N

N

Simulatorbased testing environment for avionics
software: a feasibility study
S Flores, P Le Meur, J F Renneson

» To cite this version:

S Flores, P Le Meur, J F Renneson. Simulatorbased testing environment for avionics software: a
feasibility study. 4th International Congress ERTS 2008, Jan 2008, toulouse, France. insu-02269750

HAL Id: insu-02269750
https://insu.hal.science/insu-02269750
Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://insu.hal.science/insu-02269750
https://hal.archives-ouvertes.fr

Simulator-based testing environment for avionics software:

a feasibility study

S. Flores', P. Le Meur?, J.F. Renneson®

1: Atos Origin Integration, Rue Ampere, 31672 Labége
2: Airbus France, 316 Route de Bayonne, 31060 Toulouse

Abstract: Hardware execution targets are widely
used for software testing in the avionics industry to
ensure that the tests represent the behaviour on the
actual aircraft's calculators to a maximum degree.

At the same time, software simulators of the
Integrated Modular Avionics structure are used on
several system integration benches for calculator
validation or as a part of full flight simulators.

We substituted a hardware target with a specific
software simulator in order to create a new testing
platform that provides application developers with
features not found on hardware-based
environments. Such features include greater
availability —of testing platforms, debugging
capabilities and an easier and faster testing process.
Our goal was to evaluate the feasibility of a full
migration to the resulting simulator-based testing
environment. We identified several industrial
constraints and technical problems to achieve this
migration and approached them by developing
progressive prototypes of the components of the
new testing system and of the interfaces between
them. Our project’'s validation plan included
comparing the results of both hardware-based and
simulator-based platforms when executing a set of
representative avionics tests.

Keywords: Integrated modular avionics, simulation,
embedded software testing.

1. Introduction

1.1 Background

Embedded software development involves thorough
testing phases. In the avionics industry the means of

testing become almost as critical as the tests
themselves because the whole development process
is subject to certification by air navigation authorities,
using the DO-178B standard.

This standard defines a set of criticality levels
according to the consequences of a software failure,
from level A (catastrophic consequences) to level E
(no effects). A typical development cycle of airborne
software includes unit and integration testing phases
in which hardware targets are used to execute the
tests. These hardware targets are the central part of
the testing platforms that we currently use, named
Target-Based Operating System Simulation
(TBOSS). The TBOSS targets simulate an IMA
airborne calculator and the operating system on it,
and even though some of their components are not
the same as those in the aircraft, certification
authorities have controlled their representativeness.

Unfortunately, good representation comes at a price.
Application developers are often very limited in
essential aspects of the testing process such as
debugging or even the physical availability of the
testing platforms due to the small number of
hardware targets. In our industrial environment in
particular, we will also have to deal with other
problems such as the lifespan of the hardware, the
cost of licensing of the tools, and the technological
dependence to the providers of the testing platform.

All these reasons made us consider the possibility of
developing a new testing platform based on an
existing IMA structure software simulator. This
simulator called Software Workshop for IMA
Modules (SWIM) is currently used by another entity
in our organisation to validate flight calculators by

Page 1/9

integration test benches. It is also part of full flight
simulators that are employed for pilot training.

SWIM provides a given airborne application with an
emulated behavior of its environment as if it
interacted with its real operating system and
underlying hardware. In the IMA architecture, the
means of interaction with the operating system are
defined by the ARINC 653 standard, which is thus
implemented by SWIM.

This simulator recreates the real-time behavior of a
single IMA processing unit (CPIOM) and of the
operating system that controls it (MACS2). This
makes SWIM a host structure capable of executing
complete IMA applications on a GNU/Linux
operating system.

On the other hand, software unit and integration
tests are a very controlled execution of a few
components of the final application. In this tests
several conditions such as time, return codes or
initial values are often simulated or forced.

Our reasoning is that a simulator capable of
executing complete applications might also be able
to run verification tests of each one of their
components, even though it was not designed for
such a purpose, and even though the tests differ
from complete application in many ways.

