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During the late Miocene, a dramatic global expansion of C 4 plant distribution occurred with broad spatial and temporal variations. Although the event is well documented, whether subsequent expansions were caused by a decreased atmospheric CO 2 concentration or climate change is a contentious issue. In the present study, we used an improved inverse vegetation modeling approach that accounts for the physiological responses of C 3 and C 4 plants to quantitatively reconstruct the paleoclimate in the Siwalik of Nepal based on pollen and carbon isotope data. We also studied the sensitivity of the C 3 and C 4 plants to changes in the climate and the atmospheric CO 2 concentration. We suggest that the expansion of the C 4 plant distribution during the late Miocene may have been primarily triggered by regional aridification and temperature increases. The expansion was unlikely caused by reduced CO 2 levels alone. Our findings suggest that this abrupt ecological shift mainly resulted from climate changes related to the decreased elevation of the Himalayan foreland.

Introduction

The expansion of plants characterized by the C 4 photosynthetic pathway during the late Tertiary was a major paleoecological event in Earth's terrestrial history (Cerling et al., 1997;Sage, 2004;Tipple & Pagani, 2007). The C 3 and C 4 photosynthetic pathways fractionate carbon isotopes to different degrees: C 3 plants have δ 13 C values from -22‰ to -30‰, whereas C 4 plants have values from -10‰ to -14‰ [START_REF] Bender | Variations in the 13 C/ 12 C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation[END_REF]Farquhar et al., 1983). Based on the analyses of carbon
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This article is protected by copyright. All rights reserved. isotopes in pedogenic carbonates, tooth enamel, and specific organic compounds, researchers have documented a significant expansion of the distribution of C 4 plants during the late Miocene in southern Asia, Africa, North America, and South America. The expansion first occurred at low latitudes and then later at higher latitudes (i.e., Quade et al., 1989;Cerling et al., 1997;Huang et al., 2007;Zhang et al., 2009).

This expansion has been explained by a large reduction in the atmospheric CO 2 concentration during the late Miocene (Cerling et al., 1997); C 4 plants possess a CO 2 -concentrating mechanism and are favored relative to C 3 plants under low levels of atmospheric CO 2 . However, recent reconstructions of paleo-atmospheric CO 2 concentrations indicate that a precipitous drop in CO 2 levels had already occurred during the Oligocene; the levels approached modern levels by the earliest Miocene period (Pearson & Palmer, 2000;Pagani et al., 2005), which is earlier than the global expansion of C 4 plants. In addition, detailed studies suggest that the late Miocene expansion of C 4 plants was regionally heterogeneous rather than globally synchronous (Fox & Koch, 2003, 2004;Huang et al., 2007;Edwards & Still, 2008;Sanyal et al., 2010). Regional climatic factors may have superimposed to global CO 2 levels to control the expansion. The relative importance of these factors needs to be investigated in more detail to better identify the causes of the C 4 expansion in various regions.

Physiological data and models have demonstrated that the processes that modify the distributions of C 3 and C 4 plants strongly depend on both the atmospheric CO 2 concentration and seasonal climate changes (Collatz et al., 1998;Edwards & Still, 2008;Higgins & Simon, 2012). Therefore, to establish the primary cause of the late Miocene expansion of the C 4 plant distribution, it is
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This article is protected by copyright. All rights reserved. important to identify the underlying causes based on the physiological responses of the C 3 and C 4 plants by accounting for atmospheric CO 2 levels and seasonal climate changes. The results will elucidate the relative influences of these various factors on the expansion.

In this study, we describe the use of an inverse vegetation model that is based on a physiological process-based vegetation model (BIOME4) (Kaplan et al., 2003), pollen data (Hoorn et al., 2000), and carbon isotope data (Quade et al., 1995) from the Nepal Siwalik region in the Himalayan foreland. In this region, major C 4 plant distribution expansion has occurred since the late Miocene. We quantitatively reconstructed the paleoclimates during that period and investigated how changes in the atmospheric CO 2 concentration and seasonal climate changes account for the observed distribution of the C 3 and C 4 plants in this region.

Data

The Surai Khola section (27°45′27″ N, 82°50′ E) of the Siwalik, Central Nepal (Fig. 1), was studied to obtain detailed data on pollen (Hoorn et al., 2000) and carbon isotopes (Quade et al., 1995) in soil carbonates and soil organic matter. In the present study, all pollen and isotope data were obtained from published diagrams (Quade et al., 1995;Hoorn et al., 2000). Then, we precisely tied these data to the paleomagnetic age control data of Cande and Kent (1995). For the pollen sites, aquatic pollen or spores and fern spores were excluded, and the percentages were recalculated based on the arboreal and nonarboreal pollen types.

