes can bias model projections (Muller et al. 2011). We assumed 471 

uniformitarianism (i.e. temporal invariance of the modeled relationships) in model 472 

projections but it could be that threshold related responses arise after the calibration 473 

boundaries are surpassed. In this sense (iii) is minimized by explicitly modeling 474 

processes but not eliminated as a result of (i) and (ii). Despite inherent limitations in 475 

models and observational data (Babst et al. 2014), by using data-assimilation we 476 

maximized the likelihood of getting unbiased past long-term trends to increase 477 

reliability of growth projections (Peng et al. 2011; Medlyn et al. 2015). Forest 478 

productivity was analyzed assuming present steady-state stand conditions (e.g. 479 

composition, leaf area, root mass) constrained by water stress (Körner 2006). This could 480 

bias the analysis of forest dynamics (Körner 2003; Friend et al. 2014; Pappas et al. 481 

2015), particularly for mixed stands (Pappas et al. 2013). However, our aim was to 482 

analyze performance of the present stands under future environmental conditions, with 483 

emphasis on species long-term trends. Changes in inter-species dynamics are away from 484 

the scope of our analysis and need to be studied complementary.  485 

The model does not include nutrient dynamics but focuses on the water and carbon 486 

cycles and the effect of water stress at different functional levels. This is because 487 
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nutrient availability is generally considered secondary in Mediterranean ecosystems 488 

compared to water stress, which in addition is expected to increase in the future (Giorgi 489 

& Lionello 2008; García-Ruiz et al. 2011; IPCC 2014). Thus, the limiting effect of 490 

factors such as availability of N, P, or hydraulic constraints could invalidate a C 491 

fertilization effect on net growth under eCO2 (Körner 2006; Norby et al. 2010; Fatichi 492 

et al. 2014; Fernández et al. 2014; Friend et al. 2014; Baig et al. 2015). Our model is 493 

simpler than ecosystem models including nutrient and stand dynamics (e.g. Reichstein 494 

et al. 2013; Walker et al. 2015). However, our scale is finer (stand, species-specific 495 

compared to PFTs) and, most important, it is driven by actual growth data to ensure 496 

unbiased estimation of short- and long-term trends. Other factors such as differences in 497 

carry-over effects between conifers and broadleaves, changes in species composition 498 

and demography, competition and tree-related traits such as ontogeny and size, partly 499 

modulate the forest response to climate (van der Molen et al. 2011). However, long-500 

term stand productivity seems to change slightly under moderate disturbances such as 501 

those produced by silvicultural treatments or insect infestation (Vesala et al. 2005; 502 

Amiro et al. 2010). Therefore, we believe that climate effects are dominant and the 503 

reported long-term trends are robust in relation to variability within these other factors, 504 

which would affect mostly in the short-term. The model fit reported was in the range of 505 

that in similar studies (Misson 2004; Li et al. 2014; Gea-Izquierdo et al. 2015; Girardin 506 

et al. 2016). Different goodness-of-fit at different sites could result on differences in 507 

model performance. However, in App. 7A we show how variability in R2 did not 508 

influence the estimated trends (future projections). Particularly, when the trees exhibited 509 

long-term trends in the past (observational period), these showed a very high agreement 510 

with the modeled growth trends (App. 7B; Table 1). As mentioned, the robustness of 511 

our approach relies on the spatial (regional) scale where the model was applied, which 512 
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expands model implementation at a broader scale than that where it was previously 513 

applied (Misson et al. 2004; Gaucherel et al. 2008; Gea-Izquierdo et al. 2015). 514 

Model simulations can be improved by better addressing the influence of CO2 on 515 

variability of different plant traits (Kattge et al. 2011; Atkin et al. 2015; Pappas et al. 516 

