N

N

Proving Temporal Properties at Code Level for Basic
Operators of Control/Command Programs
P. Baudin, D. Delmas, S Duprat, B Monate

» To cite this version:

P. Baudin, D. Delmas, S Duprat, B Monate. Proving Temporal Properties at Code Level for Basic Op-
erators of Control/Command Programs. 4th International Congress ERTS 2008, Jan 2008, Toulouse,
France. insu-02269744

HAL Id: insu-02269744
https://insu.hal.science/insu-02269744
Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://insu.hal.science/insu-02269744
https://hal.archives-ouvertes.fr

Proving Temporal Properties at Code Level
for Basic Operators of Control/Command Programs

P. Baudin', D. Delmas?, S. Duprat’, B. Monate'

1: CEA LIST, 91191 Gif-sur-Yvette Cedex, France
2: Airbus France, 316, route de Bayonne, 31060 Toulouse Cedex 03, France
3: Atos Origin, 5, avenue Albert Durand, 31700 Blagnac

Abstract: More and more control/command software
is being generated automatically from high-level
graphical specifications. Such specifications are
typically synchronous data-flow models, built on a set
of external basic operators to be implemented in a
lower-level language. The semantics of the overall
model depends therefore on the semantics of the
basic operators, which can be expressed in terms of
temporal (inductive multi-cycle) definitions. In this
paper, we describe a way to specify and verify these
operators formally, using theorem-proving
techniques. We report on experiments conducted to
prove multi-cycle properties on actual embedded
basic operators written in C, using the CAVEAT static
analyser with a dedicated method.

Keywords: formal verification, theorem-proving,
static analysis, CAVEAT, embedded software

1. Introduction

1.1 Context

Many control/command programs, such as fly-by-wire
control software, as well as some other embedded
reactive systems, are currently being developed in a
model-based approach. Most of their source code is
generated automatically from high-level synchronous
data-flow specifications. As a consequence, their
overall structure is the following:
initialise state vari abl es;
| oop forever
read vol atile input variabl es,
comput e out put and state vari abl es,
wite to volatile output variables;
wait for next clock tick;
end | oop

The computations to be performed are described by
system designers at model-level in a graphical
stream language such as SCADE™ or Simulink®, by
means of external basic blocks. The semantics of the
overall model relies therefore on the semantics of the
basic operators. Designers only need to know their
specifications, which are often expressed in terms of
informal inductive definitions. These definitions are
multi-cycle properties that describe the (discrete-time)
temporal behaviour of the operators with respect to
the synchronous clock. The actual operators can be
either provided together with the modelling tool, or
implemented by the wuser in a lower-level
programming language, for him to meet his specific
needs exactly. The latter case occurs typically for
safety-critical embedded avionics software to be
certified according to the DO-178B/ED-12B
international standard.

Well-known techniques are available to verify and
validate designs at model-level, e.g. model-checking
and simulation. Such Verification & Validation
activities require system-level models for all basic
blocks, and their results are only valid with respect to
these models. For this kind of V&V to be considered
representative with respect to the behaviour of the
final generated program, one needs to be sure that
each basic operator has the same semantics as the
associate model.

The traditional way to address this objective is to
verify that each basic operator complies with its
informal specification, by means of unit testing.
However, this approach is both costly and unsound.
In this paper, we describe an alternate way to verify
these operators, based on theorem-proving
techniques. We report on experiments conducted to

Page 1/9



prove multi-cycle properties on actual embedded
basic operators written in C, using the CAVEAT static
analyser with a dedicated method. Then we state the
successes obtained, and the limits of this approach,
e.g. regarding potential run-time errors, accuracy of
floating-point computations and functional
correctness of the compiled program. Finally, we give
complementary approaches currently investigated to
address these issues for the complete program, by
means of other specialised static analysis tools.

1.2 Basic operators of control/command programs

Different types of operators are used as basic blocks

of control/command software:

» Pure boolean/integer operators: All inputs and
outputs have boolean or integer types, and
outputs at time t only depend on inputs at time t .
Algorithms use no remanent data, and perform
no floating-point computations. Such typical
operators are logic gates and boolean switches.

o Pure numerical operators: Most inputs and
outputs are real-valued. Outputs at time t only
depend on inputs at time t. Algorithms perform
floating-point computations, but use no remanent
data. Well-known examples are divisions, square
roots, trigonometric and transcendental functions.

e Pure temporal operators: All inputs and outputs
have boolean or integer types. Outputs at time t
depend on inputs at ticks 0, 1, ., t-1, 0t
of the synchronous clock. Algorithms perform no
floating-point computations, but use remanent
data. Such operators include delays, timers, flip-
flops, triggers, input confirmation operators, etc.