The biome reconstruction (Fig. 2a), which is based on the biomization method, was developed by MCQPD (2001). Because δ 13 C values of organic matter in Surai Khola (Fig. 2b) were scarce This article is protected by copyright. All rights reserved.

(only two sites) prior to 6.5 Myr, the δ 13 C of soil pedogenic carbonates was used. We used a 15‰ enrichment of the δ 13 C in the soil carbonate compared to the source organic matter; this accounts for kinetic fractionation effects on CO 2 as a result of diffusion and equilibrium fractionation during the CO 2 to CaCO 3 phase transformation (Quade et al., 1995). Because the pollen and δ 13 C were not sampled together, the δ 13 C at pollen collection sites (Fig. 2) was interpolated using a five-point moving average from the δ 13 C of the soils to the age of the pollen sites. To evaluate the reliability of the inverse method for the climate reconstruction, modern pollen data were used from the available pollen spectra in China (MCQPD, 2001). The biome types include tropical rain forest, tropical seasonal forest, broadleaved evergreen/warm mixed forest, temperate deciduous forest, cool conifer forest, cold mixed forest, taiga, tundra, steppe, and desert, which cover all biome changes of the Surai Khola section. These biome and δ 13 C data are the output vectors from the inverse modeling simulations.

The model input vectors include parameters characterizing atmospheric CO 2 concentration, atmospheric δ 13 C, soil texture, and monthly climate data for vegetation simulations. We used the reconstructed atmospheric CO 2 concentration since the Miocene compiled by LaRiviere et al.

(2012) and the atmospheric δ 13 C derived from Passey et al. (2002) (Fig. 3). Then, we interpolated the values to the pollen sites using a five-point moving average method. Due to the lack of paleosol data, the paleosol properties at the pollen collection sites were characterized by the nearest soil grid in the Surai Khola with the same biome at the present time. The soil properties were derived from the FAO digital soil map of the world (FAO, 1995). The modern monthly climate conditions (i.e., temperature, precipitation, sunshine) and absolute minimum temperatures were interpolated using a two-layer back-propagation artificial neural network
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This article is protected by copyright. All rights reserved. method (Guiot et al., 1996), which is included in the 3Pbase software (Guiot & Goeury, 1996), based on the monthly climate dataset in the ten-minute grid space compiled by New et al. (2000) and the absolute minimum temperatures compiled by Spangler and Jenne (1988). The artificial neural network technique is able to simulate complex and non-linear relationships; therefore, it is able to represent (nevertheless as a black box) the spatial changes of climate (Guiot et al., 1996).

The inverse modeling process is performed using initial sampling increments from -20°C to +10°C of the modern temperatures and -90% to +100% of the modern precipitation values in January and July (Table 1).

Methods

A novel aspect of our approach (Fig. 4) was the use of a physiological process-based vegetation model, BIOME4 (Kaplan et al., 2003), in an inverse mode to study the sensitivity of C 3 and C 4 plants to changes in climate and atmospheric CO 2 concentrations since the late Miocene. We assumed that the pollen biome and carbon isotope values, which reflect the composition and structure of the local C 3 and C 4 plants, are related to the simulated biome and carbon isotope results of BIOME4.

BIOME4 vegetation model

BIOME4, modified from BIOME3 (Haxeltine & Prentice, 1996), is an equilibrium vegetation model that accounts for the effects of CO 2 on net assimilation, stomatal conductance, leaf area index (LAI), and ecosystem water balance. The model has been used to simulate the response of plants to changed atmospheric CO 2 in the past (Jolly & Haxeltine, 1997;Boom et al., 2002;Harrison & Prentice, 2003;Wu et al., 2007). The model includes 12 plant functional types (PFT)
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This article is protected by copyright. All rights reserved. defined by a set of bioclimatic limits and physiological parameters. These PFTs represent broad and physiologically distinct classes that range from cushion forbs to tropical rain forest trees. For a given site, the ecophysiological constraints determine the potential occurrence of specific PFTs.

A coupled carbon and water flux scheme for each PFT is then used to calculate the seasonal maximum LAI that maximizes the net primary production (NPP). The scheme is based on a daily time-step simulation of the soil water balance and monthly process-based calculations of canopy conductance, photosynthesis, respiration, and phenological state. Competition between the PFTs is simulated by using the optimal NPP of each PFT as an index of competitiveness. To identify the biome of a given site, the model ranks the woody and grass PFTs that were calculated for the site. The ranking is based on a set of rules related to the biogeochemical variables (i.e., LAI, NPP, and annual mean soil moisture). The ranked combination of the PFTs is classified into one of 27 biome types.

