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Abstract 

During the late Miocene, a dramatic global expansion of C4 plant distribution occurred with 

broad spatial and temporal variations. Although the event is well documented, whether 

subsequent expansions were caused by a decreased atmospheric CO2 concentration or climate 

change is a contentious issue. In the present study, we used an improved inverse vegetation 

modeling approach that accounts for the physiological responses of C3 and C4 plants to 

quantitatively reconstruct the paleoclimate in the Siwalik of Nepal based on pollen and carbon 

isotope data. We also studied the sensitivity of the C3 and C4 plants to changes in the climate and 

the atmospheric CO2 concentration. We suggest that the expansion of the C4 plant distribution 

during the late Miocene may have been primarily triggered by regional aridification and 

temperature increases. The expansion was unlikely caused by reduced CO2 levels alone. Our 

findings suggest that this abrupt ecological shift mainly resulted from climate changes related to 

the decreased elevation of the Himalayan foreland.  

 

Keywords: C4 plant expansion, inverse vegetation model, paleoclimate reconstruction, pollen 

biome, late Miocene 

 

1. Introduction 

The expansion of plants characterized by the C4 photosynthetic pathway during the late Tertiary 

was a major paleoecological event in Earth’s terrestrial history (Cerling et al., 1997; Sage, 2004; 

Tipple & Pagani, 2007). The C3 and C4 photosynthetic pathways fractionate carbon isotopes to 

different degrees: C3 plants have δ13C values from -22‰ to -30‰, whereas C4 plants have values 

from -10‰ to -14‰ (Bender, 1971; Farquhar et al., 1983). Based on the analyses of carbon 
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isotopes in pedogenic carbonates, tooth enamel, and specific organic compounds, researchers 

have documented a significant expansion of the distribution of C4 plants during the late Miocene 

in southern Asia, Africa, North America, and South America. The expansion first occurred at low 

latitudes and then later at higher latitudes (i.e., Quade et al., 1989; Cerling et al., 1997; Huang et 

al., 2007; Zhang et al., 2009).  

 

This expansion has been explained by a large reduction in the atmospheric CO2 concentration 

during the late Miocene (Cerling et al., 1997); C4 plants possess a CO2-concentrating mechanism 

and are favored relative to C3 plants under low levels of atmospheric CO2. However, recent 

reconstructions of paleo-atmospheric CO2 concentrations indicate that a precipitous drop in CO2 

levels had already occurred during the Oligocene; the levels approached modern levels by the 

earliest Miocene period (Pearson & Palmer, 2000; Pagani et al., 2005), which is earlier than the 

global expansion of C4 plants. In addition, detailed studies suggest that the late Miocene 

expansion of C4 plants was regionally heterogeneous rather than globally synchronous (Fox & 

Koch, 2003, 2004; Huang et al., 2007; Edwards & Still, 2008; Sanyal et al., 2010). Regional 

climatic factors may have superimposed to global CO2 levels to control the expansion. The 

relative importance of these factors needs to be investigated in more detail to better identify the 

causes of the C4 expansion in various regions.  

 

Physiological data and models have demonstrated that the processes that modify the distributions 

of C3 and C4 plants strongly depend on both the atmospheric CO2 concentration and seasonal 

climate changes (Collatz et al., 1998; Edwards & Still, 2008; Higgins & Simon, 2012). Therefore, 

to establish the primary cause of the late Miocene expansion of the C4 plant distribution, it is 
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important to identify the underlying causes based on the physiological responses of the C3 and C4 

plants by accounting for atmospheric CO2 levels and seasonal climate changes. The results will 

elucidate the relative influences of these various factors on the expansion. 

 

In this study, we describe the use of an inverse vegetation model that is based on a physiological 

process-based vegetation model (BIOME4) (Kaplan et al., 2003), pollen data (Hoorn et al., 

2000), and carbon isotope data (Quade et al., 1995) from the Nepal Siwalik region in the 

Himalayan foreland. In this region, major C4 plant distribution expansion has occurred since the 

late Miocene. We quantitatively reconstructed the paleoclimates during that period and 

investigated how changes in the atmospheric CO2 concentration and seasonal climate changes 

account for the observed distribution of the C3 and C4 plants in this region.  

 

2. Data  

The Surai Khola section (27°45′27″ N, 82°50′ E) of the Siwalik, Central Nepal (Fig. 1), was 

studied to obtain detailed data on pollen (Hoorn et al., 2000) and carbon isotopes (Quade et al., 

1995) in soil carbonates and soil organic matter. In the present study, all pollen and isotope data 

were obtained from published diagrams (Quade et al., 1995; Hoorn et al., 2000). Then, we 

precisely tied these data to the paleomagnetic age control data of Cande and Kent (1995). For the 

pollen sites, aquatic pollen or spores and fern spores were excluded, and the percentages were 

recalculated based on the arboreal and nonarboreal pollen types.  

