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This paper describes a "seamless" component driven engineering process for control law or mode management software whose algorithms are designed in Simulink/Stateflow. An interface mechanism between this tool and a realtime target allows gathering the components modelling and the components implementation in a unique process flexible and adaptable. The component architecture is preserved during all the development and the closed-loop between the avionics components and the environment is never broken, enabling the developper to perform representative simulation form the first system model until the final implementation.

Introduction

Component driven engineering has been introduced to help managing the increasing complexity of information systems. A component is a block that implements a basic functionality. It is described by its interface, i.e. the services it provides and the services it uses. Recently, the component-based development process has been introduced for real time embedded systems. Real time software often implements complex control laws or mode management algorithms such as AOCS (Attitude and Orbit Control System) for spatial aircraft. Generally these algorithms are developed in two phases. First they are designed with modelling tools like Simulink/Stateflow. Once validated in these tools, the algorithms are coded manually or by automatic code generators and then validated on real hardware. This two-phase process creates a strict separation between the algorithms design and the software implementation. This paper presents a mechanism for interfacing the design tool (Simulink) with real software running on the target. It makes it possible to incrementally implement the component models without breaking the component architecture. By doing so, it improves the development process and enables a fast prototyping on the hardware target. This paper is organized as follows: In section 2, we present the process. In section 3, we introduce the Simulink/OBSW (On-Board Software) interface mechanism. In section 4, we present a full use case and the main experimentation results. Finally, in section 5, we summarize the contribution of this paper and point out the future directions of this work.

The Component Modelling Process

The modular architecture

The modular architecture used [START_REF] Moreno | Plug & Play architecture for on-board software components[END_REF] was designed to improve the reuse of software components and the dynamic modification of on-board software. It is based on a library called framework that contains the basic common functionalities (TC management, TM management, software bus services…). The services offered by this library enable the developer to easily integrate software components into a software bus. This mock-up is based as much as possible on free standard or open technologies (UDP, XML, Python, RPC…). The mock-up is running on a Linux PC host with either a processor simulator or a real target (FPGA or ASIC board)

Overview of the process

During the first phase of a project, a mission analysis is performed to define the first architecture of the avionic. The components are selected and preliminary versions of the control algorithms are modelled in Simulink. Simulink models are naturally organized in sub models, which can be interpreted as components. Generally, a Simulink model contains:

• Sensor component models

• Actuator component models

• OBSW component models which implement the control or mode management algorithms • The environment model which describes the physical laws that govern the target Closed-loop simulation is performed between the environment and the avionic architecture (sensors, actuators and OBSW models).

The incremental model transformation process proposed enables the transfer of the components one by one from the Simulink model to the software architecture. If a component model comes to maturity before the other it can be implemented in software and plugged into the modular avionic architecture while the others components remains in Simulink.

During these transformations, the closed-loop constituted by the components and the environment is never broken. As a consequence, the components code can be easily tested with representative values during all the development steps.

At the end of the process, all the components are implemented in software and only the environment model remains in Simulink. The software architecture can still being simulated, Simulink computing the input data of the OBSW and the OBSW computing the input data of Simulink.

An example of incremental transfer is described in figure 1. The component interfaces (figure 2) are described using the Interface Description Language (IDL [2]). An IDL file is written for each component, describing A set of specific IDL compilers (figure 3) is used to generate automatically the OBSW interfaces and the OBSW skeletons in order to ease the component integration into the generic mock-up. The IDL files are also processed to produce XML files used by the ground software database to encode/decode the TC/TM send or received by the ground operators. From the Java object, it is easy to send the data through a TCP/IP network to the target. Although a direct connection with the target is possible (if the target provides a TCP or UDP link) we choose to reuse an intermediary XML-RPC [START_REF]Simple cross-platform distributed computing[END_REF] server written in Python, which already handle all the communication (TC/TM) between the board and the ground in our architecture. This enables us to have a unified communication mechanism between the target and the ground. We use Java XML-RPC libraries to connect to the XML-RPC server from the Java and for each component we add to the server a specific class to handle the communication of the component. Our software architecture comes with a framework providing functions to send XML-RPC message through an UDP link. The last step of the Simulink/OBSW interface uses these functions to transfer the data between XML-RPC Server and the OBSW running on the target. Finally, the global interface mechanism architecture is the following: Once in Simulink the data can obviously be oversampled (by using a transition rate block).

Figure 6: OBSW/Simulink synchronization

Real-time representativeness

To preserve the real-time representativeness of the simulation the whole OBSW is frozen when a call to a getValues is blocked. As a consequence the task scheduling and the relative task execution time are preserved but all the data acquisitions take no time from the OBSW point of view. Simulink/OBSW interface mechanism provides a good temporal representation for systems, which use a data acquisition server running in a dedicated task. The interface mechanism creates also a big overhead mainly due to network latencies and Simulink computation time. On representative example our simulation is three times slower than the real time.

Automatic generation of the Simulink/OBSW Interface

The Simulink/OBSW interface mechanism (Simulink blocks, the Java and Python classes and the OBSW part) is only dependant of the types, the names, and the frequencies of the data exchanged between Simulink and the OBSW. As a consequence it can be automatically generated to speed-up and simplify the interfacing process. This process is mainly automatic. It does not require a lot of manual intervention and as a consequence is very fast.

