
HAL Id: insu-02269764
https://insu.hal.science/insu-02269764

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of system architectures with AADL
J.-F Tilman, R Sezestre, A Schyn

To cite this version:
J.-F Tilman, R Sezestre, A Schyn. Simulation of system architectures with AADL. Embedded Real
Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �insu-02269764�

https://insu.hal.science/insu-02269764
https://hal.archives-ouvertes.fr

Simulation of system architectures with AADL
J.-F. Tilman1, R. Sezestre2, A. Schyn3

1: Geensyde, 242 bvd Jean Jaurès, 92100 Boulogne-Billancourt, France
2: Geensys, 242 bvd Jean Jaurès, 92100 Boulogne-Billancourt, France

3: Axlog, 19-21 rue du 8 mai 1945, 94110 Arcueil, France

Abstract: AADL is a language dedicated to the
modeling of system architectures. Among all the
possible analyses, verifications and other usages of
such models, this article considers the simulation of
the behavior of these systems. After an overview of
the context and the illustration of the interest of such
a simulation, it presents the development of ADeS, a
simulator which aims at representing the whole
behavior information provided by the AADL
standard. The different behavioral aspects to be
considered are presented, followed by the main
technical choices of the development of ADeS and
the difficulties which appeared. The article ends with
consideration on the current status and the
perspectives of the tool for the AADL community.

Keywords: AADL, simulation, embedded systems

1. Introduction

The current system engineering practices are more
and more based on modeling approaches and the
use of architecture description languages (ADL).
This evolution is driven by the need for stronger
methods to handle the increasing complexity of the
embedded systems. The use of ADLs is coupled
with techniques and tools to help in the
development: automatic generation, performing
verifications, etc.
One of the main ADLs currently considered by
industry in system engineering for embedded
systems is AADL [1]. This language provides a
means to model both the software and the execution
platform architectures. In parallel with its
standardization process, efforts have been spent to
develop tooling support, based on various
approaches. We will consider in this paper the
simulation of the behavior of a system described with
AADL.
First, let us consider the interest of the simulation of
AADL models, the context of this question, and
some cases which illustrate its use in existing tools.
Second, we will deeper consider how such a
simulation is performed in ADeS, a tool which aims
at supporting the whole behavioral aspects of AADL.
Last, we will deal with the integration of such a tool
in the AADL environment and the perspectives it
offers for the future.

2. Context of the study

2.1 AADL overview

AADL is now better known by the embedded system
community, and the purpose of this paper is not to
deeply present it once again. However, few words to
introduce its main concepts are useful to understand
the specificity of a simulation based on this
language.
An AADL model is composed of a set of
components. Each component belongs to a category
(e.g., processor, thread, subprogram, system...)
which has a precise semantics. It is described in two
parts: the type represents its interface with outside,
and the implementation represents its contents.
These components are hierarchically composed and
connected together to form a complex architecture.
Such a description may be enriched by associating
valued properties to detail many aspects of the
description. For instance, a thread will receive a
deadline property or a compute execution time
property.
AADL provides operational modes to represent
various configurations of a same system, and
transitions between these configurations. Depending
on the current mode, components may be activated
or deactivated, connections may change, properties
may have different values, etc.
Last, AADL supports an annex mechanism to extend
the description capabilities of the language by
introducing a dedicated sub-language. A behavior
annex is currently defined by the standardization
committee.
2.2 Verifying properties of a model

Once we have a means to produce a precise model
of a system, we may want to verify properties of this
model. Some of these properties can be checked by
applying formal techniques. For instance, the
schedulability of a set of tasks can be ensured,
thanks to formulas provided by the scientist
literature. Provided that information is available in a
model, it is possible to implement these formulas in a
tool [2]. Other verification techniques are based on
model checking. Several teams use these
approaches to verify various kinds of properties, and
develop tools implementing their solutions. An

 Page 1/6

example is Cheddar, which is designed for checking
task temporal constraints and buffer sizes of real
time applications and systems [3].
Ensuring the schedulability of a reduced set of
periodic tasks by formal techniques may be
reasonable. When the size and the complexity of the
model grow, with many interactions between tasks,
or dynamic changes of the configuration, the
problem becomes more difficult, sometimes
impossible. In such a case, in absence of proofs, we
may want to see what happens in the system by
simulating its behavior. This is illustrated by
Cheddar, which uses scheduling and buffer
simulation when its feasibility tests can not be
applied. BIP, developed by Verimag, or the Furness
Toolset, proposed by Fremont Associates, also
encompass simulation capabilities, even if they only
consider subsets of AADL [4, 5].