1.2 Motivation

A testing platform based on SWIM would be
completely software-based, which would allow us to
make it more available to developers (by simply
copying it or launching several instances) than the
hardware-based platforms. The whole testing
process would become easier and faster as there
would not be a need to compile and load
configuration sources for each test. In the long term,
greater debugging features could be added to the
new platform because we would have access to all
of its source code; which would also allow us to use
it without paying any license fees, or even to adapt it
to our particular needs. Finally, creating our own
testing platform would give us a better control of the
testing process. This becomes increasingly
important as we do not want to depend on a single
provider of testing platforms.

1.3 Constraints

There are nonetheless some very important
constraints to take into account. The first and most
important is that the simulator-based testing platform
must be backwards-compatible with the previous
one. This is an essential requirement to a full scale
migration because there are several thousands of
existing tests that support the reliability of different
avionics applications currently in service, and
modifying them would imply an enormous effort.
This means that we must adapt the new simulator-
based testing platform to the existing tests and not
the contrary. The execution of these tests should
have the same results in both hardware and
simulator-based platforms and should be generated
from the same sources.

The testing interface should remain the same to the
application developer, so that the eventual migration
is transparent to them.

We also want to keep modifications to SWIM to a
strict minimum, as we wish to be able to evolve with
the original simulator and take advantage of eventual
new features.

1.4 Feasibility and problems

To all this constraints we add the fact that SWIM was
not originally made to fulfill our testing needs.(mainly
unit testing and integration testing for software
verification).

Due to the complexity of the current hardware-based
platform and to the strong constraints we face, we
decided to evaluate the feasibility of a total migration
to a simulator-based platform by creating a prototype
of this platform. This prototype helped us:

- toidentify the potential problems of the migration

- 1o anticipate to these problems and to take into
account their solutions from early stages of the
creation of the new platform

- to foresee any blocking conditions and
eventually to decide about the feasibility of a full
migration to the new platform.

The first part of our project was to identify the
differences between the execution environments in
SWIM and in the hardware targets. We present them

Page 2/9

here as a means to expose the problems that made
us question the feasibility of a full scale migration.

Main purpose: the TBOSS targets were designed to
test a single component of an application with
representativeness being the most important feature.
The ability of the application developer to simulate
API calls is also important as it allows him to easily
test different scenarios, for example forcing the
execution of a certain branch of code.

SWIM on the other hand was made to be the first
simulation platform of complete IMA applications
(as opposed to just components), providing them
with all necessary operating system access services
and behavior.

Executable Format and configuration: the TBOSS
targets use the executable and linking format (ELF)
for the PPC 755 processor. A single executable
must be built outside the target and then loaded to it.
The executable is constituted of a binary image of
the system software (MACS2 OS and other drivers),
a binary image of the application software (the test),
a boot loader that copies everything in the right
place on memory, and a binary image of the
configuration table (configuration parameters for the
MACS2 OS, drivers, RAM and communication
means). Of course; we need to recompile the
sources of most of this components for each test.

SWIM in contrast is an executable itself. Applications
are loaded at run-time in the form of ELF shared
objects (dynamically-linked libraries). These shared
objects just contain the application as the system
software is provided (or rather emulated) by SWIM.
All configuration in SWIM is done by regular files.
One of the XML configuration files is particularly
important because it describes the period used by
the OS simulation's scheduler, the shared objects to
be loaded and the communication channels to be
used.

Communication Channels: An important term
regarding communications in IMA applications is
APEX port. These ports are the main internal
communication mechanisms between IMA partitions,
processes and external devices. If we must
exchange information with an executing IMA
application, we must connect with the APEX ports in

some way. TBOSS and SWIM take different
approaches to this.

TBOSS targets use a set of tools to upload the
executable into memory. Aside form this, all
communication in and out the target is made by a
special interface that lets us implement control
programs by including a C header file and a static
library. We will cover this in more detail later. We do
not have access to the source code of any of these
tools.

SWIM does not impose any means of
communication : it just provides a communication
interface. SWIM users can implement the
communication stack the way they want, and
compile it as a dynamic linked library. In fact, the
current users of SWIM generate the code of this
stack automatically from files describing the external
interfaces of the hosted avionics applications.

Execution sequence: TBOSS targets execute
applications 'step-by-step' in a basis of a period
called minor frame (MIF). Roughly, this duration
represents the minimal configurable time duration of
the OS scheduler. As we will explain in further detail
later, the execution of each MIF is conditioned to the
reception of a specific command from the user.