2016). Leaf photosynthesis is negatively affected by drought through several 517 

mechanisms including changes in stomatal and mesophyll conductance or reductions in 518 

biochemical efficiency (Flexas et al. 2005). Both photosynthesis and stomatal 519 

conductance were modeled as direct functions of CO2. However, warming and 520 

increasing water stress in relation to eCO2 could differently affect autotrophic 521 

respiration and photosynthetic capacity, or enhance photorespiration more than 522 

photosynthesis (Baig et al. 2015; Girardin et al. 2016; Rowland et al. 2015; Varone & 523 

Gratani 2015). Our model takes into account the short-term acclimation of leaf 524 

photosynthesis and stomatal conductance to CO2, while respiration is set as a function 525 

of temperature and GPP (Gea-Izquierdo et al. 2015). Different sources of interspecific 526 

variability under eCO2 in autotrophic respiration not explained by models (Atkin et al. 527 

2015) or other factors such as species-specific variability in Jmax/Vcmax could partly 528 

impair our results. Trees modify other traits such as leaf area and sapwood area to 529 

withstand xericity (Breda et al. 2006; Martin-StPaul et al. 2013; Duursma et al. 2016; 530 

Kelly et al. 2016). In our model, intra-annual, inter-annual and long-term structural 531 

acclimation of leaf area and allocation rules rely on climate and SWC but not on CO2. 532 

Thus, addressing the influence of CO2 on leaf area dynamics by setting SLA and 533 

allocation rules also as functions of CO2 could also help to better assess whether the 534 

reported fertilization effect is unrealistic (Duursma et al. 2016; Medlyn et al. 2015).  535 

In summary, modeled forest growth reflected the observed absence of an overall net 536 

positive effect of enhanced ca under increased temperatures (i.e. PET) in the recent past. 537 
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According to model projections, western Mediterranean forests would mostly mitigate 538 

the negative effect of a climate remaining below the maximum warming levels (+2ºC) 539 

agreed in COP21 (i.e. scenario RCP2.6) but the situation would be very different above 540 

those levels (as represented by RCP8.5). Our results suggest that fertilization could 541 

override the negative effect of stressing climatic conditions under high-emission 542 

RCP8.5 but this fertilization effect of eCO2 looks unrealistic according to the literature, 543 

being most likely a result of miss-performance of models way above the calibration ca 544 

levels. Consequently, simulations precluding fertilization under high-emission scenarios 545 

show very negative forest performance at the regional scale in the future for both 546 

conifers and broadleaves. Our results suggest that western Mediterranean forests would 547 

not resist the stressing conditions of a much warmer climate unless species exhibited an 548 

exaggerated C fertilization effect. It is necessary to include ca variability in forest 549 

models but it is not enough. We still need a better understanding of the physiological 550 

processes governing the capacity of acclimation of different plant traits (e.g. Vcmax) to 551 

the interaction between water stress, eCO2 and nutrient availability. In this sense, our 552 

simulations precluding a fertilization effect seems more realistic than those allowing 553 

fertilization under ca levels way above those used to calibrate models. Our study 554 

provides a comprehensive data-driven analysis of the likely performance of western 555 

Mediterranean forests under predicted climate change and ca. Yet model performance 556 

still needs to be refined under high ca as expected in the future. 557 
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App. 1. List of chronologies used and their source. Lat=latitude; Long=longitude; Altit=altitude; MAP = mean annual precipitation; MAT= mean 774 

annual temperature (ºC); PETpm=Penman-Monteith annual evapotranspiration; P=annual precipitation. 775 

#  Site Species Country Lat 
(º) 

Long 
(º) 

Altit 
(m) 

MAP  
(mm) 

MAT 

(ºC) 
PETpm 

(mm) 
P-PET 
(mm) P/PET Source 

1 QUPY2 

Quercus pyrenaica Willd. Spain 

42.2 -6.7 1300 985 9.65 962.4 22.6 1.02 

Gea-Izquierdo et al. (2014)  