BIOME4 also includes an isotopic fractionation routine that was improved by Hatté and Guiot (2005). The isotopic fractionation produced by C 3 and C 4 plants is simulated by using a model modified from Lloyd and Farquhar (1994). The mean annual isotopic fractionation is estimated by weighting the monthly fractionation of the C 3 and C 4 plants in all PFTs with the respective NPP. The isotopic fractionation is allocated to the output biome and weighted according to the NPP of each PFT (Hatté & Guiot, 2005). The BIOME4 model is particularly useful for simulating paleovegetation because it requires only a limited number of inputs, including monthly temperature, precipitation, sunshine, absolute minimum temperature, atmospheric CO 2 concentration, and soil texture.
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Inverse modeling approach

We used a new version of an inverse vegetation model to estimate the climate. The new model inversion (Fig. 4) is a combination of the inverse modeling approaches that are based on pollen-derived biomes (Wu et al., 2007) andδ 13 C (Hatté & Guiot, 2005). The two inverse methods have been validated in Eurasia and Africa (Wu et al., 2007) and the United States and Australia (Hatté & Guiot, 2005). This integration provides an important advantage for a more complete simulation of the vegetation composition because it can both discriminate among the different types of C 3 plants (i.e., trees, shrubs, cool season grasses) and reconstruct the portions of the C 3 and C 4 plants constrained by the seasonal climate and atmospheric CO 2 levels. This provides a suitable approach for extracting detailed paleo-seasonality information (i.e., summer rainfall and temperature) and the effect of CO 2 on ecological succession in the Himalayan foreland since the late Miocene.

The inversion process consists of finding all the combinations of climatic factors that could be compatible with the biome inferred from the pollen in a time period at a given site and the corresponding measured δ 13 C value (Fig. 4). The main climate variables driving the vegetation in the BIOME4 model are the monthly temperature, precipitation, and sunshine; these are the unknown variables estimated by the model inversion. To limit the number of degrees of freedom, we constrain these unknowns to January and July temperature and precipitation (four variables) and estimate the other monthly variables using empirical equations based on four parameters (Guiot et al., 2000). The monthly temperature and precipitation are deduced by a sinusoidal interpolation between January and July. The sunshine percentage is estimated by a linear regression from the temperature and precipitation of the same month (Guiot et al., 2000).
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The procedure (Fig. 4) is summarized as follows: (1) a set of four variable deviations is randomly sampled, and the other monthly components of the climate are calculated using the empirical equations; (2) the deviations are added to the values of the modern climate and applied to the BIOME4 model; (3) a transfer matrix is used to convert the BIOME4 biome to biome scores comparable to the pollen data (Wu et al., 2007); (4) the simulated biome scores are compared to the pollen scores using a Euclidian distance for biome scores, and the simulated and measured δ 13 C are compared; (5) the climate set is accepted on the condition that the Euclidian distance is not too high (see Wu et al., 2007) and that the difference between the observed and simulated δ 13 C values is less than 2.0‰ (the δ 13 C shift during the pedogenesis and fossilization) (i.e., [START_REF] Balesdent | Site-related 13 C of tree leaves and soil organic matter in a temperate forest[END_REF]Van Bergen & Poole, 2002;Nguyen Tu et al., 2004;Poole et al., 2004); ( 6) if the set of climate vectors is accepted, it is used to calculate the a posteriori probability distribution of the unknowns; (7) another climate deviation vector is randomly drawn, and the procedure is repeated. This iterative process was complete when we obtained a sufficient number of valid scenarios to calculate the a posteriori probability distributions, namely, 200-300 scenarios in 5000 iterations. In the last step, we deduced the mean climate with a confidence percentage using the a posteriori probabilities. A complete model description can be found in Guiot et al. (2000) and Wu et al. (2007). The a priori distribution of the input parameters in this study was set to the ranges provided in Table 1.

A sensitivity analysis of the effects of CO 2 on the C 4 expansion

The inverse modeling method enables us to reconstruct paleoclimates from the late Miocene to the present under various atmospheric CO 2 concentrations and to investigate potential climate and CO 2 changes that could explain the expansion of the C 4 plant distribution. This method
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accepts the concept of a multi-equilibrium status between the environmental conditions (i.e., climate, CO 2 ) and the vegetation (Guiot et al., 2000).

To identify the dominant factor linking the climate and the CO 2 concentration controlling the expansion of the C 4 plant distribution during the late Miocene, we performed seven sensitivity experiments with CO 2 levels ranging from 200 to 800 ppmv in increments of 100 ppmv.