 

The biome reconstruction (Fig. 2a), which is based on the biomization method, was developed 

by MCQPD (2001). Because δ13C values of organic matter in Surai Khola (Fig. 2b) were scarce 
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(only two sites) prior to 6.5 Myr, the δ13C of soil pedogenic carbonates was used. We used a 

15‰ enrichment of the δ13C in the soil carbonate compared to the source organic matter; this 

accounts for kinetic fractionation effects on CO2 as a result of diffusion and equilibrium 

fractionation during the CO2 to CaCO3 phase transformation (Quade et al., 1995). Because the 

pollen and δ13C were not sampled together, the δ13C at pollen collection sites (Fig. 2) was 

interpolated using a five-point moving average from the δ13C of the soils to the age of the pollen 

sites. To evaluate the reliability of the inverse method for the climate reconstruction, modern 

pollen data were used from the available pollen spectra in China (MCQPD, 2001). The biome 

types include tropical rain forest, tropical seasonal forest, broadleaved evergreen/warm mixed 

forest, temperate deciduous forest, cool conifer forest, cold mixed forest, taiga, tundra, steppe, 

and desert, which cover all biome changes of the Surai Khola section. These biome and δ13C data 

are the output vectors from the inverse modeling simulations. 

 

The model input vectors include parameters characterizing atmospheric CO2 concentration, 

atmospheric δ13C, soil texture, and monthly climate data for vegetation simulations. We used the 

reconstructed atmospheric CO2 concentration since the Miocene compiled by LaRiviere et al. 

(2012) and the atmospheric δ13C derived from Passey et al. (2002) (Fig. 3). Then, we 

interpolated the values to the pollen sites using a five-point moving average method. Due to the 

lack of paleosol data, the paleosol properties at the pollen collection sites were characterized by 

the nearest soil grid in the Surai Khola with the same biome at the present time. The soil 

properties were derived from the FAO digital soil map of the world (FAO, 1995). The modern 

monthly climate conditions (i.e., temperature, precipitation, sunshine) and absolute minimum 

temperatures were interpolated using a two-layer back-propagation artificial neural network 
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method (Guiot et al., 1996), which is included in the 3Pbase software (Guiot & Goeury, 1996), 

based on the monthly climate dataset in the ten-minute grid space compiled by New et al. (2000) 

and the absolute minimum temperatures compiled by Spangler and Jenne (1988). The artificial 

neural network technique is able to simulate complex and non-linear relationships; therefore, it is 

able to represent (nevertheless as a black box) the spatial changes of climate (Guiot et al., 1996). 

The inverse modeling process is performed using initial sampling increments from -20°C to 

+10°C of the modern temperatures and -90% to +100% of the modern precipitation values in 

January and July (Table 1). 

 

3. Methods 

A novel aspect of our approach (Fig. 4) was the use of a physiological process-based vegetation 

model, BIOME4 (Kaplan et al., 2003), in an inverse mode to study the sensitivity of C3 and C4 

plants to changes in climate and atmospheric CO2 concentrations since the late Miocene. We 

assumed that the pollen biome and carbon isotope values, which reflect the composition and 

structure of the local C3 and C4 plants, are related to the simulated biome and carbon isotope 

results of BIOME4.  

 

3.1 BIOME4 vegetation model 

BIOME4, modified from BIOME3 (Haxeltine & Prentice, 1996), is an equilibrium vegetation 

model that accounts for the effects of CO2 on net assimilation, stomatal conductance, leaf area 

index (LAI), and ecosystem water balance. The model has been used to simulate the response of 

plants to changed atmospheric CO2 in the past (Jolly & Haxeltine, 1997; Boom et al., 2002; 

Harrison & Prentice, 2003; Wu et al., 2007). The model includes 12 plant functional types (PFT) 
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defined by a set of bioclimatic limits and physiological parameters. These PFTs represent broad 

and physiologically distinct classes that range from cushion forbs to tropical rain forest trees. For 

a given site, the ecophysiological constraints determine the potential occurrence of specific PFTs. 

A coupled carbon and water flux scheme for each PFT is then used to calculate the seasonal 

maximum LAI that maximizes the net primary production (NPP). The scheme is based on a daily 

time-step simulation of the soil water balance and monthly process-based calculations of canopy 

conductance, photosynthesis, respiration, and phenological state. Competition between the PFTs 

is simulated by using the optimal NPP of each PFT as an index of competitiveness. To identify 

the biome of a given site, the model ranks the woody and grass PFTs that were calculated for the 

site. The ranking is based on a set of rules related to the biogeochemical variables (i.e., LAI, NPP, 

and annual mean soil moisture). The ranked combination of the PFTs is classified into one of 27 

biome types.  