2 QUPY3 41.9 -6.2 760 453.9 12.3 1108.9 -655.0 0.41 
3 QUPY4 40.3 -6.8 900 1135.7 14.1 1213.3 -77.6 0.94 
4 QUPY5 40.7 -3.7 1300 580 10.1 1017.0 -437.0 0.57 
6 QUPY7 39.5 -4.3 900 496.5 14.3 1228.9 -732.4 0.40 
6 QUPY8 38.2 -4.1 890 474 15.0 1356.4 -882.4 0.35 
7 QUPY9 37.2 -4.0 1486 509.8 11.3 1164.8 -655.0 0.44 
8 QUPY10 37.0 -3.7 1550 619.3 9.8 984.5 -365.2 0.63 
9 QUPY11 40.8 -4.2 1056 599.9 10.1 1001.8 -401.9 0.6 
10 QUIL1 

Quercus ilex L. Spain 

41.6 -5.6 740 433.8 12.5 1139.7 -705.9 0.38 

Gea-Izquierdo et al. (2011)  
11 QUIL2 40.6 -6.7 700 562.6 12.9 1220.6 -658.0 0.46 
12 QUIL3 40.4 -4.2 600 516.6 13.3 1169.5 -652.9 0.44 
13 QUIL4 39.4 -6.4 390 544.1 16.1 1269.4 -725.3 0.43 
14 QUIL5 43.2 3.0 270 1009.1 12.8 1001.5 7.6 1.01 
15 QUFG1 

Quercus faginea Lam. Spain 
41.9 -5.7 680 453.9 12.3 1107.8 -653.9 0.41 

Gea-Izquierdo (Unpublished data) 
16 QUFG2 39.2 -4.5 900 496.5 14.3 1231.7 -735.2 0.40 
17 QUFG3 41.5 -0.3 550 326.1 15.3 1272.3 -946.2 0.26 https://www.ncdc.noaa.gov/paleo/study/10475 
18 QUPU1 Quercus pubescens Willd. Italy 37.1 14.4 430 537.1 15.8 964.2 -427.1 0.56 Garfi (2000) 
19 QUCE1 Quercus cerris L. Italy 40.4 15.8 590 767.3 11.2 878.5 -111.2 0.87 Battipaglia (unpublished data) 
20 QUCA1 

Quercus canariensis Willd.  Spain 
36.4 -5.9 330 988.4 16.1 1195.4 -207.0 0.83 

Gea-Izquierdo et al. (2010) 
21 QUCA5 36.8 8.8 758 649.3 16.5 1319 -669.7 0.49 



 
 

38 

22 QUCA6 36.5 8.1 760 625.2 15.9 1338.8 -713.6 0.47  
23 PINI2 Pinus nigra J.F. Arnold Algeria 36.3 4.1 1560 580 14.8 1201.0 -621.0 0.48 Touchan et al. (2011) 
24 PINI5 Pinus heldreichi H.Christ Italy 39.3 15.9 1430 806.1 12.4 901.1 -95.0 0.89 https://dendrodb.eccorev.fr/framedb.htm 
25 PIPI2 Pinus pinaster Ait. Morocco 35.5 -5.7 900 611.3 16.4 1156.4 -545.1 0.53 Touchan et al. (2011) 
26 PIPN1 

Pinus pinea L. 
Spain 

40.4 -2.6 1055 443.3 11.4 1217.1 -773.8 0.36 https://www.ncdc.noaa.gov/paleo/study/2863 
27 PIPN2 39.1 -1.7 705 379.8 14.0 1269.4 -889.6 0.30 https://www.ncdc.noaa.gov/paleo/study/2866 
28 PIPN3 39.2 -2.3 720 264.3 14.1 1330.4 -1066.1 0.20 https://www.ncdc.noaa.gov/paleo/study/2867 
29 PIPN4 39.2 -2.8 700 343.3 14.5 1347.4 -1004.1 0.25 https://www.ncdc.noaa.gov/paleo/study/2865 
30 PIPN8 

Italy 
43.4 10.2 10 962.1 15.3 1019.4 -57.3 0.94 https://www.ncdc.noaa.gov/paleo/study/16755 

31 PIPN9 41.0 13.6 9 571.8 17.7 974.1 -402.3 0.59 Battipaglia et al. (2016) 
32 PIHA1 

Pinus halepensis Mill. 