Meanwhile, the climate (temperature and precipitation) was maintained at its respective reconstructed values (Fig. 5). This CO 2 range covers the late Miocene atmospheric CO 2 concentration variations (from approximately 460 ppmv to 200 ppmv, Fig. 3a) (LaRiviere et al., 2012) in addition to the full range from the early Miocene (Pearson & Palmer, 2000;Pagani et al., 2005). Thus, we investigated the potential effects of very large CO 2 changes (y-axis direction in Fig. 6) on the observed expansion of the C 4 plants in the Siwalik. Furthermore, because the reconstructed paleoclimate includes all the climate changes since the late Miocene, we can also investigate the climate effects (x-axis direction in Fig. 6) on the C 4 expansion by using these experiments with various CO 2 levels.

Results

Validation of the inverse approach with modern data

We applied the inverse model to modern pollen samples to validate the approach by reconstructing the modern climate at each site and comparing it with the observed values.

Because of a shortage of organic δ 13 C data at the modern pollen sites, we only validated the efficiency of the biome inversion scheme to reproduce the modern climate. This validation was accomplished using the modern pollen biome from China (MCQPD, 2001). The high correlation
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This article is protected by copyright. All rights reserved. coefficients (R=0.75-0.95; Table 2), intercepts close to 0 (except for growing degree-days above 5°C and the mean temperature of the warmest month), and slopes close to 1 (except for the July precipitation) demonstrated that the inversion method worked well for most variables in China.

Although we could validate if the approach is improved by using by using the biome data in addition to the δ 13 C data, the BIOME4 simulation of the discrimination of carbon isotopes in the leaves has already been validated by Kaplan et al. (2002) over the entire range of plant types, including C 4 . The general reliability of the δ 13 C inversion to reconstruct the climate was validated by Hatté and Guiot (2005) using modern data from the woodlands along a 900 km-long rainfall gradient in southern Queensland, Australia (Stewart et al., 1995), and from the grasslands and woodlands along two transects in southeastern Utah and south-central New Mexico (United States) (Van de Water et al., 2002), where precipitation ranges from 160 to 1690 mm/year. The correlation coefficient (R) was approximately 0.95 (y = 0.9711x + 6.3994) between the observed (y) and reconstructed precipitation (x). The studies indicated that δ 13 C was particularly efficient for the precipitation signal. In our inversion process, δ 13 C is a constraint added to pollen proxies.

The main effect is to decrease the uncertainties rather than to change the reconstructions. We conclude that the climate signals contained in the pollen and δ 13 C data can be quantitatively extracted by this method.

Biome and climate reconstruction since the late Miocene

During the late Miocene period, a marked shift from -25‰ to -14‰ occurred in organic carbon isotope ratios in the Nepal Siwalik (Fig. 2). This shift was accompanied by a shift from the dominantly C 3 temperate deciduous forest and broadleaved evergreen/warm mixed forest that

Accepted Article

This article is protected by copyright. All rights reserved. existed prior to 7 Myr to the more seasonal water-stressed C 4 grasses of 7 to 5 Myr. By 5 Myr, the C 4 grasses dominated the Siwalik biomass. A similar expansion of the C 4 grasses was observed in other surveys of the Himalayan foothills and the Ganges floodplain (Quade et al., 1989;Cerling et al., 1997).

The inverse vegetation model successfully simulated the biome types at most pollen collection sites (Fig. 2a) and reconstructed the major expansion of the C 4 grass distribution. The expansion was characterized by more positive δ 13 C values (Fig. 2b) between 12 and 3 Myr. These results indicate that the mean annual temperature, approximately 12 to 13°C, was lower than the modern value prior to 8 Myr; therefore, the temperature increased significantly since 8 Myr (Fig. 5a).

The changes in the ratio of actual to potential evapotranspiration (α) present the opposite trend, with values that generally averaged approximately 10% higher than the present before 7 Myr and decreased significantly between 7 and 6.5 Myr, reaching minimum values that were approximately 25% lower than the modern values within the last 5 Myr (Fig. 5b). The annual precipitation pattern (Fig. 5c) is similar to that of α. The seasonal reconstruction revealed that this annual precipitation shift is mainly attributed to decreases in the summer rainfall, whereas winter rainfall did not change significantly (Fig. 5d).

The impact of CO 2 concentration on the C 4 expansion

The results of the seven sensitivity experiments (Fig. 6) with various CO 2 concentrations indicate that the C 4 plant composition responded negatively to changes in CO 2 concentration during all climate changes. More C 4 plants were present at lower CO 2 levels, suggesting that the lower CO 2 levels favored the C 4 plants. The increase of the C 4 plant biomass (Fig. 6a) in response to the
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CO 2 level decline was more significant for the higher temperature and lower precipitation observed within the last 8 Myr than for the relatively constant low temperature and high precipitation prior to 8 Myr ago (Fig. 5). These findings suggest that C 4 plants have been favored by a warmer and drier climate. The mean change of C 4 plant biomass was approximately 20% higher (Fig. 6b) when the atmospheric CO 2 concentration decreased from 800 to 200 ppmv, regardless of the climate changes, whereas the C 4 biomass change was approximately 60% higher (Fig. 6b) with the reconstructed warmer and drier climate, regardless of the CO 2 levels.

