P Baudin

D Delmas

S Duprat

B Monate

Proving Temporal Properties at Code Level for Basic Operators of Control/Command Programs

Keywords: formal verification, theoremproving, static analysis, CAVEAT, embedded software

More and more control/command software is being generated automatically from highlevel graphical specifications. Such specifications are typically synchronous dataflow models, built on a set of external basic operators to be implemented in a lowerlevel language. The semantics of the overall model depends therefore on the semantics of the basic operators, which can be expressed in terms of temporal (inductive multicycle) definitions. In this paper, we describe a way to specify and verify these operators formally, using theoremproving techniques. We report on experiments conducted to prove multicycle properties on actual embedded basic operators written in C, using the CAVEAT static analyser with a dedicated method.

Introduction

Context

Many control/command programs, such as flybywire control software, as well as some other embedded reactive systems, are currently being developed in a modelbased approach. Most of their source code is generated automatically from highlevel synchronous dataflow specifications. As a consequence, their overall structure is the following: initialise state variables; loop forever read volatile input variables, compute output and state variables, write to volatile output variables; wait for next clock tick; end loop

The computations to be performed are described by system designers at modellevel in a graphical stream language such as SCADE™ or Simulink®, by means of external basic blocks. The semantics of the overall model relies therefore on the semantics of the basic operators. Designers only need to know their specifications, which are often expressed in terms of informal inductive definitions. These definitions are multicycle properties that describe the (discretetime) temporal behaviour of the operators with respect to the synchronous clock. The actual operators can be either provided together with the modelling tool, or implemented by the user in a lowerlevel programming language, for him to meet his specific needs exactly. The latter case occurs typically for safetycritical embedded avionics software to be certified according to the DO178B/ED12B international standard. Wellknown techniques are available to verify and validate designs at modellevel, e.g. modelchecking and simulation. Such Verification & Validation activities require systemlevel models for all basic blocks, and their results are only valid with respect to these models. For this kind of V&V to be considered representative with respect to the behaviour of the final generated program, one needs to be sure that each basic operator has the same semantics as the associate model. The traditional way to address this objective is to verify that each basic operator complies with its informal specification, by means of unit testing. However, this approach is both costly and unsound. In this paper, we describe an alternate way to verify these operators, based on theoremproving techniques. We report on experiments conducted to prove multicycle properties on actual embedded basic operators written in C, using the CAVEAT static analyser with a dedicated method. Then we state the successes obtained, and the limits of this approach, e.g. regarding potential runtime errors, accuracy of floatingpoint computations and functional correctness of the compiled program. Finally, we give complementary approaches currently investigated to address these issues for the complete program, by means of other specialised static analysis tools. The general form of the definition for the operator is:

S[0] = F 0 (E[0]) S[1] = F 1 (E[0], E[1]) ... S[N-1] = F N-1 (E[0], E[1], ..., E[N-1]) for all k N: ≥ S[k] = F(E[k-N],..., E[k-1], E[k])
In some cases, expressions involving previous outputs are used:

for all k<0: S[k] = 0 for all k N: ≥ S[k] = F(E[k], S[k-N],..., S[k-1])

Overview of the CAVEAT tool

The CAVEAT ([2]) static analyser is being developed by CEA LIST. It is a verification tool for programs written in a subset of the ISOC language. Being qualified as a verification tool according to DO178B/ED12B, it has been used industrially at Airbus for several years, in order to verify a 30000 line embedded software subset formally, instead of performing traditional unit testing ([START_REF] Duprat | Formal verification workbench for airbus avionics software[END_REF]). CAVEAT aims at translating a C program and its formal specification into a set of firstorder logic formulas named "proof obligations" (POs). POs are generated thanks to a weakest precondition calculus "à la" FloydHoare ([1]). Therefore, the validity of the POs implies the conformity of the code to its specification. To establish the validity of the POs, a combination of automated theorem proving techniques and manual assisted formula transformations are being used. Fully automatic theoremprovers are known not to be very efficient at deciding inductive properties, and CAVEAT does not provide any direct support for inductive proofs. However, CAVEAT offers the possibility to define recursive logic functions, known as "lambda functions". No automatic proof strategy is available on these symbols, but bounded applications can be performed interactively. Formal specifications are described by properties inserted at specific program points. In order to introduce the different types of properties that can be proved with the tool, let us give a simple example of C function:

void div(int a, int b, int *q, int *r) { *q = 0 ; *r = a ; while (*r >= b) { *q = *q + 1 ; *r = *r b ; } } This integer division algorithm computes the quotient and remainder (q,r) of two positive integers a and b, such that a À b.