 

BIOME4 also includes an isotopic fractionation routine that was improved by Hatté and Guiot 

(2005). The isotopic fractionation produced by C3 and C4 plants is simulated by using a model 

modified from Lloyd and Farquhar (1994). The mean annual isotopic fractionation is estimated 

by weighting the monthly fractionation of the C3 and C4 plants in all PFTs with the respective 

NPP. The isotopic fractionation is allocated to the output biome and weighted according to the 

NPP of each PFT (Hatté & Guiot, 2005). The BIOME4 model is particularly useful for 

simulating paleovegetation because it requires only a limited number of inputs, including 

monthly temperature, precipitation, sunshine, absolute minimum temperature, atmospheric CO2 

concentration, and soil texture.  
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3.2 Inverse modeling approach 

We used a new version of an inverse vegetation model to estimate the climate. The new model 

inversion (Fig. 4) is a combination of the inverse modeling approaches that are based on 

pollen-derived biomes (Wu et al., 2007) and δ13C (Hatté & Guiot, 2005). The two inverse 

methods have been validated in Eurasia and Africa (Wu et al., 2007) and the United States and 

Australia (Hatté & Guiot, 2005). This integration provides an important advantage for a more 

complete simulation of the vegetation composition because it can both discriminate among the 

different types of C3 plants (i.e., trees, shrubs, cool season grasses) and reconstruct the portions 

of the C3 and C4 plants constrained by the seasonal climate and atmospheric CO2 levels. This 

provides a suitable approach for extracting detailed paleo-seasonality information (i.e., summer 

rainfall and temperature) and the effect of CO2 on ecological succession in the Himalayan 

foreland since the late Miocene.  

 

The inversion process consists of finding all the combinations of climatic factors that could be 

compatible with the biome inferred from the pollen in a time period at a given site and the 

corresponding measured δ13C value (Fig. 4). The main climate variables driving the vegetation in 

the BIOME4 model are the monthly temperature, precipitation, and sunshine; these are the 

unknown variables estimated by the model inversion. To limit the number of degrees of freedom, 

we constrain these unknowns to January and July temperature and precipitation (four variables) 

and estimate the other monthly variables using empirical equations based on four parameters 

(Guiot et al., 2000). The monthly temperature and precipitation are deduced by a sinusoidal 

interpolation between January and July. The sunshine percentage is estimated by a linear 

regression from the temperature and precipitation of the same month (Guiot et al., 2000).  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The procedure (Fig. 4) is summarized as follows: (1) a set of four variable deviations is 

randomly sampled, and the other monthly components of the climate are calculated using the 

empirical equations; (2) the deviations are added to the values of the modern climate and applied 

to the BIOME4 model; (3) a transfer matrix is used to convert the BIOME4 biome to biome 

scores comparable to the pollen data (Wu et al., 2007); (4) the simulated biome scores are 

compared to the pollen scores using a Euclidian distance for biome scores, and the simulated and 

measured δ13C are compared; (5) the climate set is accepted on the condition that the Euclidian 

distance is not too high (see Wu et al., 2007) and that the difference between the observed and 

simulated δ13C values is less than 2.0‰ (the δ13C shift during the pedogenesis and fossilization) 

(i.e., Balesdent et al., 1993; Van Bergen & Poole, 2002; Nguyen Tu et al., 2004; Poole et al., 

2004); (6) if the set of climate vectors is accepted, it is used to calculate the a posteriori 

probability distribution of the unknowns; (7) another climate deviation vector is randomly drawn, 

and the procedure is repeated. This iterative process was complete when we obtained a sufficient 

number of valid scenarios to calculate the a posteriori probability distributions, namely, 200-300 

scenarios in 5000 iterations. In the last step, we deduced the mean climate with a confidence 

percentage using the a posteriori probabilities. A complete model description can be found in 

Guiot et al. (2000) and Wu et al. (2007). The a priori distribution of the input parameters in this 

study was set to the ranges provided in Table 1. 

 

3.3 A sensitivity analysis of the effects of CO2 on the C4 expansion 

The inverse modeling method enables us to reconstruct paleoclimates from the late Miocene to 

the present under various atmospheric CO2 concentrations and to investigate potential climate 

and CO2 changes that could explain the expansion of the C4 plant distribution. This method 
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accepts the concept of a multi-equilibrium status between the environmental conditions (i.e., 

climate, CO2) and the vegetation (Guiot et al., 2000). 

 

To identify the dominant factor linking the climate and the CO2 concentration controlling the 

expansion of the C4 plant distribution during the late Miocene, we performed seven sensitivity 

experiments with CO2 levels ranging from 200 to 800 ppmv in increments of 100 ppmv. 

Meanwhile, the climate (temperature and precipitation) was maintained at its respective 

reconstructed values (Fig. 5). This CO2 range covers the late Miocene atmospheric CO2 

concentration variations (from approximately 460 ppmv to 200 ppmv, Fig. 3a) (LaRiviere et al., 

2012) in addition to the full range from the early Miocene (Pearson & Palmer, 2000; Pagani et al., 

2005). Thus, we investigated the potential effects of very large CO2 changes (y-axis direction in 

Fig. 6) on the observed expansion of the C4 plants in the Siwalik. Furthermore, because the 

reconstructed paleoclimate includes all the climate changes since the late Miocene, we can also 

investigate the climate effects (x-axis direction in Fig. 6) on the C4 expansion by using these 

experiments with various CO2 levels. 

 

4. Results 

4.1 Validation of the inverse approach with modern data 

We applied the inverse model to modern pollen samples to validate the approach by 

reconstructing the modern climate at each site and comparing it with the observed values. 

Because of a shortage of organic δ13C data at the modern pollen sites, we only validated the 

efficiency of the biome inversion scheme to reproduce the modern climate. This validation was 

accomplished using the modern pollen biome from China (MCQPD, 2001). The high correlation 
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coefficients (R=0.75-0.95; Table 2), intercepts close to 0 (except for growing degree-days above 

5°C and the mean temperature of the warmest month), and slopes close to 1 (except for the July 

precipitation) demonstrated that the inversion method worked well for most variables in China.  

