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Abstract: This paper describes a “seamless” 
component driven engineering process for control 
law or mode management software whose 
algorithms are designed in Simulink/Stateflow. An 
interface mechanism between this tool and a real-
time target allows gathering the components 
modelling and the components implementation in a 
unique process flexible and adaptable. The 
component architecture is preserved during all the 
development and the closed-loop between the 
avionics components and the environment is never 
broken, enabling the developper to perform 
representative simulation form the first system model 
until the final implementation.  
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1. Introduction 

Component driven engineering has been introduced 
to help managing the increasing complexity of 
information systems. A component is a block that 
implements a basic functionality. It is described by its 
interface, i.e. the services it provides and the 
services it uses. Recently, the component-based 
development process has been introduced for real 
time embedded systems. Real time software often 
implements complex control laws or mode 
management algorithms such as AOCS (Attitude 
and Orbit Control System) for spatial aircraft. 
Generally these algorithms are developed in two 
phases. First they are designed with modelling tools 
like Simulink/Stateflow. Once validated in these 
tools, the algorithms are coded manually or by 
automatic code generators and then validated on 
real hardware. This two-phase process creates a 
strict separation between the algorithms design and 
the software implementation. This paper presents a 
mechanism for interfacing the design tool (Simulink) 
with real software running on the target. It makes it 
possible to incrementally implement the component 
models without breaking the component architecture. 
By doing so, it improves the development process 
and enables a fast prototyping on the hardware 
target. 
This paper is organized as follows: In section 2, we 
present the process. In section 3, we introduce the 
Simulink/OBSW (On-Board Software) interface 

mechanism. In section 4, we present a full use case 
and the main experimentation results. Finally, in 
section 5, we summarize the contribution of this 
paper and point out the future directions of this work. 

2. The Component Modelling Process 

2.1 The modular architecture 

The modular architecture used [1] was designed to 
improve the reuse of software components and the 
dynamic modification of on-board software. It is 
based on a library called framework that contains the 
basic common functionalities (TC management, TM 
management, software bus services…). The 
services offered by this library enable the developer 
to easily integrate software components into a 
software bus. This mock-up is based as much as 
possible on free standard or open technologies 
(UDP, XML, Python, RPC…). The mock-up is 
running on a Linux PC host with either a processor 
simulator or a real target (FPGA or ASIC board) 
 

2.2 Overview of the process 

 
During the first phase of a project, a mission analysis 
is performed to define the first architecture of the 
avionic. The components are selected and 
preliminary versions of the control algorithms are 
modelled in Simulink. Simulink models are naturally 
organized in sub models, which can be interpreted 
as components. Generally, a Simulink model 
contains:  
• Sensor component models  
• Actuator component models  
• OBSW component models which implement the 

control or mode management algorithms 
• The environment model which describes the 

physical laws that govern the target 
 
Closed-loop simulation is performed between the 
environment and the avionic architecture (sensors, 
actuators and OBSW models). 
 
The incremental model transformation process 
proposed enables the transfer of the components 
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one by one from the Simulink model to the software 
architecture. If a component model comes to 
maturity before the other it can be implemented in 
software and plugged into the modular avionic 
architecture while the others components remains in 
Simulink. 
During these transformations, the closed-loop 
constituted by the components and the environment 
is never broken. As a consequence, the components 
code can be easily tested with representative values 
during all the development steps. 

At the end of the process, all the components are 
implemented in software and only the environment 
model remains in Simulink. The software 
architecture can still being simulated, Simulink 
computing the input data of the OBSW and the 
OBSW computing the input data of Simulink. 

An example of incremental transfer is described in 
figure 1. 

 
Figure 1: An example of incremental transfer 

 
 
2.3 Components interface description 
 
With this process, the components can be 
indifferently implemented as Simulink models or as 
software code. The component interfaces can be 
implemented either in Simulink (both components 
are in Simulink), in software (both components are in 
OBSW), or thanks to the Simulink/OBSW interface 
mechanism if one component is in Simulink and the 
other in OBSW. To keep the avionic architecture 
constant, the component interfaces are preserved 
during the transformation process. 
 