« Both numerical and temporal operators: Digital
filters are typical examples.

1.3 Properties to be proved

We want to prove that C functions or macro-functions
implement their inductive multi-cycle definitions
properly. To do so, we first need to formalise these
definitions.

Let E[(k]=(E,[k], ..., E,[k]) be the vector of
inputs of the operator at time k=0, and let
S[kl=(S;[kl, ..., S,[k]) be the vector of
outputs.

The general form of the definition for the operator is:

S[1] = F.(E[0], E[1])

S[N-1] = Fy,(E[O], E[1], ..., E[N-1])
for all k=N:

S[k] = F(E[k-N],..., E[k-1], E[k])

In some cases, expressions involving previous

outputs are used:
for all k<O:

S[k] =0
for all k=N:
S[k] = F(E[k], S[k-N],..., S[k-11)

2. Overview of the CAVEAT tool

The CAVEAT ([2]) static analyser is being developed
by CEA LIST. It is a verification tool for programs
written in a subset of the ISO-C language. Being
qualified as a verification tool according to
DO-178B/ED-12B, it has been used industrially at
Airbus for several years, in order to verify a 30000
line embedded software subset formally, instead of
performing traditional unit testing ([3]).

CAVEAT aims at translating a C program and its
formal specification into a set of first-order logic
formulas named “proof obligations” (POs). POs are
generated thanks to a weakest precondition calculus
“a la’ Floyd-Hoare ([1]). Therefore, the validity of the
POs implies the conformity of the code to its
specification. To establish the validity of the POs, a
combination of automated theorem proving
technigues and manual assisted formula-
transformations are being used. Fully automatic
theorem-provers are known not to be very efficient at
deciding inductive properties, and CAVEAT does not
provide any direct support for inductive proofs.
However, CAVEAT offers the possibility to define
recursive logic functions, known as “lambda
functions”. No automatic proof strategy is available on
these symbols, but bounded applications can be
performed interactively.

Formal specifications are described by properties
inserted at specific program points. In order to
introduce the different types of properties that can be
proved with the tool, let us give a simple example of
C function:

Page 2/9



void div(int a, int b, int *q, int *r)

*q:O;
*r = a;
while (*r >= b)
{
*q:*q+1;
*ro=*r b ;
}

}

This integer division algorithm computes the quotient

and remainder (q,r ) of two positive integers a and b,

such that a > b.

Let us write a formal specification for function di v,

inserting different types of properties at different

program points:

e Preconditions: these properties are to be
attached to the declaration of functions and give
a formal relation between the formal arguments
and the global variables. Preconditions are
assumed to be verified whenever the function
they are attached to is executed and are to be
checked at each of its call sites. Preconditions for
function di v are:

Pre ny_precondl : b > 0 ;

Pre ny_precond2 : a > b ;

» Postconditions: these properties are almost like
preconditions but for the semantics. For all values
of global variables and formal arguments that
fulfil the precondition, postconditions must hold at
the end of all normal executions of the function to
which they are attached. Moreover, at each call
site of the function, the postcondition is assumed.
Postconditions for function di v are:

Post ny _postl : r.[*] < b ;

Post ny_post2 : a = b*q.[*] + r.[*] ;

e Loop invariants: these properties are attached to
loop bodies in functions, and may give formal
relations between all visible program variables.
They must hold at the beginning of the loop body
they are attached to. Besides, each execution of
the loop body has to preserve the property.
Invariants for the loop number 1 of function di v
are:

Inv 1 nmy_invl : r.| >b Ab>0;

*]
Inv 1 my_inv2 : a = b*q.[*] + r.[*] ;

CAVEAT also has support for the following global

properties:

* Logical definitions: logic functions can be defined
and used to factorize repetitive formulas. They
are denoted like in the following examples:

Const succ € int -> int =

lambda x € int . x + 1 ;
Const is_even € int -> Boolean =
lambda N € int.
(N =2 * (N div 2)) ;

« Tautology declaration: specific predicates can be
declared to be always true, regardless of any
specific program point. They can be used as
lemmas to help the proof process, or as means to
ensure the completeness of the formal
specification. These properties are denoted as
follows:

Al ways ny tauto :

is_even(a) Vv is_even(succ(a)) ;

Many other kinds of properties are available in
CAVEAT, but only the above properties are used in
the present article.