 

Although we could validate if the approach is improved by using by using the biome data in 

addition to the δ13C data, the BIOME4 simulation of the discrimination of carbon isotopes in the 

leaves has already been validated by Kaplan et al. (2002) over the entire range of plant types, 

including C4. The general reliability of the δ13C inversion to reconstruct the climate was 

validated by Hatté and Guiot (2005) using modern data from the woodlands along a 900 km-long 

rainfall gradient in southern Queensland, Australia (Stewart et al., 1995), and from the grasslands 

and woodlands along two transects in southeastern Utah and south-central New Mexico (United 

States) (Van de Water et al., 2002), where precipitation ranges from 160 to 1690 mm/year. The 

correlation coefficient (R) was approximately 0.95 (y = 0.9711x + 6.3994) between the observed 

(y) and reconstructed precipitation (x). The studies indicated that δ13C was particularly efficient 

for the precipitation signal. In our inversion process, δ13C is a constraint added to pollen proxies. 

The main effect is to decrease the uncertainties rather than to change the reconstructions. We 

conclude that the climate signals contained in the pollen and δ13C data can be quantitatively 

extracted by this method. 

 

4.2 Biome and climate reconstruction since the late Miocene 

During the late Miocene period, a marked shift from -25‰ to -14‰ occurred in organic carbon 

isotope ratios in the Nepal Siwalik (Fig. 2). This shift was accompanied by a shift from the 

dominantly C3 temperate deciduous forest and broadleaved evergreen/warm mixed forest that 
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existed prior to 7 Myr to the more seasonal water-stressed C4 grasses of 7 to 5 Myr. By 5 Myr, 

the C4 grasses dominated the Siwalik biomass. A similar expansion of the C4 grasses was 

observed in other surveys of the Himalayan foothills and the Ganges floodplain (Quade et al., 

1989; Cerling et al., 1997). 

 

The inverse vegetation model successfully simulated the biome types at most pollen collection 

sites (Fig. 2a) and reconstructed the major expansion of the C4 grass distribution. The expansion 

was characterized by more positive δ13C values (Fig. 2b) between 12 and 3 Myr. These results 

indicate that the mean annual temperature, approximately 12 to 13°C, was lower than the modern 

value prior to 8 Myr; therefore, the temperature increased significantly since 8 Myr (Fig. 5a). 

The changes in the ratio of actual to potential evapotranspiration (α) present the opposite trend, 

with values that generally averaged approximately 10% higher than the present before 7 Myr and 

decreased significantly between 7 and 6.5 Myr, reaching minimum values that were 

approximately 25% lower than the modern values within the last 5 Myr (Fig. 5b). The annual 

precipitation pattern (Fig. 5c) is similar to that of α. The seasonal reconstruction revealed that 

this annual precipitation shift is mainly attributed to decreases in the summer rainfall, whereas 

winter rainfall did not change significantly (Fig. 5d). 

 

4.3 The impact of CO2 concentration on the C4 expansion 

The results of the seven sensitivity experiments (Fig. 6) with various CO2 concentrations indicate 

that the C4 plant composition responded negatively to changes in CO2 concentration during all 

climate changes. More C4 plants were present at lower CO2 levels, suggesting that the lower CO2 

levels favored the C4 plants. The increase of the C4 plant biomass (Fig. 6a) in response to the 
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CO2 level decline was more significant for the higher temperature and lower precipitation 

observed within the last 8 Myr than for the relatively constant low temperature and high 

precipitation prior to 8 Myr ago (Fig. 5). These findings suggest that C4 plants have been favored 

by a warmer and drier climate. The mean change of C4 plant biomass was approximately 20% 

higher (Fig. 6b) when the atmospheric CO2 concentration decreased from 800 to 200 ppmv, 

regardless of the climate changes, whereas the C4 biomass change was approximately 60% 

higher (Fig. 6b) with the reconstructed warmer and drier climate, regardless of the CO2 levels. 

Therefore, the C4 plants had a weaker response to the atmospheric CO2 concentration decrease of 

600 ppmv than to the climate change reconstructed for the late Miocene.  

 

5. Discussion and Conclusions 

5.1 Climate change during the late Miocene and its relationship with the C4 distribution 

With ecological succession from C3 temperate deciduous forest and broadleaved evergreen/warm 

mixed forest to C4 grasses, our climate reconstruction shows that the mean annual temperature in 

the Siwalik region increased between 8 and 3 Myr; the highest rate was identified between 8 to 5 

Myr. This relationship between the abundance of C4 and temperature increase is consistent with 

the modern environmental characteristics in non-arctic environments that favor C4 plants: more 

C4 plants exist during higher annual temperatures (Cavagnaro, 1988; Ueno & Takeda, 1992; Bird 

& Pousai, 1997; Pyankov et al., 2010). This pattern is particularly prevalent during the higher 

temperatures of the growing season for the C4 grasses (Teeri & Stowe, 1976; Hattersley et al., 

1983; Collatz et al., 1998; Sage et al., 1999). The occurrence is due to the differences in 

temperature dependence of the photosynthetic efficiency for CO2 uptake of C3 and C4 plants 

(Ehleringer et al., 1997). The quantum yield (photosynthetic efficiency) of C3 plants declines 
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with increasing temperature, but C4 plants are not affected. As such, C4-dominated ecosystems 

are favored by high temperatures under reduced CO2 conditions. The cause of the temperature 

increase within the last 8 Myr in the Siwalik will be discussed in Section 5.3. 