2.3 Simulation from the AADL model

More generally, the designer of a system is
interested by animating his model. This provides him
an overview on how his system will behave when
finished. This helps him, for instance, to better
dimension the system, or to detect locks, missed
deadlines and other problems – even if a simulation
will never replace other verification techniques to
ensure the absence of failures.
Another approach to use simulation consists in
computing the evolution of the system in batch mode
and recording the results, and then analyzing these
results during a second step.
However, AADL is a priori designed to describe
static system architectures. Thus it may seem
strange to envision the simulation of such a model.
In fact, compared with other modeling languages,
and thanks to its precise semantics which includes
the description of behavioral aspects, AADL makes
possible such simulations, as we will see later.

2.4 Lack for a full support of the AADL behavior

Most of the AADL tools which use simulation
techniques do it to help in the verification of
particular properties. They generally not consider the
whole AADL language. The restrictions may be due
to an incomplete support of all the possible
constructs of the language. In this case the tools
only understand a subset of the language, or just
ignore some possible constructs.
Sometimes, the tools do not respect the exact
standard behavior associated with the elements of
the architecture, as specified by the AADL standard.
Either they use a simpler model, or they use their
own behavior model.
In this context, there was no tool, at our knowledge,
which was able to simulate the whole behavior of an
AADL description with respect to what is specified by

the standard. This is one of the main reasons of the
development of ADeS, an AADL tool which aims at
simulating the full behavior of an AADL system
architecture.
2.5 Elaboration of the AADL standard

The development of the first prototype of ADeS
started at Axlog Ingénierie, where the authors were
all employed, in the context of a research project
with the European Space Agency (ESA) to qualify
the interest of the future AADL language for space
domain.
The motivation of this development was the
assertion of the feasibility of tools supporting AADL,
but also the need for feedbacks to the
standardization committee where we were involved
in the definition of the language. At this time, it was
about the only AADL tool, and its development
allowed the detection of many problems in the draft
grammars of the language.
The creation of OSATE, the open source AADL tool
environment, by SEI has been the opportunity for a
completely new version of the simulator [6]. Since
OSATE consists in a set of Eclipse plug-ins which
may be reused to take advantage of their functions,
ADeS became also an Eclipse plug-in, and gave up
its own AADL parser to reuse the services provided
by OSATE.
More generally, the designer of a system is

3. Simulation of AADL in details

3.1 What has to be simulated

When considering the AADL description of a system,
behavioral information comes from many locations.
First, the standard of the language provides a
precise description of each component category. For
each of them, it explains the exact behavior. Some
component categories are active, that is they
represent an element of the architecture which
executes something. The threads are the best
example of such an active component. The
specification of a thread behavior is complex by
nature. Its complexity is reinforced by the fact that
the AADL standards aims at not restraining too much
the user, and make possible the description of all the
common kinds of tasks which exist in the real time
community. Thus, an AADL thread may be
parameterized to match with the exact thread of the
user. The global behavior of a thread is then the sum
of many details which exist in actual real time
threads. For instance it is possible to describe an
initialization phase, an activation phase, or a
recovery phase, even if this will not be used in some
cases by the user.
The passive AADL component categories can also
introduce behavioral information which has to be
taken into account by the simulation. For instance, a