Software distribution

The global architecture can be distributed on three machines:

• A Matlab station where the model part of the architecture runs

• A host machine where the ground/board server runs. This machine is linked with the real hardware target where the generic avionic and the software components run. • A Ground Station where an HMI displays the measures (TM) received from the board and also enables the user to send commands (TC)

The various machines are connected through a classical network link. 

Utilization Example

The ESA ExoMars mission aims at sending a rover on mars. The process described in this paper has been used in the preliminary studies of this project.

In case of a crash of the nominal processor module during the boost phase of the ExoMars orbit insertion, the Main Engine (ME) shall be stopped at most 10 seconds. Once the ME is operational, the satellite attitude must converge again. The processor module warm redundancy concept has been developed to guarantee at any conditions a quick restart of the OBSW on the redundant processor module, to be able to resume the attitude control and the boost. Simulink/OBSW interface has been used to set-up a Fail-Op demonstration with the following goals:

• Refining and verifying the warm redundancy concept specifications, in both HW and SW fields. • Demonstration that the timing constraints are met (boost resumed before 10 seconds).

• Demonstration of the potential re-use of the AOCS source code in the frame of the ExoMars development

The architecture presented in the previous chapters has been tailored for the purpose of this demonstration:

• Use of two LEON processor boards.

• The crash of the Nominal processor module during ME firing has been achieved in the demonstration by disconnecting the board power. After the failure, the redundant processor module shall be woken up and restore the previously saved context to resume the ME firing as soon as possible.

When the nominal processor module is switched off, Simulink model is blocked because there are no available actuators data. When the redundant makes the first sensor acquisition, the nominal processor module is put in stand-by mode and some forced AOCS cycles are executed to compute the dynamics of the carrier during the crash. The demonstration has provided the expected results:

• The second processor module was reconfigured and it had taken back the control of actuators in less than 5000 ms. • The mission was not lost even if one of ΔV (targeted or accumulated) data was corrupted. • Additional measures were provided (Maximum attitude error, time to stabilize the carrier attitude) Figure 9 shown an example of result provided by the demonstration:

Figure 9: Simulation Results

Improvement of the design process

The principle presented improve the development process on the following points:

• Incremental transformation:

The possibility to incrementally implement the component in software makes it possible to parallelize the component development. A software component can be developed and tested alone without breaking this architecture.

• Early and representative tests:

Simulink/OBSW interface mechanism enables the developers to perform closed-loop simulation during all the development steps. As a consequence the components implemented in software can be tested and validated earlier on the target and with representative input values. It is not necessary to wait the development of complex hardware test bench to begin to test the component implementation.

• Early validation of the component architecture:

The overall component architecture can be validated on the real target. Performance and metric measures can be obtained earlier in the software development cycle.

• Proof of reusability: Impact of Main Engine restart after reconfiguration The Simulink/OBSW interface is a mean of proving the reusability of a component already implemented in software. This component can be quickly integrated in the architecture of the new project and it is possible to prove that the component fits in the architecture and meets the new requirements.

Conclusion

As shown by the description of the ExoMars use case, Simulink/OBSW interface can really improve the development process of component-based architecture.

By enabling parallelization of the component development, fast-prototyping of the architecture and earlier and more representative tests it simplifies the software development planning. It is also a good way to quickly prove the reusability of existing component implementation.

Reconfiguration

Even if the mechanism described here use an intermediary server, it is possible to directly connect Simulink to the target board if this one provides an UDP or TCP link. So, the mechanism is not dependent of a particular kind of operating system or API and can be used on most of the embedded target.

Although with positive impact, this process does not enable to simulate every phenomenon due to its poor real-time representativeness. For that, the future work will try to increase the real-time representativeness by lowering the network communication latency.
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  A dedicated IDL compiler has been developed and integrated in the already existing set of IDL compilers. For each component, this tool generate four files: • A Simulink model for the incoming signals (.mdl) • A Simulink model for the outgoing signals (.mdl) • A Java Class which received the signals from Simulink and transferred them to the Python server (.java) • A Python class which enables the XML-RPC server to handle the component communication (*.py) • A C file which implements the functions to get and set signals values from the OBSW (*.c) 3.5 Automatic generation of the component code The Simulink/OBSW interface mechanism can be associated an automatic code generator (ACG) to produce a fully automatic implementation process. The code of the component models are generated with the ACG and integrated into the modular software architecture with the code generated by the IDL compiler. This process is a mean of quickly prototyping a component on a representative hardware environment. If the automatic code generator used authorizes to define the prototype of the functions used to get and set the input and output signals, no extra manual code is needed to interface the generated OBSW code with the interface mechanism. The global process is the following: • Generation of the component skeleton (from IDL) • Generation of the component code (from Simulink model) • Integration of the component code in the generated skeleton • Generation of the interface mechanism • Exchange of the Simulink block by the interface blocks generated • Dispatch of the interface code (Java class in Matlab path, add of the Python class in the XML-RPC server and add of OBSW interface code in the project compilation file) • Compilation of the binary
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 8 Figure 8: Simulink model of the ExoMars demonstration
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