 

Another observation of our study is that increased aridity 7 Myr ago (Fig. 5b, c) accompanied the 

expansion of the C4 grasses in the Siwalik. This correlation between the aridity and the 

abundance of C4 in the Siwalik is consistent with evidence from the modern C4 plant distribution 

in Europe (Pyankov et al., 2010) and C4 dicots in North America (Stowe & Teeri, 1978) along 

moisture gradients (including woody and grass biomes), where C4 plants are favored by 

increased aridity. This pattern can be explained by the fact that the physiology of C4 plants 

involves higher ratios of photosynthesis to transpiration (water-use efficiency, WUE) than C3 

plants (Berry, 1975). Thus, C4 plants have a competitive advantage in areas where moisture 

supply is limited. If modern woody vegetation is factored out and only grasslands of varying 

moisture characteristics in drier regions are compared, the relationship between C4 dominance 

and the precipitation regime is reversed (Paruelo & Lauenroth, 1996; Schulze et al., 1996; 

Epstein et al., 1997); a greater number of C4 plants grow in wetter sites because the C4 plants are 

favored by the higher temperature accompanied by relatively more precipitation.  

 

The reconstructed annual precipitation was higher prior to 7 Myr and decreased significantly 

after 7 Myr (Fig. 5c). This change was mainly attributed to summer precipitation decreases (Fig. 

5d). Our results agree with previous results. The seasonality of precipitation, as inferred from the 

annual δ18O profiles in fossilized freshwater bivalve shells and mammal teeth from the 

Himalayan foreland (Dettman et al., 2001), identified an intense Indian monsoon prior to 7.5 
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Myr, with higher overall annual precipitation, especially during the summer monsoon. The 

long-term precipitation trend, in conjunction with the positive δ18O values in the paleosols of the 

Siwalik from 8 to 6 Myr (Quade et al., 1989, 1995) and the enriched δD of plant leaf waxes from 

ODP Site 722 in the Indian Ocean from 10 to 5.5 Myr (Huang et al., 2007), suggests that the 

period was characterized by a significant increase in aridity in the Himalayan foreland. A gradual 

drying climate is also apparent from 11 to 6 Myr, as indicated by the decreased thickness of the 

leaching zones in the Siwalik paleosols (Quade et al., 1995), the decline of chemical weathering 

in the Himalayas from 10.5 to 3.5 Myr ago (Clift et al., 2008), and the replacement of 

woodland-adapted fauna by open-habitat mammals in Pakistan, Nepal, and northern India nearly 

8 Myr (Barry et al., 1985).  

 

5.2 The effect of CO2 concentration on the C4 expansion 

Many studies have addressed the influence of various CO2 concentrations on plant growth (Hunt 

et al., 1991; Kimball et al., 1993; Curtis & Wang, 1998; Wand et al., 1999; Poorter & Navas, 

2003) and physiological effects, including the alteration of the leaf net photosynthetic rates, 

stomatal conductance, and WUE (Gunderson & Wullschleger, 1994; Woodward & Kelly, 1995; 

Saxe et al., 1998; Gagen et al., 2011). CO2 enrichment increases the water-use efficiency 

(reduces the water use), which contributes to enhanced soil water content and reduced soil-water 

depletion (Wullschleger & Tschaplinski, 2002). Plants may be more sensitive to CO2 enrichment 

at subambient concentrations than at superambient concentrations (Polley et al., 2002). Although 

the contribution of CO2 fertilization to plants is uncertain based on currently available data 

(Norby et al., 2005), Cowling and Field (2003) observed a good fit between the BIOME3 

modeled and observed response of LAI to changes in low CO2 levels. The predictions of NPP 
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response to the CO2 effect using the Lund–Postdam–Jena (LPJ) model (Cramer et al., 2001) is 

also consistent with the experimental evidence (DeLucia et al., 1999; Norby et al., 2002, 2005). 

Because the treatment of the CO2 effect in BIOME3 and LPJ is the same as in BIOME4, these 

comparisons indicate that the BIOME4 model realistically predicts the response to the CO2 

effect. 

 

Our sensitivity experiments (see Section 3.3 for details) (Fig. 6) using various CO2 

concentrations indicate that more C4 grasses were present at lower CO2 levels. The results are 

consistent with the simulations obtained by the quantum yield model (Cerling et al., 1997; 

Ehleringer et al., 1997) in which the C4-dominated grasses are favored under lower CO2 

concentrations relative to the C3 grasses. The metabolism is attributed to the different responses 

of C3 and C4 plants to changes in CO2 concentrations. The C3 plants respond to lower CO2 

concentrations with decreased maximum net photosynthetic rates because of inherent CO2 

substrate limitations and higher photorespiration rates (Farquhar & von Caemmerer, 1982), 

whereas C4 plants are less sensitive to CO2 levels (Ehleringer et al., 1991).  