 Page 2/6

data component, which may represent a global
variable in memory, can also be used to represent a
shared data. In such a case, specific mechanisms
are used to manage this sharing. When simulating
the access to this variable by a thread, the
simulation has to add the representation of these
mechanisms. Another example: a bus, which is used
to support communications, introduces some
constraints on the transfer of data or events.
When modes are used, they represent various
runtime configurations of the system. For each of
these configurations a specific behavior appears, as
if we had several different systems. What has an
impact on the simulation is the fact that these modes
can change during the live of the system, and these
changes appears during the simulation. When such
a mode change happens, the simulation has to take
into account all the consequences: a subcomponent
may be removed, another one will appear, some
connections are redefined, the values associated
with properties change, threads are halted or
restarted, etc. Some rules exist in the AADL
standard to precisely specify when and how these
mode changes happen.
The pure AADL specification may be completed by
the use of standard annexes. The error model annex
gives details on the handling of errors, the arrival
laws of errors, etc. This should be taken into
account, since it has an influence on the result of the
simulation. The behavior annex is, of course, the
major complement to refine the behavior description
of a system. With this annex it is possible to explain
how a subprogram, called by a thread, will work,
raise events, etc. Supporting this annex in the
simulation brings many capabilities to analyze the
behavior of the modeled system.
The last source of information about the behavior is
what the user may introduce by himself. Indeed, he
can create his own new properties or annexes to
represent what he wants. However, if he does so, he
also has to develop the support to understand the
semantics of his extensions. A simulator may
provide extension points to make possible the
development of plug-ins to support such user
defined complements.
3.2 Simulation management

Several solutions exist to manage the execution of a
simulation, and the choice of the appropriate
simulation engine depends on the purpose of the
simulation. An integration engine is adapted to
simulations which contain only continuous variables.
A step-by-step engine is adapted to simulations with
no continuous variables, and where the events are
implicit. In this case the engine tests at each periodic
step the status of the events to detect when they are
raised. An event-driven engine is adapted to
simulations with no continuous variables, and where

the events are explicit. Here, it is possible to directly
jump from the execution of one event to the
execution of the following, which is more efficient.
Combined engines may also exist, to combine
continuous and discrete variables, as well described
in [7].
The simulation of an AADL architecture is clearly
largely discrete: the elements have states, their
properties change instantaneously, etc. All the
events are explicit. Then, the simulation engine
technique used for ADeS is naturally the event-
driven approach. An AADL system will usually
contain periodic tasks which will be regularly
dispatched, but also aperiodic events which may
happen at any time. Thus, the amount of things to be
simulated may vary in the time, with long empty
durations and other heavy periods. Thanks to the
event-driven approach, the performances of the
simulation are improved: when nothing happens, the
simulated time is immediately advanced up to the
next event.
Concretely, the kernel of the tool works as a
scheduler for the simulation events. Each event has
a date when it has to be executed, and is added into
an ordered list. When two events have the same
date, they can have different priority levels to order
them. The execution of an event generally produces
new events which will be executed later. For
instance, when the task scheduler decides a switch
between tasks, some events are raised to preempt
the first task and start the second.
However, we identify two drawbacks of this solution.
First, the simulated time may advance at an irregular
speed, depending on the activity of the system. If we
want to present a "real time" simulation to the user,
we have to synchronize this simulated time with the
actual time. This is easily feasible by adding specific
periodic synchronization events. The second
drawback might appear if we imagine, in the future,
an extension of the simulator to take into account the
environment in which the studied system evolves. In
such a case, continuous variables may be useful.
Solutions exist, either by extending the simulation
engine, or by accepting compromises in the
representation of these continuous variables in the
simulation.
3.3 Layered structure

Simulating the complex behavior of a full system
involves several aspects. Some of them are generic,
other ones dependent on the AADL specificities. To
cope with this reality, the simulation tool has also to
be organized into layers.
A first set of layers, called “jimex” is in charge of the
pure simulation aspects. It is organized as follow:
• The jimex core component implements the

lowest level of the simulator, the simulation
engine. It defines simulation events and

 Page 3/6

manages them. It is completely independent
from any specific purpose of the final simulation.
At this level the simulation events are just
characterized by the date when they have to be
raised and their priority;

• The jimex base component provides higher level
simulation elements, and particularly more
specialized events, as required by the simulation
of elements of an embedded system;

• The jimex aadl component introduces all the
AADL specific semantics, as defined by the
AADL standard. However, it is still independent
from OSATE, and might be used to support an
AADL simulation related to another modeling
tool.