3. A method to deal with multi-cycle properties

3.1 Practical set-up
Overview

Let us describe a case study on a widely-used
temporal operator: the “CONF” input confirmation
operator, aiming at triggering an action only after
some stimulus has been active for long enough.

CONF
—PE S

E

2

?

Figure 1: Interface of the CONF basic block

o

As shown on Figure 1, this operator has the following
interface:

- E1: boolean input variable;
- E2: non-negative integer constant parameter;

- S1: boolean output variable.

Page 3/9



Functional requirements

An informal specification of this component is: “Sq is
on if and only if Ej1 is on and has been on for the last

Eo ticks of the synchronous clock.”

Figure 2 shows possible behaviours of the CONF
operator with parameter Ep=2.

Figure 2: a CONF timing diagram

Let k>0 be the current value of the synchronous
clock, and E1[ k] (resp. S1[ k] ) be the value of E1
(resp. S1) at time k. Thus, S1[ k] depends on
E1[ k], Ex[k-1], ..., Ex[ k- E2] .

More precisely:

S1[k] = E1[k] A Ep[k-1] A...A E1[k-E2]
assuming the following convention:

E1[i]=0 foralli <0

Implementation constraints

The CONF operator is implemented in a C macro-
function with the following interface:

#def i ne CONF(E1l, E2, Sl1)

Two hypotheses can be used to write the code for
this operator:

1. The CONF operator is executed once at every tick
of the synchronous clock;

2. all RAM variables have been initialised to zero
before time k=0.

Proof Environment

As the informal specification of CONF refers to a
synchronous execution model, we need to set up a
representative environment. Therefore, we build our
proof project as a C source file where the CONF

macro-function is being used inside the body of an
infinite loop. The loop counter represents the
synchronous clock. Besides, we need to store
input/output values at all clock-ticks into history-
keeping variables. We use arrays for this purpose.
Finally, as the CAVEAT tool is designed to prove
properties on C functions (as opposed to macro-
functions), we use a function wrapper for the CONF
macro.

void conf _iterate(void)

{
int i=0 ;
while (1)
{
conf _call(i);
i ++;
}
}

extern int E[], S[], NB;

void conf_call (int k)

{
}

In the above C source file:

CONF(E[ K], NB, S[k]):

« the conf_iterate main function implements
the infinite loop;

e the intermediate conf_call function is a
wrapper for the CONF macro-function;

e Eq[K] (resp. S1[ K]) is stored in the element at
offset k of the E (resp. S) array.

Formal specification

We may now formalise the specification of the CONF
operator in terms of preconditions and postconditions
of the conf _cal | wrapper, using the E and S history
arrays as formal operands.

To do so, we separate the set of possible “use cases”
of the operator into three disjoint conditions:

1- the current input E[ k] is off;

2- E[ K] is on and E has been on for less than NB
clock ticks;

3- E[ k] is on and E has been on for NB clock ticks or
more.

Page 4/9



We notice that these three conditions are
combinations of two atomic propositions:

a) The current input E[ k] is on;
b) E has been on for NB clock ticks or more.

The former may be expressed directly, using the
element at offset k of the E history array:

LET SUBCOND_INPUT_ON = (E'.[.(k)] # 0) ;

For the latter however, we need to create a formal
expression that represents the number of ticks for
which E has been on. We do it using the following
recursive lambda-function:

Const NB_CYCLES_ON € Tab&int -> int -> int =
lambda input € Tab&int, n € int.
if (n £0) then O
else(
if (input.[.(n-1)1=0) then O
else (1 + NB_CYCLES_ON (input, n-1))
)i

The NB_CYCLES_ON function has an array input
(input e Tabsint) and an integer input (n e
int), and it returns the number of adjacent non-zero
array elements before index n. We may visualise the
value of NB_CYCLES ON( E, k) on Figure 3.