 

The difference between our BIOME4 approach and the quantum yield model is that the quantum 

yield of C3 and C4 grasses only varies with CO2 concentration and temperature (Cerling et al., 

1997; Ehleringer et al., 1997), whereas the BIOME4 approach considers the above factors 

coupled with water stress using a water flux model (Haxeltine & Prentice, 1996). Water stress is 

assumed to reduce photosynthesis through a reduction in canopy conductance. Regional 

evapotranspiration is calculated as a function of canopy conductance, equilibrium 

evapotranspiration rate and soil moisture. This scheme (Haxeltine & Prentice, 1996) results in a 
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coupling of the carbon and water fluxes for the vegetation simulation through canopy 

conductance, allowing for a simulation of the response of photosynthesis, stomatal conductance, 

and leaf area to environmental factors, including atmospheric CO2, temperature, and 

precipitation. Although the transport characteristics of stems, including xylem anatomy and 

sapwood area, soil and leaf water potential, and stomatal conductance (Sperry, 2000), are not 

considered in detail in the mechanism of water flux, water is considered a primary factor limiting 

plant growth and productivity (Schulze et al., 1987; Haxeltine & Prentice, 1996); thus, 

integrating water flux into the model provides insights into how CO2 concentration, temperature, 

and water changes may impact C3 and C4 plants in different environments. As a result, the model 

provides a better understanding of the competition between the C3 and C4 plants and the 

consequences for ecological succession. 

 

Further sensitivity analysis revealed that the expansion of the C4 grass distribution was less 

responsive to the CO2 level decrease (from 800 to 200 ppmv) than to the climate changes (Fig. 6). 

In fact, the reconstructed record of the atmospheric CO2 concentrations varies only between 

approximately 460 ppmv and 200 ppmv during the late Miocene period, with an increase of the 

CO2 concentration 5.5 Myr ago (Fig. 3a). The CO2 changes are only approximately half of the 

simulated change. Therefore, the effect of climatic change on the expansion of the C4 plants may 

be even greater (Fig. 6b) than that produced by the CO2. Furthermore, according to the 

sensitivity analysis (Fig. 6), the CO2 decrease from 800 to 200 ppmv (y-axis direction in Fig. 6a) 

was not a sufficient driver by itself to allow the C4 grasses to dominate (>50% of the total 

biomass) in the landscape during the late Miocene (prior to 7 Myr). These experiments 

demonstrate that climate change exerted a greater control over the relative abundances of the C3 
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and C4 plants than did the CO2 concentration decrease. Thus, the late Miocene expansion of the 

C4 plants in the Siwalik region was not primarily a response to the declining atmospheric CO2 

levels, even if low atmospheric CO2 was a significant contributing factor to the appearance of C4 

plants (Sage, 2004). Our results agree with the previous findings (Quade et al., 1995; Pagani et 

al., 1999; Fox & Koch, 2003, 2004; Huang et al., 2007; Strömberg & McInerney, 2011) that the 

C4 plant expansion was unlikely driven by atmospheric CO2 alone. 

 

5.3 A possible cause for the expansion of the C4 plants 

An important result of this study is that the mean annual temperature in the Siwalik increased by 

approximately 12 to 13°C within the last 8 Myr. There are two scales of changes: one global and 

the other local. Both scales likely contributed to these temperature changes. Generally, local 

temperature variations are consistent with global changes at a tectonic time scale, but the 

temperature increase in the Siwalik region differed from the overall global declining temperature 

trend since the Miocene based on deep-sea oxygen isotope (δ18O) records (Zachos et al., 2001). 

This pattern suggests that the Siwalik temperature change cannot be primarily attributed to 

global factors. Local factors may also have been responsible for the increasing temperature, 

caused by a decrease in the mean elevation of the Siwalik basin in Nepal, which suggests the 

existence of a higher elevation prior to 8 Myr ago. This interpretation is consistent with the bulk 

of the thermochronological evidence (Coleman & Hodges, 1995) with geochemical (Galy et al., 

2010), paleoclimatology, and paleovegetation (Garzione et al., 2000; Spicer et al., 2003) studies. 

This evidence supports the assertion that the Himalayas and the Tibetan Plateau attained higher 

elevations over large areas prior to 8 Myr ago.  
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Marine paleo-temperature records (Zachos et al., 2001; Huang et al., 2007) suggest that the 

global temperature has decreased approximately 2 to 3°C since the late Miocene. Because the 

reconstructed temperature (approximately 12 to 13°C increase) in the Nepal Siwalik was 

superimpose both the global and local temperature changes, the local temperature increase was 

approximately 14 to 16°C within the last 8 Myr. Assuming that this temperature increase 

corresponds to a decrease in the elevation, given an environmental lapse rate of 6 to 6.5°C km-1 

(Rind & Peteet, 1985), our results suggest a decrease in the elevation of approximately 2200 m. 