Therefore, the C 4 plants had a weaker response to the atmospheric CO 2 concentration decrease of 600 ppmv than to the climate change reconstructed for the late Miocene.

Discussion and Conclusions

Climate change during the late Miocene and its relationship with the C 4 distribution

With ecological succession from C 3 temperate deciduous forest and broadleaved evergreen/warm mixed forest to C 4 grasses, our climate reconstruction shows that the mean annual temperature in the Siwalik region increased between 8 and 3 Myr; the highest rate was identified between 8 to 5 Myr. This relationship between the abundance of C 4 and temperature increase is consistent with the modern environmental characteristics in non-arctic environments that favor C 4 plants: more C 4 plants exist during higher annual temperatures (Cavagnaro, 1988;Ueno & Takeda, 1992;Bird & Pousai, 1997;Pyankov et al., 2010). This pattern is particularly prevalent during the higher temperatures of the growing season for the C 4 grasses (Teeri & Stowe, 1976;Hattersley et al., 1983;Collatz et al., 1998;Sage et al., 1999). The occurrence is due to the differences in temperature dependence of the photosynthetic efficiency for CO 2 uptake of C 3 and C 4 plants (Ehleringer et al., 1997). The quantum yield (photosynthetic efficiency) of C 3 plants declines
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with increasing temperature, but C 4 plants are not affected. As such, C 4 -dominated ecosystems are favored by high temperatures under reduced CO 2 conditions. The cause of the temperature increase within the last 8 Myr in the Siwalik will be discussed in Section 5.3.

Another observation of our study is that increased aridity 7 Myr ago (Fig. 5b,c) accompanied the expansion of the C 4 grasses in the Siwalik. This correlation between the aridity and the abundance of C 4 in the Siwalik is consistent with evidence from the modern C 4 plant distribution in Europe (Pyankov et al., 2010) and C 4 dicots in North America (Stowe & Teeri, 1978) along moisture gradients (including woody and grass biomes), where C 4 plants are favored by increased aridity. This pattern can be explained by the fact that the physiology of C 4 plants involves higher ratios of photosynthesis to transpiration (water-use efficiency, WUE) than C 3 plants [START_REF] Berry | Adaptation of Photosynthetic Processes to Stress[END_REF]. Thus, C 4 plants have a competitive advantage in areas where moisture supply is limited. If modern woody vegetation is factored out and only grasslands of varying moisture characteristics in drier regions are compared, the relationship between C 4 dominance and the precipitation regime is reversed (Paruelo & Lauenroth, 1996;Schulze et al., 1996;Epstein et al., 1997); a greater number of C 4 plants grow in wetter sites because the C 4 plants are favored by the higher temperature accompanied by relatively more precipitation. The reconstructed annual precipitation was higher prior to 7 Myr and decreased significantly after 7 Myr (Fig. 5c). This change was mainly attributed to summer precipitation decreases (Fig. 5d). Our results agree with previous results. The seasonality of precipitation, as inferred from the annual δ 18 O profiles in fossilized freshwater bivalve shells and mammal teeth from the Himalayan foreland (Dettman et al., 2001), identified an intense Indian monsoon prior to 7.5
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Myr, with higher overall annual precipitation, especially during the summer monsoon. The long-term precipitation trend, in conjunction with the positive δ 18 O values in the paleosols of the Siwalik from 8 to 6 Myr (Quade et al., 1989(Quade et al., , 1995) ) and the enriched δD of plant leaf waxes from ODP Site 722 in the Indian Ocean from 10 to 5.5 Myr (Huang et al., 2007), suggests that the period was characterized by a significant increase in aridity in the Himalayan foreland. A gradual drying climate is also apparent from 11 to 6 Myr, as indicated by the decreased thickness of the leaching zones in the Siwalik paleosols (Quade et al., 1995), the decline of chemical weathering in the Himalayas from 10.5 to 3.5 Myr ago (Clift et al., 2008), and the replacement of woodland-adapted fauna by open-habitat mammals in Pakistan, Nepal, and northern India nearly 8 Myr [START_REF] Barry | Neogene mammalian faunal change in southern Asia: correlations with climatic, tectonic, and eustatic events[END_REF].