SWIM on the other hand executes applications
continuously during a predefined (but configurable)
number of MIFs. The execution will continue without
stopping until this number of MIFs is reached.

Representativeness: the TBOSS targets ensure that
the compiled code will behave as in the airborne
calculators because it uses the real MACS2 OS, a
very similar processor and a very similar memory
scheme; as opposed to SWIM that executes on Intel
x86 processors and just emulates the behaviour of
the MACS2 OS on a GNU/Linux System.

2. Methods

In this section we present the development of our
prototype as well as the problems we encountered,
the solutions we implemented and the validation
strategy.

For simplicity, we will call our prototype and the
existing hardware-based platform ‘'the SWIM
platform' and 'the TBOSS platform' respectively.

Page 3/9

2.1 Imposed Architecture from TBOSS

As stated in section 1.3, a major requirement for a
new simulator-based testing platform is its capacity
to execute existing tests without modification. This
imposed a certain architecture to the SWIM platform
as we needed to determine if we could reuse some
of the components of the TBOSS platform. An
overview of the architecture of the latter is shown in
figure 1.

PPC Hardware target (4)

Application test (1)

i
e

Control host (5)

I Provided by the platform vendor
[

Provided by the application developer

| I Optional components provided by the developer

/) Provided by our department
XXX Provided by our department and other entities
«+—» Data flow during execution

<> Dpata flow and control (e.g. launching)

Figure 1. An overview of the TBOSS platform

In this architecture, the tests (1) are executed in a
target which has no means of communication with
the external world but a control interface (2) called
'‘Operating System Simulation Control Interface'
(OSSCI). A set of programs (3) running on Solaris
workstations control the test exclusively through this
interface. All the information exchanged between the
execution of the test and the developer is also
transmitted by the OSSCI.

We can see this as a communication layer between
the execution target (4) and the control host (5). Its
implementation remains completely inaccessible to
us, as the only source code provided is a C header
file that establishes the signatures of eleven
functions (OSSCI commands) which must be called

by control programs in order to interface with the
test.

The platform also includes several other tools (6)
such as launch scripts, configuration management
and revision control facilities, pre-processors, post-
processors and report generators. These tools
constitute an interface to the developers and thus
should remain unchanged. Some of these tools are
provided by the developers, some others by our
department, and some others by third parties. We do
not have access to the source code of all of them.

2.2 Architecture of the SWIM Platform

The creation of the SWIM platform consisted of three
main tasks:

+ the implementation of a new OSSCI
communication layer using a client-server
scheme.

- the implementation of the corresponding
modifications on the original SWIM so that it
would respond to the commands of the new
OSSCI.

« The integration of the new and ancient
components.

Of course, this tasks were not made sequentially but
rather in parallel. We present the fundamental
aspects of each one and then we present some
interesting problems that we faced.

The new OSSCI. It consisted in two static libraries,
one to be linked to SWIM ('the server') and one to be
linked to the control programs ('the clients'). We
used an object-oriented approach to design this
libraries.

On the client side, we chose the simplest of the
existing control programs to use within our prototype,
simply linking it against our new client library and
thus taking advantage of the hidden implementation
of the OSSCI.

We reimplemented some of the functions that allow
a control program to interface with the test. Some
others where not implemented because they were
not immediately necessary for our feasibility study
(as no control program used them). The details of
the implementation of these functions are out of the
scope of this document, but we would like to briefly
highlight some of them:

Page 4/9

« OSS_lInit: initializes the hardware target and
the OS. In our implementation it gets the
current SWIM's APEX port configuration and
establishes TCP/IP socket connections
accordingly.

« 0SS _Run: Asks for the execution of the test
during a specified period of time. As we will
explain more in detail later in this document,
the fact that SWIM lacks this functionality
made the reimplementation of this OSSCI
command critical.

« OSS_End: Ends the execution of the test. In
our implementation it closes all connections
and frees temporary resources.

- 0SS_Message_Input: asks for the transport
of predefined messages from the control
host to an APEX port in the application. We
internally use TCP sockets to send these
messages.

+ 0SS _Message_ Output: asks for the
transport of predefined messages from an
APEX port in the application to the control
host. We internally use our TCP sockets to
send these messages.

On the server side, the library executes its method
serve to receive and treat the internal OSSCI
messages that arrive from the client.