This significant elevation change is in broad agreement with a decrease in the mean watershed 

elevation of 1000 to 1500 m in the Zada basin, southwestern Tibet, based on oxygen 

isotope-based paleoelevation reconstructions (Murphy et al., 2009; Saylor et al., 2009).  

 

Most areas of the Siwalik between Pakistan and Nepal recorded an acceleration in the 

sedimentation nearly 11 Myr and experienced a decline nearly 8 Myr (Burband et al., 1993), 

indicating a decreasing erosion rate since the late Miocene in this region. Because the sediment 

flux was attributed to climate change and tectonic activity, this increase in the sediment flux to 

the Himalayan foreland basin was most likely due to the combined activities of intensified 

monsoonal precipitation (Dettman et al., 2001) and tectonics (Burband et al., 1996). Thus, the 

decline in the sediment flux was most likely related to reduced monsoonal precipitation 

(Dettman et al., 2001) and tectonic activity (Burband et al., 1993). In this context, our climate 

reconstruction supports the changes in monsoonal precipitation. We suggest that the decrease in 

the mean Siwalik basin elevation can be explained by significant erosion (based on sediment flux) 

in the Himalayas (Raymo & Ruddiman, 1992; Rea, 1992; Burband et al., 1993) and tectonic 

processes (Burband et al., 1993, 1996) since the late Miocene.  
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The expansion of the C4 plant distribution in the Himalayan forelands was originally believed to 

result from the initiation or intensification of the Indian monsoon (Quade et al., 1989). This 

interpretation is supported by significant increases in the abundance of marine organisms such as 

Globigerina bulloides 8.5 Myr ago, which indicate a stronger monsoon-driven upwelling in the 

Arabian Sea (Kroon et al., 1991). However, recent studies have revealed contradictory evidence 

related to biomarker abundance: alkenone UK37 and Globigerina bulloides abundance data from 

the Bengal Fan (Huang et al., 2007) versus chemical weathering (Clift et al., 2008) and seasonal 

δ18O variations (Dettman et al., 2001; Garzione et al., 2000) in the Himalayas do not suggest an 

enhanced summer monsoon circulation during this period. Furthermore, the apparent 

diachronous (3 Myr) nature of the C4 plant distribution expansion in various locations of the 

Himalayan Siwalik (Sanyal et al., 2010) indicates the importance of the regional climate in 

controlling the distribution of the C4 plants, as opposed to the role of the Indian monsoon. If the 

monsoon were dominant, then it would lead to synchronous C4 expansion following the changes 

in the Indian monsoon region. Our results indicate that the relative abundance of C4 versus C3 

plants in the Nepal Siwalik was mainly controlled by decreased precipitation (especially summer 

rainfall) and increased temperatures rather than the strengthening of the Indian summer 

monsoon.  

 

The precipitation decrease during the late Miocene may have resulted, in part, from the 

northward motion of the Indian plate, which carried the Himalayas to the north of the 

Intertropical Convergence Zone (ITCZ) (Armstrong & Allen, 2011), or the global trend toward a 

cooler late Cenozoic climate (LaRiviere et al., 2012), which reduced water vapor in the 

atmosphere. However, the combination of decreased precipitation and increased temperature 
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indicates that this change was at least partly a response to the altitude decline in the Nepal 

Siwalik. Because the rainfall distribution in the front of the central Himalaya exhibits two 

amplitude peaks along bands with a mean elevation of 900±400 m (the southern margin of the 

Lesser Himalayas) and 2100±300 m (the southern flank of the Greater Himalayas) due to 

orographic effects (Bookhagen & Burbank, 2006), the pattern of the precipitation decrease in the 

Siwalik region since 7 Myr is compatible with a sharp reduction of rainfall due to the altitude 

decrease from the upper peak (our reconstructed paleoaltitude was approximately 2600 m based 

on adding the decrease of approximately 2200 m to the modern elevation of approximately 400 

m in the Nepal Siwalik).  

 

Although our results suggest that the expansion of the C4 plants in the Nepal Siwalik was 

triggered primarily by major changes in aridity and temperature that resulted from decreased 

elevation of the Himalayan foreland and was perhaps amplified by a low atmospheric CO2 

concentration, we cannot rule out other factors for different regions. In the Great Plains of North 

America, major factors in the C3 and C4 shifts might include global cooling (Fox & Koch, 2003, 

2004), climatic drying (Strömberg & McInerney, 2011), grass-grazer coevolution (Retallack, 

2007), or intensified fire regimes (Keeley & Rundel, 2005). Regional ecological and climatic 

factors, forced by global climate change (Zachos et al., 2001), are the most likely factors that 

control the development of C4 plants in various regions during the late Miocene. Future 

investigations should consider these changes at the global scale to provide additional evidence 

for the relative importance of these factors regarding C4 expansion on different continents.  
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Figure Legends 

Figure 1. Location of the Surai Khola region in Nepal. RT: Ramgarh thrust; MCT: main central 

thrust; MBT: main boundary thrust; MFT: main frontal thrust. 