The other layers play a role in the management of
the simulation:
• The ades instantiation component implements

the mechanisms to build the simulation elements
from the AADL elements as described in
OSATE;

• The ades trace component is in charge of
recording all what happens during the simulation
and providing this information to the upper levels
in charge of the man-machine interface;

• The ades simulator component implements the
man-machine interface which control the
simulation and displays the results.

3.4 Exploitation of the results

Several ways exist to exploit the results of a
simulation: observation during the computation,
compilations and analyses of the resulting data,
production of reports, etc. Most of them are based
on the systematic record of all what is computed by
the simulator, in order to keep a trace afterward.
Such a trace mechanism is integrated into ADeS.
Each element of the AADL architecture records what
happens for it: emission of an event, change of a
property value, transmission of a data onto a bus...
All this information is stored into an XML file. The
choice of this format has been done to make easier
post-analyses by anybody.
When coupling the trace coming from a run of the
simulation with information on the structure of the
simulated architecture itself, it becomes possible to
rebuild the exact state of a simulation at a given date
in the past. Such a snapshot of a simulation makes
possible the replay of a simulation, either to refine
the analysis of an interesting point, or to change
parameters and compare two different runs without
playing twice what is similar before the divergence.
ADeS is able to store these snapshots and reload
them to propose this capability. This mechanism is
also used at the beginning of the simulation. Indeed,
the creation of a simulation, before its first run,

consists in the creation of such a snapshot at t=0
and its loading.
During the execution of a simulation, the user may
observe the status of all the properties of the
elements composing the architecture. However, this
information is presented as a table. Effort is still
needed to improve the graphical rendering of the
results, for instance by proposing chronograms and
other high-level widgets to give a complete and
intuitive view of the results. Figure 1 shows the main
window of the tool, with several views to control the
current values of the parameters, the events of the
simulation, the trace of the results.

Figure 1: Snapshot of the ADeS main window

3.5 Complexity and openness

When considering all the aspects composing the
behavior of an AADL architecture, we have to deal
with a high complexity. This complexity comes not
only from the fact that many details have their own
rules that have to be taken into account, but also
from the impact they may have onto the global
behavior. As usual, passing from a local level to the
global level introduces complexity.
The best illustration of this difficulty is the impact of
the modes onto the behavior. As explained before,
many elements of the architecture may have modes,
which control some parameters, enable or disable
subcomponents, change connections, etc. Since
such an element having modes may be integrated as
another subcomponent with its own modes, and so
on up to the top of the hierarchy, we have to
consider the system operation modes (SOM), which
are the combination of all the modes of all the
components. The set of possible SOMs is then the
cross product of the sets of modes for each
component. We have here a possible combinatorial
explosion.
The complexity of the simulated behavior must not
be an obstacle to the openness of the simulator.
Since AADL supports the introduction of user-
defined extensions, represented by annexes, an

 Page 4/6

AADL simulator has also to support such possible
extensions. Fortunately, the modular approach
adopted to build ADeS helps in this support. The
semantics of an extension defined by a user will only
be known by this user; thus, ADeS may offer
extension points and mechanisms to connect plug-
ins, but in any cases, the development of these plug-
ins is of the responsibility of the user.

4. ADeS and the AADL environment

4.1 Integration with other AADL tools

As mentioned before, OSATE is an AADL tool which
provides a textual modeler, a parser, and all what is
needed by any tool to handle the data structure
representing the AADL architecture. It is designed as
a set of Eclipse plug-ins, and many other tools have
been developed on top of it to bring their own
features: analyses, verifications, etc. OSATE is now
integrated into the Topcased environment, also
based on Eclipse, and which provides graphical
modelers. We assist at the emergence of a complete
tool environment around AADL. In this context, the
developer of a new AADL tool has to wonder
whether it is expedient for him to integrate his tool
into this environment.
This integration has been done for ADeS. The first
benefit is the reuse of the AADL parser and the
underlying data model, which is shared with other
tools. The second benefit is the capability for the
user to have all its tools at the same place. He uses
textual and/or graphical modelers, verifies the
completeness and consistency of his model, perform
various analyses, statistics and validations, and run
his simulation without any translation of his models.
4.2 Project management

As a consequence of this integration, the
management of simulation projects has to be done in
the sense of Eclipse projects, and also in a
compatible way with the projects of the other AADL
tools.
In ADeS, a simulation project is created in relation
with a preexisting AADL project, provided by OSATE
and used to model the target architecture. The
simulation project may contain one or more
simulations of the same system, characterized by
different scenarios. Once a simulation is created, it
may be executed, and at any moment a capture of
its state may be done to be replayed later. This
capture, also called snapshot, constitutes a new
simulation in the project.
A synchronization mechanism is able to detect
changes in the AADL project and take them into
account in the simulation project. Generally,
modifications of the model make the existing
simulations obsolete.