The component interfaces (figure 2) are described 
using the Interface Description Language (IDL [2]). 
An IDL file is written for each component, describing 

in particular the nature (type, name, and frequency) 
of the signals exchanged by the component. 
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Figure 2: Model Interface Specification 

 
A set of specific IDL compilers (figure 3) is used to 
generate automatically the OBSW interfaces and the 
OBSW skeletons in order to ease the component 
integration into the generic mock-up. The IDL files 
are also processed to produce XML files used by the 
ground software database to encode/decode the 
TC/TM send or received by the ground operators. 
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Figure 3: Specific IDL Compilers 

3. Simulink / On Board Software Interface 

3.1 Overview of the Interface Mechanism 
 
The Simulink/OBSW interface mechanism makes it 
possible to exchange data between a Simulink 
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model and the OBSW running on the target. This 
paragraph describes the process of interfacing a 
component implemented in Simulink with another 
implemented in the software modular architecture. 
The first issue is to go out of the Simulink tool. The 
interface mechanism takes advantage of the fact that 
Matlab/Simulink tool is written in Java and it is very 
easy to add dynamically a Java object in Matlab 
workspace.  
A class CptNameInterface.class is written and 
contains several functions with a prototype similar to 
the followings: 
public Object setValues(float[] values) 
public double getValues() 
This class has a simple constructor with only two 
parameters (the IP and port of the target). Entering 
the following command in Matlab shell creates an 
instance of the class: 
CNItf=CptNameInterface('target',port); 

 
After that, the object instance is visible in Matlab 
workspace. The functions provided by this object can 
now be called from Simulink model by using M-
functions blocks.  The “Matlab Function” field of the 
Simulink block is filled with the name of the function 
to call taking as parameters, first the instance name 
of the CptNameInterface object and secondly the 
incoming signal. Due to Simulink restriction, the input 
signal shall be of double type but can have several 
dimensions. 
 

 

 
Figure 4: Simulink/OBSW Interface Simulink Blocks 

 
A component interface block containing a set of the 
previous Simulink/OBSW interface blocks (cf. figure 
5) is designed with the same interface than the 
original model. The latter can then simply be 
replaced by its interface block counterparts. 
 
From the Java object, it is easy to send the data 
through a TCP/IP network to the target. Although a 
direct connection with the target is possible (if the 
target provides a TCP or UDP link) we choose to 
reuse an intermediary XML-RPC [3] server written in 
Python, which already handle all the communication 
(TC/TM) between the board and the ground in our 
architecture. This enables us to have a unified 
communication mechanism between the target and 
the ground. We use Java XML-RPC libraries to 

connect to the XML-RPC server from the Java and 
for each component we add to the server a specific 
class to handle the communication of the 
component. Our software architecture comes with a 
framework providing functions to send XML-RPC 
message through an UDP link. The last step of the 
Simulink/OBSW interface uses these functions to 
transfer the data between XML-RPC Server and the 
OBSW running on the target. 
Finally, the global interface mechanism architecture 
is the following: 
 

SimulinkSimulink

Component C Interface
Interface 
getData

Interface 
setData

Component C Interface 
(Java)

RPC Server
Component C Interface 

(Python)

Component C Impl.

Component C Interface (c)

getData setData

OBSW ArchitectureOBSW Architecture

Component A Component B

Simulink/OBSW Interface

Interfaced Component

SimulinkSimulink

Component C Interface
Interface 
getData

Interface 
setData

Component C Interface 
(Java)

RPC Server
Component C Interface 

(Python)

Component C Impl.

Component C Interface (c)