The effect of CO 2 concentration on the C 4 expansion

Many studies have addressed the influence of various CO 2 concentrations on plant growth (Hunt et al., 1991;Kimball et al., 1993;Curtis & Wang, 1998;Wand et al., 1999;Poorter & Navas, 2003) and physiological effects, including the alteration of the leaf net photosynthetic rates, stomatal conductance, and WUE (Gunderson & Wullschleger, 1994;Woodward & Kelly, 1995;Saxe et al., 1998;Gagen et al., 2011). CO 2 enrichment increases the water-use efficiency (reduces the water use), which contributes to enhanced soil water content and reduced soil-water depletion (Wullschleger & Tschaplinski, 2002). Plants may be more sensitive to CO 2 enrichment at subambient concentrations than at superambient concentrations (Polley et al., 2002). Although the contribution of CO 2 fertilization to plants is uncertain based on currently available data (Norby et al., 2005), Cowling and Field (2003) observed a good fit between the BIOME3 modeled and observed response of LAI to changes in low CO 2 levels. The predictions of NPP
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Because the treatment of the CO 2 effect in BIOME3 and LPJ is the same as in BIOME4, these comparisons indicate that the BIOME4 model realistically predicts the response to the CO 2 effect.

Our sensitivity experiments (see Section 3.3 for details) (Fig. 6) using various CO 2 concentrations indicate that more C 4 grasses were present at lower CO 2 levels. The results are consistent with the simulations obtained by the quantum yield model (Cerling et al., 1997;Ehleringer et al., 1997) in which the C 4 -dominated grasses are favored under lower CO 2 concentrations relative to the C 3 grasses. The metabolism is attributed to the different responses of C 3 and C 4 plants to changes in CO 2 concentrations. The C 3 plants respond to lower CO 2 concentrations with decreased maximum net photosynthetic rates because of inherent CO 2 substrate limitations and higher photorespiration rates (Farquhar & von Caemmerer, 1982), whereas C 4 plants are less sensitive to CO 2 levels (Ehleringer et al., 1991).

The difference between our BIOME4 approach and the quantum yield model is that the quantum yield of C 3 and C 4 grasses only varies with CO 2 concentration and temperature (Cerling et al., 1997;Ehleringer et al., 1997), whereas the BIOME4 approach considers the above factors coupled with water stress using a water flux model (Haxeltine & Prentice, 1996). Water stress is assumed to reduce photosynthesis through a reduction in canopy conductance. Regional evapotranspiration is calculated as a function of canopy conductance, equilibrium evapotranspiration rate and soil moisture. This scheme (Haxeltine & Prentice, 1996) results in a
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This article is protected by copyright. All rights reserved. coupling of the carbon and water fluxes for the vegetation simulation through canopy conductance, allowing for a simulation of the response of photosynthesis, stomatal conductance, and leaf area to environmental factors, including atmospheric CO 2 , temperature, and precipitation. Although the transport characteristics of stems, including xylem anatomy and sapwood area, soil and leaf water potential, and stomatal conductance (Sperry, 2000), are not considered in detail in the mechanism of water flux, water is considered a primary factor limiting plant growth and productivity (Schulze et al., 1987;Haxeltine & Prentice, 1996); thus, integrating water flux into the model provides insights into how CO 2 concentration, temperature, and water changes may impact C 3 and C 4 plants in different environments. As a result, the model provides a better understanding of the competition between the C 3 and C 4 plants and the consequences for ecological succession.

Further sensitivity analysis revealed that the expansion of the C 4 grass distribution was less responsive to the CO 2 level decrease (from 800 to 200 ppmv) than to the climate changes (Fig. 6).

In fact, the reconstructed record of the atmospheric CO 2 concentrations varies only between approximately 460 ppmv and 200 ppmv during the late Miocene period, with an increase of the CO 2 concentration 5.5 Myr ago (Fig. 3a). The CO 2 changes are only approximately half of the simulated change. Therefore, the effect of climatic change on the expansion of the C 4 plants may be even greater (Fig. 6b) than that produced by the CO 2 . Furthermore, according to the sensitivity analysis (Fig. 6), the CO 2 decrease from 800 to 200 ppmv (y-axis direction in Fig. 6a) was not a sufficient driver by itself to allow the C 4 grasses to dominate (>50% of the total biomass) in the landscape during the late Miocene (prior to 7 Myr). These experiments demonstrate that climate change exerted a greater control over the relative abundances of the C 3
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This article is protected by copyright. All rights reserved. and C 4 plants than did the CO 2 concentration decrease. Thus, the late Miocene expansion of the C 4 plants in the Siwalik region was not primarily a response to the declining atmospheric CO 2 levels, even if low atmospheric CO 2 was a significant contributing factor to the appearance of C 4 plants (Sage, 2004). Our results agree with the previous findings (Quade et al., 1995;Pagani et al., 1999;Fox & Koch, 2003, 2004;Huang et al., 2007;Strömberg & McInerney, 2011) that the C 4 plant expansion was unlikely driven by atmospheric CO 2 alone.