Again, their implementation is out of the scope of
this document but we highlight some of them:

- prepare_connections: called on reception
of a message sent by OSS_Init, it sends the
client the APEX port configuration of the
current test and prepares all connections.

- destroy: called on reception of a message
sent by OSS_End, it destroys all
connections and frees temporary resources.

- send_next: called on reception of a
message sent by OSS_Message_Output, it
sends the next ready message to the
specified port.

- receive_next: called on reception of a
message sent by OSS_Message_Input, it
receives the next message waiting on the
specified port.

- serve: this method treats the received
messages from the server and dispatch the
corresponding actions, such as calling the

methods above or continuing the execution
of the test. We deliberately put this method
at the end because we will talk more about it
in the next section.
Modifications on SWIM: as we previously stated, we
wanted to keep SWIM free of modifications. But
because SWIM was not originally designed to fulfill
our testing needs, some modifications were
necessary. We tried to minimize their impact by
isolating them on a specific compilation option.
The main change to the SWIM behavior was the
inclusion of the OSSCI server's serve method call at
the very beginning of the execution of each MIF.
This method call is blocking, effectively preventing
SWIM to continue the simulation of the test. Once in
the method, the OSSCI server will wait for events
and dispatch actions according to the messages
from the OSSCI client. The method will not return
until a special message sent by OSS_Run is
received. This process can be seen in figure 2.

[swim| [osSCI server] [0sSCT_client| [Control]

serve() AVL

SS_COMMAND ()

Internal Message

wait_AVL()

-
server_action(
ACK

r 7777777777 i
Returns if { .
J 0SS_Command was Flt_AVL()

0SS_Run ‘

Information exchange through network
Information exchange between objects
- . Method call
77777 > Method return

= Asynchronous message

Figure 2. Simplified sequence diagram of a test

This modification to the SWIM behavior totally
affects the real-time execution of the software. This
is true because the execution of the applications (the
tests) become synchronous to the arbitrary call of
the OSS_Run function by the control programs.
Nevertheless, this does not represent an obstacle to
our purposes because the whole simulation is
stopped upon the execution of the serve method,
even the simulated flow of time. We achieve this by
calling the serve method before any internal SWIM

Page 5/9

timer is initialized or incremented, so this suspension
will not affect the effective execution time of the MIF.
Integration of the components: as we explain in
figure 3, the SWIM platform consisted in our
modified version of SWIM in a GNU/Linux system (1)
controlled by a Solaris host (2) through TCP sockets.
The simplest of the control programs (3) was linked
against our new OSSCI client library (4) which
allows communication with the OSSCI server (5).
The server itself has been incorporated to SWIM,
that loads the shared object of the test (6) at
runtime.

It is important to mention that although we did not
include all of the other components (7) of the ancient
platform in our prototype, the interfaces to them
were not changed.

Modified SWIM
(Linux process on 1686)

“Re-targeted”
Application test
(dynamically linked)

I |
A , Simulated devices |

,,,,, S

Unchanged interfaces

e
i

Control host on Solaris

I provided by the original SWIM
[] Provided by the application developer

77777777777

! | Optional components provided by the developer

7] Provided by our department
B Provided by our department and other entities
«+——» Data flow during execution

<——>> Data flow and control (e.g. launching)

Figure 3. An overview of the SWIM platform

2.3 Problems encountered and solutions

Until now, we have explained the architecture and
the implementation of the SWIM platform according
to the constraints we had. The next step was to test
our prototype through validation tests. We will
explain our validation strategy in further detail later,
but first, we present some of the problems that we

encountered during the testing phase and the steps
we took to solve them.
Differences between the executable formats in the

TBOSS targets and SWIM: As we explained in
section 1.4, SWIM and TBOSS take different
executable formats. Our first problem to was to
determine which sources to compile to generate the
shared objects needed by SWIM. The build process
itself was also very important because some tests
made assumptions about the testing platform. For
example, some tests could rely on the TBOSS
hardware to clean certain areas of memory.
Needless to say, these areas are not the same
under the SWIM platform. The most interesting
problem that we had, concerned the memory
segment in which variables initialized to zero were
stored.