getData setData

OBSW ArchitectureOBSW Architecture

Component A Component B

Simulink/OBSW Interface

Interfaced Component  
 

Figure 5: Overview of the interface mechanism 
 
3.2 Simulink/OBSW Synchronization 
 
The interface mechanism shall assure that the signal 
frequencies are preserved during the simulation. The 
software components send get and set requests to 
the XML-RPC server according to their own base 
frequency and possibly to some sub-frequencies. 
For each software component, both the input and 
output data are gathered by frequency. Simulink 
interface blocks are configured to have the same 
relative frequencies for each set of signals. As a 
consequence, each time a value is computed by 
Simulink it shall be consumed by the OBSW and 
conversely. For that a synchronization mechanism is 
implemented in the python component class added 
to the XML-RPC. This mechanism causes the RPC 
calls to be blocking if the data has not been 
refreshed since the last call. To clarify the 
explanation, lets suppose that only one component 
is implemented in software.  For each set of signals, 
the OBSW component tries to get its input data from 
Simulink. If the data are not available it is blocked. 
When Simulink set the corresponding data, the 
OBSW is awoken, get the data and begin to 
compute its outputs. In the mean time Simulink tries 
to get the outputs of the component and is blocked 
because they are not yet available. Finally the 
OBSW component set its output data, and Simulink 
can resume its execution and compute the rest of 
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the model. The sequence diagram figure 6 illustrates 
this mechanism.  
Once in Simulink the data can obviously be over-
sampled (by using a transition rate block). 
 

 
Figure 6: OBSW/Simulink synchronization 

 
3.3 Real-time representativeness 
 
To preserve the real-time representativeness of the 
simulation the whole OBSW is frozen when a call to 
a getValues is blocked. As a consequence the task 
scheduling and the relative task execution time are 
preserved but all the data acquisitions take no time 
from the OBSW point of view. Simulink/OBSW 
interface mechanism provides a good temporal 
representation for systems, which use a data 
acquisition server running in a dedicated task. The 
interface mechanism creates also a big overhead 
mainly due to network latencies and Simulink 
computation time. On representative example our 
simulation is three times slower than the real time. 
 
3.4 Automatic generation of the Simulink/OBSW 
Interface 
 
The Simulink/OBSW interface mechanism (Simulink 
blocks, the Java and Python classes and the OBSW 
part) is only dependant of the types, the names, and 
the frequencies of the data exchanged between 
Simulink and the OBSW. As a consequence it can 
be automatically generated to speed-up and simplify 
the interfacing process.  
A dedicated IDL compiler has been developed and 
integrated in the already existing set of IDL 
compilers. For each component, this tool generate 
four files: 
• A Simulink model for the incoming signals (.mdl) 
• A Simulink model for the outgoing signals (.mdl) 

• A Java Class which received the signals from 
Simulink and transferred them to the Python 
server (.java) 

• A Python class which enables the XML-RPC 
server to handle the component communication 
(*.py) 

• A C file which implements the functions to get 
and set signals values from the OBSW (*.c) 

 
3.5 Automatic generation of the component code 
 
The Simulink/OBSW interface mechanism can be 
associated an automatic code generator (ACG) to 
produce a fully automatic implementation process. 
The code of the component models are generated 
with the ACG and integrated into the modular 
software architecture with the code generated by the 
IDL compiler. This process is a mean of quickly 
prototyping a component on a representative 
hardware environment. If the automatic code 
generator used authorizes to define the prototype of 
the functions used to get and set the input and 
output signals, no extra manual code is needed to 
interface the generated OBSW code with the 
interface mechanism.  
 
The global process is the following: 
• Generation of the component skeleton (from 

IDL) 
• Generation of the component code (from 

Simulink model) 
• Integration of the component code in the 

generated skeleton 
• Generation of the interface mechanism 
• Exchange of the Simulink block by the interface 

blocks generated 
• Dispatch of the interface code (Java class in 

Matlab path, add of the Python class in the XML-
RPC server and add of OBSW interface code in 
the project compilation file)  

• Compilation of the binary 
 
This process is mainly automatic. It does not require 
a lot of manual intervention and as a consequence is 
very fast. 
  
3.6 Software distribution 
 
The global architecture can be distributed on three 
machines: 
• A Matlab station where the model part of the 

architecture runs 
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• A host machine where the ground/board server 
runs. This machine is linked with the real 
hardware target where the generic avionic and 
the software components run.   

• A Ground Station where an HMI displays the 
measures (TM) received from the board and 
also enables the user to send commands (TC) 

 
The various machines are connected through a 
classical network link. 

 
Figure 7: Software distribution 

 

4. Assessment and Results 

 
4.1 Utilization Example 
 
The ESA ExoMars mission aims at sending a rover 
on mars. The process described in this paper has 
been used in the preliminary studies of this project.  
In case of a crash of the nominal processor module 
during the boost phase of the ExoMars orbit 
insertion, the Main Engine (ME) shall be stopped at 
most 10 seconds. Once the ME is operational, the 
satellite attitude must converge again. 
The processor module warm redundancy concept 
has been developed to guarantee at any conditions 
a quick restart of the OBSW on the redundant 
processor module, to be able to resume the attitude 
control and the boost. 
Simulink/OBSW interface has been used to set-up a 
Fail-Op demonstration with the following goals: 
 
• Refining and verifying the warm redundancy 

concept specifications, in both HW and SW 
fields. 