A possible cause for the expansion of the C 4 plants

An important result of this study is that the mean annual temperature in the Siwalik increased by approximately 12 to 13°C within the last 8 Myr. There are two scales of changes: one global and the other local. Both scales likely contributed to these temperature changes. Generally, local temperature variations are consistent with global changes at a tectonic time scale, but the temperature increase in the Siwalik region differed from the overall global declining temperature trend since the Miocene based on deep-sea oxygen isotope (δ 18 O) records (Zachos et al., 2001). This pattern suggests that the Siwalik temperature change cannot be primarily attributed to global factors. Local factors may also have been responsible for the increasing temperature, caused by a decrease in the mean elevation of the Siwalik basin in Nepal, which suggests the existence of a higher elevation prior to 8 Myr ago. This interpretation is consistent with the bulk of the thermochronological evidence (Coleman & Hodges, 1995) with geochemical (Galy et al., 2010), paleoclimatology, andpaleovegetation (Garzione et al., 2000;Spicer et al., 2003) studies. This evidence supports the assertion that the Himalayas and the Tibetan Plateau attained higher elevations over large areas prior to 8 Myr ago.
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Marine paleo-temperature records (Zachos et al., 2001;Huang et al., 2007) suggest that the global temperature has decreased approximately 2 to 3°C since the late Miocene. Because the reconstructed temperature (approximately 12 to 13°C increase) in the Nepal Siwalik was superimpose both the global and local temperature changes, the local temperature increase was approximately 14 to 16°C within the last 8 Myr. Assuming that this temperature increase corresponds to a decrease in the elevation, given an environmental lapse rate of 6 to 6.5°C km -1 (Rind & Peteet, 1985), our results suggest a decrease in the elevation of approximately 2200 m. This significant elevation change is in broad agreement with a decrease in the mean watershed elevation of 1000 to 1500 m in the Zada basin, southwestern Tibet, based on oxygen isotope-based paleoelevation reconstructions (Murphy et al., 2009;Saylor et al., 2009).

Most areas of the Siwalik between Pakistan and Nepal recorded an acceleration in the sedimentation nearly 11 Myr and experienced a decline nearly 8 Myr (Burband et al., 1993), indicating a decreasing erosion rate since the late Miocene in this region. Because the sediment flux was attributed to climate change and tectonic activity, this increase in the sediment flux to the Himalayan foreland basin was most likely due to the combined activities of intensified monsoonal precipitation (Dettman et al., 2001) andtectonics (Burband et al., 1996). Thus, the decline in the sediment flux was most likely related to reduced monsoonal precipitation (Dettman et al., 2001) and tectonic activity (Burband et al., 1993). In this context, our climate reconstruction supports the changes in monsoonal precipitation. We suggest that the decrease in the mean Siwalik basin elevation can be explained by significant erosion (based on sediment flux) in the Himalayas (Raymo & Ruddiman, 1992;Rea, 1992;Burband et al., 1993) and tectonic processes (Burband et al., 1993(Burband et al., , 1996) ) since the late Miocene.
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The expansion of the C 4 plant distribution in the Himalayan forelands was originally believed to result from the initiation or intensification of the Indian monsoon (Quade et al., 1989). This interpretation is supported by significant increases in the abundance of marine organisms such as Globigerina bulloides 8.5 Myr ago, which indicate a stronger monsoon-driven upwelling in the Arabian Sea (Kroon et al., 1991). However, recent studies have revealed contradictory evidence related to biomarker abundance: alkenone UK 37 and Globigerina bulloides abundance data from the Bengal Fan (Huang et al., 2007) versus chemical weathering (Clift et al., 2008) and seasonal δ 18 O variations (Dettman et al., 2001;Garzione et al., 2000) in the Himalayas do not suggest an enhanced summer monsoon circulation during this period. Furthermore, the apparent [START_REF] Beerling | Quantitative uncertainty analyses of ancient atmospheric CO 2 estimates from fossil leaves[END_REF]Seki et al., 2010;[START_REF] Bartoli | Atmospheric CO 2 decline during the Pliocene intensification of Northern Hemisphere Glaciations[END_REF]), plant stomata (Van Der Burgh et al., 1993;Kürschner et al., 1996;[START_REF] Beerling | Quantitative uncertainty analyses of ancient atmospheric CO 2 estimates from fossil leaves[END_REF]Kürschner & Kvacek, 2009;Stults et al., 2011), and alkenones (Pagani et al., 1999, 2010;Seki et 
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This article is protected by copyright. All rights reserved. al., 2010). Estimates of atmospheric CO 2 δ 13 C based on the δ 13 C of planktonic foraminifera calcite (Passey et al., 2002). The error bars represent the reported uncertainty in the estimates. The reconstruction of the C 4 plant biomass is based on differences in the C 3 and C 4 plant end-member δ 13 C values with changes in the climate, atmospheric CO 2 level, and δ 13 C CO2 using the BIOME4 approach. As a result, this reconstruction is more accurate than those that assume 
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Table 1. The ranges of the a priori distribution of the input parameters used for the inverse simulation in the Surai Khola section.