Let us write a formal specification for function div, inserting different types of properties at different program points:

• Preconditions: these properties are to be attached to the declaration of functions and give a formal relation between the formal arguments and the global variables. Preconditions are assumed to be verified whenever the function they are attached to is executed and are to be checked at each of its call sites. Preconditions for function div are: CAVEAT also has support for the following global properties:

• Logical definitions: logic functions can be defined and used to factorize repetitive formulas. They are denoted like in the following examples:

Const succ Ö int -> int = lambda x Ö int . x + 1 ; Const is_even Ö int -> Boolean = lambda N Ö int.
(N = 2 * (N div 2)) ;

• Tautology declaration: specific predicates can be declared to be always true, regardless of any specific program point. They can be used as lemmas to help the proof process, or as means to ensure the completeness of the formal specification. These properties are denoted as follows:

Always my_tauto : is_even(a) Î is_even(succ(a)) ; Many other kinds of properties are available in CAVEAT, but only the above properties are used in the present article.

A method to deal with multicycle properties

Practical setup

Overview

Let us describe a case study on a widelyused temporal operator: the "CONF" input confirmation operator, aiming at triggering an action only after some stimulus has been active for long enough.

CONF E 1 E 2 S 1

Functional requirements

An informal specification of this component is: "S 1 is on if and only if E 1 is on and has been on for the last E 2 ticks of the synchronous clock."

Figure 2 shows possible behaviours of the CONF operator with parameter E 2 =2.

Figure 2: a CONF timing diagram Let k≥0 be the current value of the synchronous clock, and

E 1 [k] (resp. S 1 [k]) be the value of E 1 (resp. S 1) at time k. Thus, S 1 [k] depends on E 1 [k], E 1 [k-1], ..., E 1 [k-E 2].
More precisely:

S 1 [k] = E 1 [k] Ï E 1 [k-1] Ï...Ï E 1 [k-E 2]
assuming the following convention:

E 1 [i]=0 for all i<0

Implementation constraints

The CONF operator is implemented in a C macro function with the following interface:

#define CONF(E1, E2, S1) Two hypotheses can be used to write the code for this operator:

1. The CONF operator is executed once at every tick of the synchronous clock;

2. all RAM variables have been initialised to zero before time k=0.

Proof Environment

As the informal specification of CONF refers to a synchronous execution model, we need to set up a representative environment. Therefore, we build our proof project as a C source file where the CONF macrofunction is being used inside the body of an infinite loop. The loop counter represents the synchronous clock. Besides, we need to store input/output values at all clockticks into history keeping variables. We use arrays for this purpose. Finally, as the CAVEAT tool is designed to prove properties on C functions (as opposed to macro functions), we use a function wrapper for the CONF macro.

void conf_iterate(void) { int i=0 ; while (1) { conf_call(i); i++; } } extern int E[], S[], NB; void conf_call(int k) { CONF(E[k], NB, S[k]); }
In the above C source file:

• the conf_iterate main function implements the infinite loop;

• the intermediate conf_call function is a wrapper for the CONF macrofunction;

• E 1 [k] (resp. S 1 [k]
) is stored in the element at offset k of the E (resp. S) array.

Formal specification

We may now formalise the specification of the CONF operator in terms of preconditions and postconditions of the conf_call wrapper, using the E and S history arrays as formal operands.

To do so, we separate the set of possible "use cases" of the operator into three disjoint conditions: We notice that these three conditions are combinations of two atomic propositions:

1 the current input E[k] is off; 2 E[k] is
a) The current input E[k] is on;

b) E has been on for NB clock ticks or more.

The former may be expressed directly, using the element at offset k of the E history array:

LET SUBCOND_INPUT_ON = (E'.[.(k)] Ä 0) ;
For the latter however, we need to create a formal expression that represents the number of ticks for which E has been on. We do it using the following recursive lambdafunction:

Const NB_CYCLES_ON Ö Tab&int -> int -> int = lambda input Ö Tab&int, n Ö int. if (n à 0) then 0 else(if (input.[.(n-1)]=0) then 0 else (1 + NB_CYCLES_ON(input, n-1)));
The NB_CYCLES_ON function has an array input (input Ö Tab&int) and an integer input (n Ö int), and it returns the number of adjacent nonzero array elements before index n. We may visualise the value of NB_CYCLES_ON(E,k) on Figure 3. We may now express conditions 1, 2 and 3 formally:

LET COND_INPUT_OFF = ÕSUBCOND_INPUT_ON ; LET COND_INPUT_CONFIRMED = SUBCOND_INPUT_ON Ï COND_TIME_REACHED ; LET COND_INPUT_NOT_YET_CONFIRMED = SUBCOND_INPUT_ON Ï ÕCOND_TIME_REACHED ;
To make sure this specification is complete and unambiguous, we may also ask the tool to prove that:

• no execution condition is forgotten:

Always COND0 : COND_INPUT_OFF Î COND_INPUT_NOT_YET_CONFIRMED Î COND_INPUT_CONFIRMED ;
• conditions 1, 2 and 3 are exclusive: Recalling the E 2 constant parameter for the CONF operator is a nonnegative integer, we also define a precondition on the wrapper function:

FONCTION conf_call Pre COND_VAR1 : NBÀ0 ;

Formal Proof

Our goal is now to prove the three postconditions on conf_call. We thus run the CAVEAT tool on the formal specification and on the following implementation of the CONF macrofunction: On the other hand, RES_CONF2 and RES_CONF3 cannot be proved directly, unless some more properties are introduced. For both, we need to tell the tool about an implicit relationship between the value of the static count variable and the history of inputs: this variable stores the number of clock ticks for which E has been on. This fact can be expressed via the NB_CYCLES_ON lambdafunction that we have defined earlier:

#define CONF(E1, E2, S1)\ {\ static int count;\ \ if (
FONCTION conf_call Pre COND_SET1 : count=NB_CYCLES_ON(E, k) ;
In turn, this precondition for the conf_call function must be proved to be respected in its synchronous execution model. The way to do it is to make CAVEAT check this property results from a loop invariant of the the conf_iterate main function.

We therefore claim the following invariant for the main loop:

FONCTION conf_iterate Inv 1 I1_SET1: count=NB_CYCLES_ON(E', i) ;
This property holds because of an implementation hypothesis : all RAM variables have been initialised to zero before time k=0. Consequently, we need to add the following toplevel precondition:

FONCTION conf_iterate Pre H_INIT_RAM_0 : count=0 ;

For the tool to be able to prove the invariance of I1_SET1 in conf_iterate, it also needs to know about an extra postcondition of conf_call:

FONCTION conf_call Post ALGO_SET1: count=NB_CYCLES_ON(E, k+1);
Let us recall the complete formal specification :

--Definition of the number of clock ticks --for which the input has been on We also recall the additional properties: All these properties are proved with the CAVEAT tool.

Const NB_CYCLES_ON Ö Tab&int -> int -> int = lambda input Ö Tab&int, n Ö int. if (n à 0) then 0 else(if (input.[.(n-1)]=0) then 0 else (1 + NB_CYCLES_ON(input, n-1)));
Figure 4 shows the dependences between postconditions, preconditions and invariants in the proof process. The arrows mean "can be proved thanks to".

Results obtained

Among the different types of basic operators defined in §1.2, the CAVEAT tools allows:

• automatic proofs on pure boolean/integer operators;

• semiautomatic proofs on pure temporal operators, using the same methodology as with the CONF case study;

• semiautomatic proofs on various combinations thereof.

Theoretical background

The CAVEAT tool is based on Hoare logic, which uses Hoare triples to reason about program correctness. The triple {P} code {Q}, where P and Q are predicates, means: "if P is true before execution of code, then Q will be true when execution of code is finished". Figure 5: Dependences between properties When there is a loop as here, the proof scheme may be invalid: if P relies on Q and Q relies (directly or not) on P, no valid proof has been found. In fact, there is also a whileloop inside the code of function conf_iterate, and proving the partial correctness of loops with invariants is very similar to proving the correctness of recursive programs via mathematical induction.

The tool is able to prove the following Hoare triple: {Pre l } code of conf_call {Post l } That means the validity of Post l relies on the validity of Pre l , which gives the conditions of use of the function conf_call.

The loop invariant of conf_iterate ensures that the precondition of conf_call holds for all iterations of the loop: {Inv 2 } jump to entry point of conf_call {Pre l } So, the respect of the conditions of use of the function conf_call relies on the correctness of the loop invariant. Like in a proof by induction on the number of loop iterations, the proof of the invariant is decomposed into two proof obligations (PO): 1. one PO to show the invariant is stated; 2. one PO to show the invariant is maintained.

Limitations and complementary approaches

Typical control/command programs use a lot of numerical operators.