E,=2 NB_CYCLES_ON(E,,ts)=4

O S S S

S,

*
-
*

R (I I S
*
3
<+

tﬂ t] tZ tj‘ t4 t5 tG t7 t8 tg t] 0 t] 1

Figure 3: visualising function NB_CYCLES_ON
on a CONF timing diagram
Let us formalise proposition b) with NB_CYCLES_ON:

LET COND_TIME_REACHED= (NB_CYCLES_ON(E',6k) > NB);

We may now express conditions 1, 2 and 3 formally:

LET COND_INPUT_OFF = 7SUBCOND_INPUT_ON ;

LET COND_INPUT_CONFIRMED =
SUBCOND_INPUT_ON A COND_TIME_REACHED ;

LET COND_INPUT_NOT_YET_CONFIRMED =
SUBCOND_INPUT_ON A —COND_TIME_REACHED ;

To make sure this specification is complete and
unambiguous, we may also ask the tool to prove that:

* no execution condition is forgotten:

Always CONDO :
COND_INPUT_OFF
V COND_INPUT_NOT_YET_CONFIRMED
V COND_INPUT_CONFIRMED ;

« conditions 1, 2 and 3 are exclusive:

Always DISI1 :
2 ( COND_INPUT_OFF
A COND_INPUT_NOT_YET_CONFIRMED) ;

Always DIS2 :
- (COND_INPUT_OFF A COND_INPUT_CONFIRMED) ;

Always DIS3 :
- ( COND_INPUT_NOT_YET_CONFIRMED
A COND_INPUT_CONFIRMED) ;
Finally, let us express the postconditions for the
conf _cal | wrapper:

FONCTION conf_call

Post RES_CONF1 :
COND_INPUT_OFF = S.[.(k)]1=0 ;

Post RES_CONF2 :
COND_INPUT_NOT_YET_CONFIRMED = S.[.(k)]=0 ;

Post RES_CONF3 :
COND_INPUT_CONFIRMED = S.[.(k)]1=1 ;

Recalling the Eo constant parameter for the CONF

operator is a non-negative integer, we also define a
precondition on the wrapper function:

FONCTION conf_call
Pre COND_VAR1 : NB>0 ;

Formal Proof

Our goal is now to prove the three postconditions on
conf _cal | . We thus run the CAVEAT tool on the
formal specification and on the following
implementation of the CONF macro-function:

#define CONF(EL1, E2, SI)\

{\
static int count;\
\
if (E1) count++;\
el se count =0;\
\
S1 = (count>E2);\
JA

RES CONF1 is proved automatically by the tool, since
the behaviour of the code does not depend on history
when E[ k] is off.

Page 5/9



On the other hand, RES CONF2 and RES CONF3 LET COND_INPUT_OFF = 2SUBCOND_INPUT_ON ;

cannot be proved directly, unless some more LET COND_INPUT CONFIRMED —

properties are introduced. For both, we need to tell SUBCOND_INPUT_ON A COND_TIME_REACHED ;
the tool about an implicit relationship between the LET COND_INPUT NOT YET CONFIRMED =

value of the static count variable and the history of SUBCOND_INPUT_ON A ~COND_TIME_REACHED ;
inputs: this variable stores the number of clock ticks

for which E has been on. This fact can be expressed —— Completeness and independence

via the NB_CYCLES_ON lambda-function that we have 77 of execution conditions

defined earlier: Always CONDO

COND_INPUT_OFF
V COND_INPUT_NOT_YET_CONFIRMED
V COND_INPUT_CONFIRMED ;

FONCTION conf_call
Pre COND_SET1 : count=NB_CYCLES_ON(E, k) ;

In turn, this precondition for the conf _cal | function
- Always DIS1

must be proved to be respected in its synchronous -(  COND_INPUT_OFF

execution model. The way to do it is to make A COND_INPUT_NOT_YET_CONFIRMED) ;
CAVEAT check this property results from a loop Always DIS2

invariant of the the conf _it erate main function. 7 (COND_INPUT_OFF A COND_INPUT_CONFIRMED) ;
We therefore claim the following invariant for the Always DIS3

nqa"qloop: - ( COND_INPUT_NOT_YET_CONFIRMED

A COND_INPUT_CONFIRMED) ;
FONCTION conf_iterate

Inv 1 I1_SET1l: count=NB_CYCLES_ON(E', 1i) ;

. . . -— Preconditions for this operator
This property holds because of an implementation Pre COND_VARL : NB20;

hypothesis : all RAM variables have been initialised
to zero before time k=0. Consequently, we need to —— Postconditions to be proved

add the following top-level precondition: Post RES_CONF1

: COND_INPUT_OFF = S.[.(k)]=0 ;
FONCTION conf_iterate

Pre H_INIT_RAM 0 : count=0 ; Post RES_CONFE2

. . COND_INPUT_NOT_YET_CONFIRMED = S.[.(k)]=0 ;
For the tool to be able to prove the invariance of

I 1_SET1 in conf _iterate, it also needs to know Post RES_CONF3

iy COND_INPUT_CONFIRMED = S.[.(k)]=1 ;
about an extra postcondition of conf _cal | : [ :
FONCTION conf_call
Post ALGO_SET1: count=NB_CYCLES_ON(E, k+1); FONCTION conf_ iterate
Let us recall the complete formal specification : -- User hypotheses