France 43.1 5.9 420 645.9 14.7 1201.2 -555.3 0.54 Gea-Izquierdo et al. (2015) 
33 PIHA2 

Tunisia 
36.9 8.3 23 630.3 18.7 1283.0 -652.7 0.49 Gea-Izquierdo (unpublished data) 

34 PIHA3 36.2 8.4 950 619.8 15.1 1297.7 -677.9 0.48 
Touchan et al. (2011) 35 PIHA4 35.8 9.3 800 542.3 14.7 1322.1 -779.8 0.41 

36 PIHA5 

Algeria 
 

34.8 2.8 1380 349.6 14.5 1315.3 -965.7 0.27 
37 PIHA8 35.2 6.9 1300 380.8 14.6 1330.3 -949.5 0.29 

Safar (1994), Safar et al. (1992) 

38 PIHA9 35.7 5.5 1200 431.2 15.6 1292.6 -861.4 0.33 
39 PIHA10 35.3 7.1 1650 380.8 14.6 1333.9 -953.1 0.29 
40 PIHA11 35.0 4.1 1100 390.2 15.6 1304.3 -914.1 0.30 
41 PIHA12 35.1 3.5 1060 417.2 15.4 1304.8 -887.6 0.32 
42 PIHA13 34.7 3.1 1410 350.8 14.3 1305.5 -954.7 0.27 
43 PIHA14 34.7 2.8 1350 350.8 14.3 1306.5 -955.7 0.27 
44 PIHA15 35.1 6.6 1450 380.8 14.6 1333.1 -952.3 0.29 
45 PIHA16 

France 

44.1 5.6 600 845.3 11.4 916.2 -70.9 0.92 

Nicault (1999) 
46 PIHA17 43.5 4.4 190 743.9 14.0 1029.2 -285.3 0.72 
47 PIHA18 43.8 4.8 330 788.9 13.2 1004.1 -215.2 0.79 
48 PIHA19 43.4 6.3 300 742.4 13.2 973.0 -230.6 0.76 
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49 PIHA20 43.2 5.8 200 713.2 14.6 1015.3 -302.1 0.70 
50 PIHA21 43.7 5.4 170 816.3 11.8 944.8 -128.5 0.86 
51 PIHA22 44.0 6.4 600 1073.5 9.4 816.0 257.5 1.32 
52 PIHA23 43.4 5.0 150 749.1 13.6 986.4 -237.3 0.76 
53 PIHA28 44.2 4.4 350 888 12.2 966.6 -78.6 0.92 
54 PIHA31 43.8 4.1 300 743.6 14.2 1023.0 -279.4 0.73 
55 PIHA32 

Spain 

38.6 -2.6 1000 350.6 14.7 1203.4 -852.8 0.29 

Ribas (2006) 