Figure 2. The vegetation and carbon isotope changes in the Surai Khola region of the Siwalik of 

Nepal. (a) The biomes reconstructed from the pollen samples and biomes simulated using an 

inverse vegetation model. A pollen sample is assigned to the biome with which it has the 

maximum affinity, and only the dominant biome scores are plotted in the figure. Biome types: 

WAMF: broadleaved evergreen/warm mixed forest; TEDE: temperate deciduous forest; TRFO: 

tropical rain forest; TSFO: tropical seasonal forest; COMX: cool mixed forest; STEP: steppe. (b) 

The observed and simulated carbon isotope values. The error bars represent 99% confidence 

intervals. The biome and carbon isotope data from the pollen sites were not successfully 

simulated by the inverse model more recently than 3 Myr ago because the carbon isotope values 

were too positive to be simulated. Thus, we only considered the time between 12 and 3 Myr ago, 

a period contained in both records.  

Figure 3. The atmospheric CO2 concentration and carbon isotopic composition since the late 

Miocene. (a) The atmospheric CO2 concentration. (b) The atmospheric CO2 δ13C. The estimates 

of CO2 concentration from boron isotopes (Hönisch et al., 2009; Seki et al., 2010; Bartoli et al., 

2011), plant stomata (Van Der Burgh et al., 1993; Kürschner et al., 1996; Beerling et al., 2009; 

Kürschner & Kvacek, 2009; Stults et al., 2011), and alkenones (Pagani et al., 1999, 2010; Seki et 
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al., 2010). Estimates of atmospheric CO2 δ13C based on the δ13C of planktonic foraminifera 

calcite (Passey et al., 2002). The error bars represent the reported uncertainty in the estimates. 

Figure 4. A schematic diagram of the inverse vegetation modeling approach for the 

paleoclimatic reconstruction. The detailed procedure is described in the methodology (Section 

3.2). 

Figure 5. Reconstruction of the climate anomalies (expressed as deviations from the present 

value) since the late Miocene in the Siwalik by means of inverse modeling. (a) The mean annual 

temperature. (b) The ratio of the actual to potential evapotranspiration (α). (c) The mean annual 

precipitation. (d) Summer (June, July, and August) and winter (December, January, and February) 

precipitation. The mean annual temperature is approximately 24.3°C, and the mean annual 

precipitation is approximately 1612 mm in Surai Khola at the present time. The values are means, 

and the error bars represent the 99% confidence intervals.  

 

Figure 6. Sensitivity analysis of the response of the expansion of the C4 plants in the Siwalik 

region to changes in the atmospheric CO2 concentration (y-axis direction) and climate (x-axis 

direction) since the late Miocene. (a) The percentage of the C4 plant biomass (% of the total). 

The reconstruction of the C4 plant biomass is based on differences in the C3 and C4 plant 

end-member δ13C values with changes in the climate, atmospheric CO2 level, and δ13CCO2 using 

the BIOME4 approach. As a result, this reconstruction is more accurate than those that assume 

δ13C end-members are constant. (b) Box plots of the changes in the C4 plant biomass from the 

effects of the atmospheric CO2 concentration (200 to 800 ppmv and 200 to 500 ppmv) and 

climate. The boxes indicate the interquartile intervals (25th and 75th percentiles), and the bars 

represent 90% intervals (5th and 95th percentiles). (c) Changes in the organic carbon isotopic 
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composition. The observed values are the δ13C of the five-point moving average at the pollen 

collection sites (see Fig. 2). 

 

Table 1. The ranges of the a priori distribution of the input parameters used for the inverse 

simulation in the Surai Khola section. 

Parameter Range 

∆Tjan [-20, 10]°C 

∆Tjul [-20, 10]°C 

∆Pjan [-90, 100]% 

∆Pjul [-90, 100]% 

Number of iterations 5000 

The climate ranges are given in terms of the deviation from the modern values (degrees for 

temperatures and percentages for precipitation). Tjan: January temperature; Tjul: July temperature; 

Pjan: January precipitation; Pjul: July precipitation.  

 

Table 2. Regression coefficients between the reconstructed climates for China, using the inverse 

model, and the observed meteorological values. 

Climate proxy Slope  Intercept R ME RMSE 
Mean annual temperature 0.82 ± 0.02 0.92 ± 0.18 0.89 0.16 3.25 
Mean temperature of the 
coldest month 

0.81 ± 0.01 -1.79 ± 0.18 0.95 -0.17 3.19 

Mean temperature of the 
warmest month 

0.75 ± 0.03 4.57 ± 0.60 0.75 -0.19 4.02 

Total annual precipitation 1.15 ± 0.02 32.90 ± 18.41 0.94 138.01 263.88 
Precipitation in January 1.01 ± 0.02 0.32 ± 0.47 0.94 0.52 8.89 
Precipitation in July 1.30 ± 0.03 -21.67 ± 4.52 0.89 16.45 52.90 
Growing degree-days above 
5°C 

0.74 ± 0.02 464.16 ± 48.68 0.89 -106.69 693.60 

Ratio of actual to potential 
evapotranspiration 

0.87 ± 0.03 8.84 ± 1.42 0.82 3.06 13.18 

R is the correlation coefficient (± standard error). ME is the mean value of the residuals. RMSE is 

the root-mean-square error. These values are calculated based on 482 observations. 
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