—— Definition of the number of clock ticks Pre H_INIT RAM 0 : count=0 ;

—— for which the input has been on Pre H_POSITIVE_CONF_DURATION : NB>0 ;

Const NB_CYCLES_ON € Tab&int -> int -> int =

lambda input € Tab&int, n € int. We also recall the additional properties:
if (n <£0) then O FONCTION conf_call
else(
if (input.[.(n-1)1=0) then 0 Pre COND_VAR2 : k>0 ;
else (1 + NB_CYCLES_ON (input, n-1)) Pre COND_SET1 : count=NB_CYCLES_ON(E, k) ;

)i Post ALGO_SET1l: count=NB_CYCLES_ON(E, k+1) ;

FONCTION conf_iterate
FONCTION conf_call

Inv 1 I1_VAR1 : NB'>0 ;

—— Definition of all execution conditions Inv 1 I1_VAR2 : i>0 ;
-— for the CONF operator Inv 1 I1_SET1 : count=NB_CYCLES_ON(E', i) ;
LETSUBCOND_INPUT_ON = (E'.[.(k)] # 0) ; All these properties are proved with the CAVEAT tool.

LET COND_TIME_REACHED= (NB_CYCLES_ON(E',k) = NB);

Page 6/9



Figure 4 shows the dependences between
postconditions, preconditions and invariants in the
proof process. The arrows mean “can be proved
thanks to”.

Pre H_INIT_RAM_0

Inv11_SET1

Conr

Pre COND_SET1

Post ALGO_SET1

Q
:
~N
&
w!
S / CONF /
]

Figure 4: Dependences between properties
3.2 Results obtained

Among the different types of basic operators defined

in §1.2, the CAVEAT tools allows:

* automatic proofs on pure boolean/integer
operators;

e semi-automatic proofs on pure temporal
operators, using the same methodology as with
the CONF case study;

e semi-automatic proofs on various combinations
thereof.

3.3 Theoretical background

The CAVEAT tool is based on Hoare logic, which
uses Hoare triples to reason about program
correctness. The triple {P} code {Q}, where P and
Q are predicates, means: “if P is true before
execution of code, then O will be true when
execution of code is finished".

Figure 5 recalls the dependences between properties
of figure 4, abstracting away the details of the CONF
case study. It shows the way we prove multi-cycle
properties on temporal operators.

ﬂ |

e

Figure 5: Dependences between properties
When there is a loop as here, the proof scheme may
be invalid: if P relies on @ and ¢ relies (directly or

?gl)
é
~
'\'

S
S

CO”f\CaZze‘

not) on P, no valid proof has been found. In fact,
there is also a while-loop inside the code of function
conf _iterate, and proving the partial correctness
of loops with invariants is very similar to proving the
correctness of recursive programs via mathematical
induction.

The tool is able to prove the following Hoare triple:
{Pre| } code of conf_call {Post]| }
That means the validity of Post| relies on the validity
of Pre|, which gives the conditions of use of the

function conf_call.
The loop invariant of conf_iterate ensures that
the precondition of conf _cal | holds for all iterations

of the loop:
{Inv2} jump to entry point

of conf_call {Pre]}

So, the respect of the conditions of use of the
function conf_call relies on the correctness of the
loop invariant.

Like in a proof by induction on the number of loop
iterations, the proof of the invariant is decomposed
into two proof obligations (PO):

1. one PO to show the invariant is stated;

2. one PO to show the invariant is maintained.

Page 7/9



The precondition of conf _i t er at e guarantees the
truth of Invo the first time execution reaches the loop
body:

{Preg} code from the beginning of

conf _iterate to the while-loop {Inv2}

That is the base case. Then, the invariant has to be
maintained by the execution of the loop body. The
inductive case {Inv2} loop body {Inv2} shows

that if Tnvo holds after k-1 iterations, then it also

holds after k iterations. It can be decomposed in

three Hoare triples:

1. {Inv2} Jump to the entry point of
conf_call {Preqp}

2. {Pre|} code of conf_call {Post|}

3. {Post]} return from conf_call ;

increment loop counter {Inv2}

So, the dependence loop of Figure 5 is, in our case,
sound. The proof of the postconditions of conf _cal |
is valid for all values k>0 of the underlying
synchronous clock.