56 PIHA34 37.3 -2.5 1280 287.6 14.7 1311.1 -1023.5 0.22 
57 PIHA35 38.9 -0.9 800 333.7 13.8 1270.0 -936.3 0.26 
58 PIHA36 40.8 -0.7 850 453.3 13.7 1152.7 -699.4 0.39 
59 PIHA37 38.1 -0.8 10 276.2 18.0 998.5 -722.3 0.28 
60 PIHA38 38.5 -0.6 900 380.1 14.2 1194.3 -814.2 0.32 
61 PIHA39 37.5 -3.2 1150 380.6 12.8 1362.8 -982.2 0.28 
62 PIHA40 41.6 -0.3 500 335.9 14.4 1203.3 -867.4 0.28 
63 PIHA41 41.3 0.8 750 304 14.2 1197.8 -893.8 0.25 
64 PIHA42 41.8 -0.7 350 310.2 14.2 1194.5 -884.3 0.26 
65 PIHA43 38.7 1.3 80 362.4 18.2 1177.3 -814.9 0.31 
66 PIHA44 40.0 3.9 0 486.9 16.7 1071.7 -584.8 0.45 
67 PIHA45 39.4 3.0 250 430.5 17.9 1080.0 -649.5 0.4 
68 PIHA46 39.8 2.6 700 548.7 14.3 1228.7 -680 0.45 
69 PIHA47 39.1 1.5 175 327.6 17.1 1303.5 -975.9 0.25 
70 PIHA48 Italy 40.3 14.8 8 711.5 15.1 1000.7 -289.2 0.71 Battipaglia et al. (2014) 
71 CEAT1 

Cedrus atlantica  
(Endl.) Manetti ex Carrière Morocco 

32.2 -5.5 1920 483 9.9 1255.1 -772.1 0.38 Touchan et al. (2011) 
72 CEAT2 33.1 -4.5 2180 526.5 15.2 1266.8 -740.3 0.42 

Esper et al. (2007) 
73 CEAT3 32.3 -5.3 2100 463.7 12.2 1339.1 -875.4 0.35 
74 CEAT4 33.2 -5.3 1830 539.4 10.5 1213.3 -673.9 0.44 
75 CEAT5 32.6 -5.0 2200 492.2 13.5 1360.5 -868.3 0.36 
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App. 2. Model code and Institute of CMIP5 climate simulations included in the study. 800 

Crosses indicate when RCP scenarios where selected for a certain Model. 801 

Model Institute RCP2.6 RCP8.5 
bcc-csm1-1 Beijing Climate Center, China 

Meteorological Administration 
X X 

bcc-csm1-1-m X  

BNU-ESM 
College of Global Change and Earth 
System Science, Beijing Normal 
University 

X X 

CanESM2 Canadian Centre for Climate modelling, 
Canada X X 

CNRM-CM5 

Centre National de Recherches 
Météorologiques / Centre Européen de 
Recherche et Formation Avancée en Calcul 
Scientifique, France 

X X 

CSIRO-MK3-6-0 

Commonwealth Scientific and Industrial 
Research Organization in collaboration 
with Queensland Climate Change Centre 
of Excellence 

X X 

EC-EARTH EC-EARTH consortium X X 

FGOALS-g2 
LASG, Institute of Atmospheric Physics, 
Chinese Academy of Sciences and 
CESS,Tsinghua University 

X X 

GFDL-CM3 NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

X X 
GFDL-ESM2G X X 
GFDLESM2M X  

HadGEM2-ES 
Met-Office – Hadley Center, contributed 
by Instituto Nacional de Pesquisas 
Espaciais, Spain 

X X 

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France X X 
IPSL-CM5A-MR X X 
MIROC-ESM Japan Agency for Marine-Earth Science 

and Technology, Atmosphere and Ocean 
Research Institute (The University of 
Tokyo), and National MIROC-ESM-
CHEM Institute for Environmental Studies 

X X 

MIROC-ESM-CHEM X X 

MIROC5 

Atmosphere and Ocean Research Institute 
(The University of Tokyo), National 
Institute for MIROC MIROC4h 
Environmental Studies, and Japan Agency 
for MIROC5 Marine-Earth Science and 
Technology 

X X 

MPI-ESM-LR Max-Planck Inst. Für Meteorologie, 
Germany X X 

MRI-CGCM3 Meteorological Research Institute, Japan X X 
NorESM1-M Norvegian Climate Centre  X 
# Simulations  19 18 
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App. 3. Mean daily annual temperature (MAT) and mean annual precipitation (MAP) of 803 

the climate model simulations at each of the 77 sites for the RCP 2.6 (a) and RCP 8.5 804 