4.3 License and availability
Another consequence of the integration of ADeS into
the OSATE/Topcased tool family is the need for a
free open-source license. The chosen license is the
Eclipse public license (EPL).
Now, the ADeS source repository is hosted by
Topcased and is available for downloads and
contributions1.

4.4 Results and perspectives

ADeS has not yet been extensively used on large
models. Feedbacks are still missing to get a correct
overview of its results. However, experimentations
on smaller models show interesting capabilities,
even if the analysis of the results may be a bit painful
due to the lack of high level graphical displays.
Spices, a European R&D project dedicated to
predictable system engineering based on AADL,
provides us the opportunity to continue the
development of ADeS and trial it further.
The official behavior annex is currently standardized
by the AADL committee. Since it was not stable
enough during the development of ADeS, another
minimal behavior annex has been implemented. This
shown the capability to plug extensions to support
user-specific annexes. However, we may expect to
shortly support the future standardized behavior
annex. Another standard annex exists, the error
model annex. Its support is also missing for the
moment.
The Topcased project, which now encompasses
OSATE, also deals with other modeling languages. It
needs a generic simulation support, able to cover
multi model formalisms. In the future, ADeS could be
adapted to such a larger purpose, or its technology
may be reused in with this new objective.
Another important and positive result of ADeS is for
the AADL standardization committee. Indeed, the
development of this tool has been – and is still – the
opportunity to experiment evolutions of AADL in
parallel with the works of the committee and bring
feedbacks on the lacks, inconsistencies and other
problems in the draft versions of the standard.

5. Conclusion

This article has shown the interest for a simulation
based on AADL models, and how this architecture
description language provides a complex behavioral
information, thanks to its semantics and the
mechanisms it proposes. This approach is already
used by several tools for verification purposes. ADeS
has been designed to support all the details of this
behavior, to provide an animation of the models as
precise as possible. Its development, still in

1 http://gforge.enseeiht.fr/projects/ades/

 Page 5/6

progress, has accompanied the definition of the
AADL standard and provided a strong feedback for
this standardization. The integration of ADeS into the
AADL tool suite and its open-source license may
open new perspectives for its usage and
development.

6. Acknowledgment

The works presented in this paper have been
partially conducted during projects with ESA and
other European project. The authors acknowledge
the cooperation of some partners of these projects,
and of the members of the AADL standardization
committee.

7. References

[1] SAE, "Architecture analysis & design language (AADL)",
November 2004.

[2] Christophe Guettier, Jean-François Hermant: “Static
Mapping of Hard Real-Time Applications onto Multi-
Processor Architectures using Constraint Logic
Programming”, ICAPS, 2005.

[3] F. Singhoff, J. Legrand, L. Nana, and L. Marcé:
“Scheduling and Memory requirement analysis with
AADL“, ACM Ada Letters journal, 25(4):1-10, ACM Press.
Also published in the proceedings of the ACM SIGAda
International Conference, Atlanta, 14-17 November, 2005.

[4] Verimag: “BIP”, http://www-
verimag.imag.fr/~async/BIP/bip.html

[5] Fremont Associates: “Furness Toolset”,
http://www.furnesstoolset.com/

[6] SEI: “OSATE”, http://www.aadl.info/tool/osate.html
[7] C. Sautereau, J-P Rosen, "ESCADRE V5 / Simulation,

Manuel du concepteur", 2002-08-13.

8. Glossary

AADL: Architecture analysis & design language
ADL: Architecture description language
EPL: Eclipse public license
ESA: European Space Agency
SEI: Software Engineering Institute (Carnegie Mellon)
SOM: System operation mode
XML: extensible markup language

 Page 6/6