• Demonstration that the timing constraints are 
met (boost resumed before 10 seconds). 

• Demonstration of the potential re-use of the 
AOCS source code in the frame of the ExoMars 
development 

 
The architecture presented in the previous chapters 
has been tailored for the purpose of this 
demonstration:    
• Use of two LEON processor boards. 
• Modelling of the carrier dynamics in Simulink 

(figure 8) 
• Reuse of the AOCS component of another 

project 
 

Interfaces with 
AOCS 

Carrier dynamics 
model 

 
Figure 8: Simulink model of the ExoMars 

demonstration 
 
The crash of the Nominal processor module during 
ME firing has been achieved in the demonstration by 
disconnecting the board power. 
After the failure, the redundant processor module 
shall be woken up and restore the previously saved 
context to resume the ME firing as soon as possible. 
 
When the nominal processor module is switched off, 
Simulink model is blocked because there are no 
available actuators data. When the redundant makes 
the first sensor acquisition, the nominal processor 
module is put in stand-by mode and some forced 
AOCS cycles are executed to compute the dynamics 
of the carrier during the crash. 
The demonstration has provided the expected 
results: 
• The second processor module was reconfigured 

and it had taken back the control of actuators in 
less than 5000 ms. 

• The mission was not lost even if one of ΔV 
(targeted or accumulated) data was corrupted. 

• Additional measures were provided (Maximum 
attitude error, time to stabilize the carrier 
attitude)  
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Figure 9 shown an example of result provided by the 
demonstration: 
 
 
 

 
 

Figure 9: Simulation Results 
 
4.2 Improvement of the design process 
 
The principle presented improve the development 
process on the following points: 
 
• Incremental transformation:  
The possibility to incrementally implement the 
component in software makes it possible to 
parallelize the component development. A software 
component can be developed and tested alone 
without breaking this architecture. 
 
• Early and representative tests: 
Simulink/OBSW interface mechanism enables the 
developers to perform closed-loop simulation during 
all the development steps. As a consequence the 
components implemented in software can be tested 
and validated earlier on the target and with 
representative input values. It is not necessary to 
wait the development of complex hardware test 
bench to begin to test the component 
implementation. 
 
• Early validation of the component architecture:  
The overall component architecture can be validated 
on the real target. Performance and metric measures 

can be obtained earlier in the software development 
cycle. 
 
• Proof of reusability:  Impact of Main Engine restart after 

reconfiguration The Simulink/OBSW interface is a mean of proving 
the reusability of a component already implemented 
in software. This component can be quickly 
integrated in the architecture of the new project and 
it is possible to prove that the component fits in the 
architecture and meets the new requirements. 
 

5. Conclusion 

 
As shown by the description of the ExoMars use 
case, Simulink/OBSW interface can really improve 
the development process of component-based 
architecture.  By enabling parallelization of the 
component development, fast-prototyping of the 
architecture and earlier and more representative 
tests it simplifies the software development planning. 
It is also a good way to quickly prove the reusability 
of existing component implementation. 

Reconfiguration Even if the mechanism described here use an 
intermediary server, it is possible to directly connect 
Simulink to the target board if this one provides an 
UDP or TCP link. So, the mechanism is not 
dependent of a particular kind of operating system or 
API and can be used on most of the embedded 
target. 
Although with positive impact, this process does not 
enable to simulate every phenomenon due to its 
poor real-time representativeness. For that, the 
future work will try to increase the real-time 
representativeness by lowering the network 
communication latency. 
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8. Glossary 

AOCS: Attitude and Orbit Control System 
ESA: European Space Agency 
HMI: Human Machine Interface 
IDL: Interface Description Language 
OBSW: On-Board Software 
ME: Main Engine 
PM: Processor Module 
RPC: Remote Procedure Call 
SW: Software 
TAS: Thales Alenia Space 
TC: Telecommand 
TM: Telemeasure 
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