(b). Shaded areas are confidence intervals at α=0.05 for annual means. 805 
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App. 4. Mean values and standard deviations of 7 fitted parameters to the 77 sites. 808 
 809 

Parameter Mean Standard 
deviation Minimum Maximum 

soilip 139.0 96.7 3.1 392.9 
p3moist -0.255 0.211 -0.700 -0.001 
p3temp 26.7 77.8 -153.7 181.2 
st3moist -0.226 0.197 -0.699 -0.006 
st3temp 4.8 88.2 -167.4 222.0 
st4sd_moist -0.321 0.230 -0.900 -0.009 
st4temp 334.9 212.2 49.7 1080.2 
  810 
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App. 5. Distribution of the relationship between GPP and carbon allocation to the stem 811 

(i.e. radial growth) as estimated by a linear correlation.  812 

 813 

  814 
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App.6. Mean projected GPP and growth (2010-2100) and site ‘Annual precipitation 815 

minus Penman-Monteith potential evapotranspiration’ (P-PET, in mm) for RCP2.6 and 816 

RCP8.5 scenarios: (a) fertilization scenario (i.e. predicted ca); (b) non-fertilization 817 

scenario (i.e. ca=390 ppm). All relationships (ρ=correlation) are significant at p<0.01. 818 

 819 
  820 

ρRCP2.6_GPP = 0.35

ρRCP8.5_GPP = 0.39

0

500

1000

1500

2000

2500

3000

ρRCP2.6 = 0.41 ρRCP8.5 = 0.42

-1000 -800 -600 -400 -200 0 200

0

200

400

600

800

1000

ρRCP2.6_GPP = 0.31

ρRCP8.5_GPP = 0.33

-1000 -800 -600 -400 -200 0 200
0

500

1000

1500

2000

2500

3000

ρRCP2.6 = 0.41 ρRCP8.5 = 0.44 0

200

400

600

800

1000RCP2.6GPP
RCP8.5GPP

RCP2.6growth
RCP8.5growth

P-PET (mm)

M
ea

n 
an

nu
al

 g
ro

w
th

M
ea

n 
an

nu
al

 G
PP

(b)

(a)



 
 

47 

0.0 0.2 0.4 0.6 0.8

-0.5

0.0

0.5

R2

Sl
op
e R
C
P2
.6

-3

-2

-1

0

1

2

3

Sl
op
e R
C
P8
.5

RCP2.6
RCP2.6 [CO2] = 390 ppm
RCP8.5
RCP8.5 [CO2] = 390 ppm

(A)

0.0 0.2 0.4 0.6 0.8 1.0
rlow

Sl
op
e o
bs
er
ve
d

-2

-1

0

1

2

3 Slopeobserved ≥ 0.35
Slopeobserved <0.35

(B)

App. 7. In this figure we show two graphs to support the robustness of our modeling 821 

approach and the future projections implemented at the regional scale. (A) The 822 

coefficient of determination (R2) is shown as a function of the projected growth trends 823 

to demonstrate that there is no relationship between the estimated trends and the 824 

calibration R2. In addition, regardless of R2, all projections under RCP8.5 are either 825 

positive (fertilization, in blue) or negative (non-fertilization, in red), whereas variability 826 

in RCP2.6 slopes estimated is independent of the goodness of fit (as estimated by R2, 827 

see (A)). In (B), to illustrate the model capacity to fit the interannual (decadal) growth 828 

trends, we show the slopes estimated on past growth observations in function of the rlow 829 

statistic (correlations between filtered series). rlow was greater than 0.7 in 73% of the 830 

models fitted (B). Most importantly, rlow was greater than 0.6 in all cases when there was 831 

a significant past trend (in (B) we highlight those sites where past |slope| ≥ 0.35 832 

cm2·year-2), which means that the model was able to mimic the long-term growth-trends 833 

when trees exhibited some positive or negative trend in the past. 834 