The default policy of the GNU C compiler (which we
used to generate the shared objects of our tests) is
to put variables that are initialized to zero into the
BSS segment (the BSS segment is the memory
zone in a process that contains the uninitialized
global data structures). This can save space in the
resulting code, but can cause problems with
programs that explicitly rely on variables going to the
data section. This was the case in some of our tests,
and the result was that global variables explicitly
initialized to zero had in fact different, random
values.

The solutions to all the problems related to different
executable formats between SWIM and TBOSS was
to carefully identify the necessary compiler options to
generate machine code that would behave in the
same way in both platforms.

Endianness: The control host used in a TBOSS
platform runs on Solaris/Sparc platforms. Besides,
one of the control programs was specifically
designed to be run on Solaris systems (it uses
specific Solaris' shared memory mechanisms to
communicate with simulated devices). Because of
this, we decided to keep all of the control programs
on that platform instead of porting them to
GNU/Linux (which is the platform where SWIM runs).
This brought some problems concerning the
endianness of the data sent through the network:
Solaris/fSPARC platforms are big-endian while
Linux/ia32 platforms are little-endian. The solution to

Page 6/9

this was simply to include proper treatment of the
integers transmitted.

Symbol resolution and overwriting: As we explained
in section 1.4, TBOSS purpose is to be used in
verification tests. The developer may want to force
the execution of a certain branch within the tested
code. To do this, developers use code stubs. These
stubs are actually redefinitions of the functions called
by the software undergoing tests. They exist to
simulate the existence of the rest of an application
for the specific part of software being tested. For
example, if we are testing a module m and we know
that m calls a function f (defined outside this
module), we may want to simulate f so that we can
force its return code to decide about something:

// we know this code exists in the module m
// which we are testing:
rc = f(paraml, param2, param3)
if (rc == NO_ERROR) {
// do something

}
else {

// do something else
}

The developer just rewrites a very simple definition
of f that returns the desired value instead of
incorporating the code of the real f function into the
executable.

This is in fact very simple, but it becomes much
more complicated when the developer needs to
redefine a system call, like a service of the AIRBUS
API (the ARINC 653 interface). Such service would
then be defined twice in the same executable: once
by the basic software (the OS) and then another
time by the application's test.

In practice, some of the tools of the TBOSS platform
pre-process the sources to eliminate all duplicated
symbols and obtain the desired effect (that of the
developers' redefinition of the service).

But we could not use the same tools for the SWIM
platform because the execution environment is
completely different. Only the interface between the
components is the same.

Every time that a test redefined a service of the
ARINC 653 interface, we faced the problem of
duplicated symbols in the execution of our tests in
the SWIM platform. Because SWIM and its
applications are compiled separately, no compiler
warning was ever raised.

Besides, in a GNU/Linux system, the policy of the
dynamic loader (the program that loads the shared
object into memory) is simply not to load a symbol
that has been already defined in memory, hence
giving precedence to the first symbol and silently
ignoring the second. The result was that many of the
existing tests failed because they were calling the
actual system service instead of the developer's
stub. This problem is illustrated in figure 4.

Application test

Simulated API [services
(ignorefd)

Load Time
uoTinlosaJd 1oquAs Butanp A3TJOTJd

I symbols of the basic software,
provided by SWIM

[] Symbols of the test executable
(dynamically linked library)

— P Service call

Figure 4. Default symbol resolution in GNU/Linux

To overcome this obstacle we took advantage of the
same dynamic loader policy. We slightly modified
SWIM and its build process to encapsulate all the
AIRBUS API services in a dynamic library. Then we
forced the SWIM's main binary to load the shared
object of the application before that of the system
API, as seen on figure 5.

Page 7/9

Load Time

Application test

v

Simulated API services
(Loaded first)

uoTinjosad joquAs BuTinp A3TJ0TUd

I symbols of the basic software,
provided by SWIM in a second
dynamically linked library

[] Symbols of the test executable
(dynamically linked library)

—P» Service call
Figure 5. Symbol resolution in the SWIM platform

2.4 Validation Strategy

To validate our prototype, we took a subset (a
module) of the Air Traffic Control software used on
the A380 (ATC, a level C IMA application). The
reliability of this subset is verified by several
hundreds of unit tests, organized in 40 different
groups. From each one of these groups, we
generated a test executable in the form of a dynamic
linked library that was then executed on the SWIM
platform. Finally, we compared the results of the
execution with those obtained with TBOSS targets.