Parameter Range

∆T jan [-20, 10 The climate ranges are given in terms of the deviation from the modern values (degrees for temperatures and percentages for precipitation). T jan : January temperature; T jul : July temperature; P jan : January precipitation; P jul : July precipitation. 

  diachronous (3 Myr) nature of the C 4 plant distribution expansion in various locations of the Himalayan Siwalik (Sanyal et al., 2010) indicates the importance of the regional climate in controlling the distribution of the C 4 plants, as opposed to the role of the Indian monsoon. If the monsoon were dominant, then it would lead to synchronous C 4 expansion following the changes in the Indian monsoon region. Our results indicate that the relative abundance of C 4 versus C 3 plants in the Nepal Siwalik was mainly controlled by decreased precipitation (especially summer rainfall) and increased temperatures rather than the strengthening of the Indian summer monsoon. The precipitation decrease during the late Miocene may have resulted, in part, from the northward motion of the Indian plate, which carried the Himalayas to the north of the Intertropical Convergence Zone (ITCZ) (Armstrong & Allen, 2011), or the global trend toward a cooler late Cenozoic climate (LaRiviere et al., 2012), which reduced water vapor in the atmosphere. However, the combination of decreased precipitation and increased temperature Accepted Article This article is protected by copyright. All rights reserved. indicates that this change was at least partly a response to the altitude decline in the Nepal Siwalik. Because the rainfall distribution in the front of the central Himalaya exhibits two amplitude peaks along bands with a mean elevation of 900±400 m (the southern margin of the Lesser Himalayas) and 2100±300 m (the southern flank of the Greater Himalayas) due to orographic effects (Bookhagen & Burbank, 2006), the pattern of the precipitation decrease in the Siwalik region since 7 Myr is compatible with a sharp reduction of rainfall due to the altitude decrease from the upper peak (our reconstructed paleoaltitude was approximately 2600 m based on adding the decrease of approximately 2200 m to the modern elevation of approximately 400 m in the Nepal Siwalik). Although our results suggest that the expansion of the C 4 plants in the Nepal Siwalik was triggered primarily by major changes in aridity and temperature that resulted from decreased elevation of the Himalayan foreland and was perhaps amplified by a low atmospheric CO 2 concentration, we cannot rule out other factors for different regions. In the Great Plains of North America, major factors in the C 3 and C 4 shifts might include global cooling (Fox & Koch, 2003, 2004), climatic drying (Strömberg & McInerney, 2011), grass-grazer coevolution (Retallack, 2007), or intensified fire regimes (Keeley & Rundel, 2005). Regional ecological and climatic factors, forced by global climate change (Zachos et al., 2001), are the most likely factors that control the development of C 4 plants in various regions during the late Miocene. Future investigations should consider these changes at the global scale to provide additional evidence for the relative importance of these factors regarding C 4 expansion on different continents.
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Table 2 .

 2 Regression coefficients between the reconstructed climates for China, using the inverse model, and the observed meteorological values.

	Climate proxy	Slope	Intercept	R	ME	RMSE
	Mean annual temperature	0.82 ± 0.02 0.92 ± 0.18	0.89 0.16	3.25
	Mean temperature of the coldest month	0.81 ± 0.01 -1.79 ± 0.18	0.95 -0.17 3.19
	Mean temperature of the warmest month	0.75 ± 0.03 4.57 ± 0.60	0.75 -0.19 4.02
	Total annual precipitation	1.15 ± 0.02 32.90 ± 18.41	0.94 138.01 263.88
	Precipitation in January	1.01 ± 0.02 0.32 ± 0.47	0.94 0.52	8.89
	Precipitation in July	1.30 ± 0.03 -21.67 ± 4.52	0.89 16.45 52.90
	Growing degree-days above 5°C	0.74 ± 0.02 464.16 ± 48.68 0.89 -106.69 693.60
	Ratio of actual to potential evapotranspiration	0.87 ± 0.03 8.84 ± 1.42	0.82 3.06	13.18

R is the correlation coefficient (± standard error). ME is the mean value of the residuals. RMSE is the root-mean-square error. These values are calculated based on 482 observations.
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