Unfortunately, CAVEAT provides very limited support for floatingpoint computations. It cannot be used so far to derive sound proofs of properties of numerical operators. That is the reason why we are considering improving the tool to fully support floatingpoint numbers, with the semantics of mathematical real numbers only (precision issues will not be addressed). This will make it possible to analyse C functions performing floatingpoint computations, provided some complementary numerical precision analysis is carried out. This analysis will be performed with the FLUCTUAT ([START_REF] Goubault | Static AnalysisBased Validation of FloatingPoint Computations[END_REF]) abstract interpretation ([START_REF] Cousot | Basic Concepts of Abstract Interpretation[END_REF]) based static analyser, a dedicated tool for studying the propagation of rounding errors in floatingpoint computations. On the other hand, most operators can only be accurate with respect welldefined limited input ranges. For instance, multiplicative operators may yield floatingpoint overflows when used on incorrect inputs. As a consequence, we need to prove the complete program free from such runtime errors, as well as compute maximal input ranges for all operators, for our proofbased approach to be sound. The Astrée ([START_REF] Cousot | The ASTREE analyser[END_REF]) abstract interpretation based static analyser has been shown to meet this ambitious objective on realworld control/command programs ([START_REF] Delmas | Astrée: from Research to Industry[END_REF]). Moreover, all these analysis techniques work on C source code. They cannot replace testing completely, unless the subsequent compilation process is also proved correct. We are therefore working on a translation validation technology: prove that the source and the compiled program have the same semantics ([START_REF] Rival | Symbolic Transfer Functionbased Approaches to Certified Compilation[END_REF]). Finally, it has to be proved that every instance of each temporal operator is actually used in a synchronous execution model, ie that the program can always be run completely on every tick of the synchronous clock. We thus use another static analysis tool to compute a safe and precise upper bound of its worstcase execution time ([START_REF] Souyris | Computing the worstcase execution time of an avionics program by abstract interpretation[END_REF]).

Conclusion and future work

The experiments described in this paper show that the CAVEAT static analyser can be used to prove multicycle properties on basic operators of realworld embedded control/command programs. Moreover, this work has been an opportunity to sketch a proof methodology that makes it possible for nonexpert engineers from industry to perform this formal verification activity in a rather straightforward way. On the other hand, some work remains to be done for this proof technique to yield sound results on all types of operators: we need several complementary static analysis techniques to join forces. However, most necessary technologies are already available, and the rest will soon be. We will then be in a position to replace all (unsound) testing with (sound) static analysis for most basic operators.

Pre my_precond1 : b > 0 ;

 0 Pre my_precond2 : a À b ; • Postconditions: these properties are almost like preconditions but for the semantics. For all values of global variables and formal arguments that fulfil the precondition, postconditions must hold at the end of all normal executions of the function to which they are attached. Moreover, at each call site of the function, the postcondition is assumed. Postconditions for function div are: Post my_post1 : r.[*] < b ; Post my_post2 : a = b*q.[*] + r.[*] ; • Loop invariants: these properties are attached to loop bodies in functions, and may give formal relations between all visible program variables. They must hold at the beginning of the loop body they are attached to. Besides, each execution of the loop body has to preserve the property. Invariants for the loop number 1 of function div are: Inv 1 my_inv1 : r.[*] À b Ï b > 0 ; Inv 1 my_inv2 : a = b*q.[*] + r.[*] ;

Figure 1 :

 1 Figure 1: Interface of the CONF basic block As shown on Figure 1, this operator has the following interface: E 1 : boolean input variable; E 2 : nonnegative integer constant parameter; S 1 : boolean output variable.

Figure 3 :

 3 Figure 3: visualising function NB_CYCLES_ON on a CONF timing diagram Let us formalise proposition b) with NB_CYCLES_ON: LET COND_TIME_REACHED= (NB_CYCLES_ON(E',k) À NB);

 Finally, let us express the postconditions for the conf_call wrapper:

 of all execution conditions --for the CONF operator LETSUBCOND_INPUT_ON = (E'.[.(k)] Ä 0) ; LET COND_TIME_REACHED= (NB_CYCLES_ON(E',k) À NB);

 : count=NB_CYCLES_ON(E', i) ;

Figure 4 :

 4 Figure 4: Dependences between properties

Figure 5

 5 Figure 5 recalls the dependences between properties of figure 4, abstracting away the details of the CONF case study. It shows the way we prove multicycle properties on temporal operators.

 The precondition of conf_iterate guarantees the truth of Inv 2 the first time execution reaches the loop body:{Pre 2 } code from the beginning of conf_iterate to the while-loop {Inv 2 } That is the base case. Then, the invariant has to be maintained by the execution of the loop body. The inductive case {Inv 2 } loop body {Inv 2 } shows that if Inv 2 holds after k-1 iterations, then it also holds after k iterations. It can be decomposed in three Hoare triples: 1. {Inv 2 } jump to the entry point ofconf_call {Pre 1 } 2. {Pre l } code of conf_call {Post l } 3. {Post l } return from conf_call ;increment loop counter {Inv 2 } So, the dependence loop of Figure5is, in our case, sound. The proof of the postconditions of conf_call is valid for all values kÀ0 of the underlying synchronous clock.

1

 Hoare, C.A.R. An axiomatic basis for computer programming. Commun. ACM 12(10), pages 576580, 1969. 2 Patrick Baudin, Anne Pacalet, Jacques Raguideau, Dominique Schoen, Nicky Williams. Caveat : A tool