3. Results

After solving the problems that we exposed, we were
able reproduce the results of the TBOSS platform in
our prototype for each one of the tests: all of the unit
tests executed in the exact same way in both
platforms, starting from the exact same sources, and
giving us the same results, byte per byte.

We created a prototype of a software simulator-
based testing platform. The prototype uses some of

the components of the hardware based platform
while some others were completely reimplemented.
We also produced a set of new, modifiable, object-
oriented OSSCI libraries that implement an interface
between SWIM and existing control programs.
Finally, we obtained a modified instance of the
SWIM simulator that is paced by the OSSCI and that
executes IMA applications in a MIF basis, without
interfering with the results because the real-time
behavior is not compromised.

4. Discussion

4.1 Interpretation of the results

The identical results of the validation tests in both
platforms and the minimal modification of control
programs, suggest that a total, backwards-
compatible migration to a simulator-based testing
platform is possible in the short term.

Although we have not formally evaluated if our
prototype is a better testing platform than the one of
TBOSS (see section 1.2 “motivation”), we can
already tell some differences : The tests finish faster
in our platform because we do not need to recompile
the basic software for each test, or load the
executables from an external host into the target's
memory.

The minimal modification of the control program, a
central part of both of the testing platforms, shows
that it is also possible to reuse most of the existing
components.

The modifications made to the control program of the
SWIM platform concerns only the OSSCI. None of
the interfaces with the rest of the platform were
affected. We therefore believe that other control
programs can be modified in the same way and that
none of the other components of the existing
platform must be modified to achieve full backwards
compatibility with an eventual simulator-based
platform.

Our new OSSCI libraries are not only an interface
between SWIM and control programs but also an
interface between existing tests and any other
execution platform. The fact that they are object-
oriented will allow us use them easily with other
execution simulators; in fact work is already being
done on this subject. We also want to stress the

Page 8/9

open nature of these libraries. While the
implementation of the OSSCI on the TBOSS
platform is not accessible, we can freely use and
modify these libraries according to our needs. We
even use some Free Software internally, although
we are not planning to release these tools.

4.2 Future work

Our results allow us to think of the implementation of
a SWIM-based testing platform that could be widely
used by developers during the test phases of their
avionics software. The representativeness of such a
platform could be questioned, but in any case the
platform could be used to detect problems prior to
execution in more representative environments.
Much of the work done for our prototype can be
directly exploited in a production-level SWIM-based
testing platform.

We will continue to explore the use of simulated
environments to test avionics software, specifically
the use of full hardware virtualization to achieve total
representativeness.

5. Conclusion

This paper was a technical report of our experience
developing a prototype of a testing platform for
avionics software based on the SWIM IMA structure
simulator. We used this prototype to identify
problems that could prevent us from creating a
backwards compatible, simulator-based testing
platform and to migrate to it. We identified several
conditions that should be taken into account in the
event of such a migration. Our results suggest that
this migration is possible in the short term.

6. Acknowledgements

We would like to thank Laurent Gillet, Jean-Baptiste
Jouve and Philippe Seraud for their technical and
moral support during the development of this project.

7. References

[1] Free Software Foundation: "The Free software
definition", http://www.fsf.org/licensing/essays/free-
sw.html

8. Glossary

IMA: Integrated Modular Avionics. An architecture for
sharing computing resources in a real-time airborne
network.

CPIOM: Core Processing and Input/Output Module — A
single calculator in the IMA structure.

SWIM: Software Workshop for IMA Modules — a software
simulator of the IMA Structure

TBOSS: Target-Based Operating System Simulation — a
set of proprietary tools based on a hardware target to
simulate the execution of IMA software with assured
representativeness.

OSSCI: Operating System Simulation Control Interface — a
part of the TBOSS platform that enables external,
bidirectional communication with the outer world.

MIF: Minor Frame: The minimal time unit in which
application partitions can be configured in an IMA
application.

ARINC 653: Is a standard developed by Aeronautical
Radio, Incorporated (ARINC) that defines the interface
between an IMA application and the underlying operating
system.

Airbus API: an implementation of the ARINC 653 standard
that adds some extensions specifically for Airbus aircraft.

Free Software: software that can be used, studied,
distributed and modified under certain legal restrictions
stated in [1].

Page 9/9