4. Limitations and complementary approaches

Typical control/command programs use a lot of
numerical  operators.  Unfortunately, =~ CAVEAT
provides very limited support for floating-point
computations. It cannot be used so far to derive
sound proofs of properties of numerical operators.
That is the reason why we are considering improving
the tool to fully support floating-point numbers, with
the semantics of mathematical real numbers only
(precision issues will not be addressed). This will
make it possible to analyse C functions performing
floating-point  computations, provided  some
complementary numerical precision analysis is
carried out. This analysis will be performed with the
FLUCTUAT ([7]) abstract interpretation ([4]) based
static analyser, a dedicated tool for studying the
propagation of rounding errors in floating-point
computations.

On the other hand, most operators can only be
accurate with respect well-defined limited input
ranges. For instance, multiplicative operators may
yield floating-point overflows when used on incorrect
inputs. As a consequence, we need to prove the
complete program free from such run-time errors, as

well as compute maximal input ranges for all
operators, for our proof-based approach to be sound.
The Astrée ([5]) abstract interpretation based static
analyser has been shown to meet this ambitious
objective on real-world control/command programs
([6]).-

Moreover, all these analysis techniques work on C
source code. They cannot replace testing completely,
unless the subsequent compilation process is also
proved correct. We are therefore working on a
translation validation technology: prove that the
source and the compiled program have the same
semantics ([8]).

Finally, it has to be proved that every instance of
each temporal operator is actually used in a
synchronous execution model, ie that the program
can always be run completely on every tick of the
synchronous clock. We thus use another static
analysis tool to compute a safe and precise upper
bound of its worst-case execution time ([9]).

5. Conclusion and future work

The experiments described in this paper show that
the CAVEAT static analyser can be used to prove
multi-cycle properties on basic operators of real-world
embedded control/command programs. Moreover,
this work has been an opportunity to sketch a proof
methodology that makes it possible for non-expert
engineers from industry to perform this formal
verification activity in a rather straightforward way.

On the other hand, some work remains to be done for
this proof technique to yield sound results on all types
of operators: we need several complementary static
analysis techniques to join forces. However, most
necessary technologies are already available, and
the rest will soon be. We will then be in a position to
replace all (unsound) testing with (sound) static
analysis for most basic operators.

6. References

1 Hoare, C.A.R. An axiomatic basis for computer
programming. Commun. ACM 12(10), pages
576-580, 1969.

2 Patrick Baudin, Anne Pacalet, Jacques Raguideau,
Dominique Schoen, Nicky Williams. Caveat : A tool

Page 8/9



for software validation. In Proceedings of the Int.
Conference on Dependable Systems and Network
(DSN), IEEE Computer Society, pages 537-537,
2002.

3 Stéphane Duprat, Jean Souyris, Denis Favre-Felix.
Formal verification workbench for airbus avionics
software. In Proceedings of ERTS 2006, SIA,
2006.

4 Patrick Cousot & Radhia Cousot. Basic Concepts of
Abstract Interpretation. In Building the Information
Society, R. Jacquard (Ed.), Kluwer Academic
Publishers, pp. 359--366, 2004.

5 Patrick Cousot, Radhia Cousot, Jérdbme Feret,
Laurent Mauborgne, Antoine Miné, David
Monniaux & Xavier Rival. The ASTREE analyser.
In ESOP 2005 -- The European Symposium on
Programming, M. Sagiv (editor), Lecture Notes in
Computer Science 3444, pp. 21--30, 2--10 April
2005, Edinburgh, (c) Springer.

6 David Delmas and Jean Souyris. Astrée: from
Research to Industry. In Static Analysis, SAS
2007, Lecture Notes in Computer Science.
Springer-Verlag, 2007.

7 Eric Goubault, Matthieu Martel, and Sylvie Putot,
Static Analysis-Based Validation of Floating-Point
Computations, Proceedings of Dagstuhl Seminar
Numerical Software with Result Verification 2003,
LNCS volume 2991, pp 306-313.

8 Xavier Rival. Symbolic Transfer Function-based
Approaches to Certified Compilation. In 31st
Symposium on Principles of Programming
Languages (POPL'2004), Venice, Jan. 2004 ACM.

9 Jean Souyris, Erwan Le Pavec, Guillaume Himbert,
Victor Jégu, Guillaume Borios, and Reinhold
Heckmann. Computing the worst-case execution
time of an avionics program by abstract
interpretation. In Proceedings of the 5th Intl
Workshop on Worst-Case Execution Time (WCET)
Analysis, pages 21-24, 2005.

Page 9/9



