
HAL Id: insu-02269767
https://insu.hal.science/insu-02269767

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Component Driven Development Process From The
System Design To The Final Implementation

G Veran, G. Garcia

To cite this version:
G Veran, G. Garcia. A Component Driven Development Process From The System Design To The
Final Implementation. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, toulouse,
France. �insu-02269767�

https://insu.hal.science/insu-02269767
https://hal.archives-ouvertes.fr

A Component Driven Development Process From The System
Design To The Final Implementation

 G. Veran1, G. Garcia2

1: Thales Alenia Space, 100 bld du Midi – BP 99 06156 Cannes La Bocca Cedex France
 2: Thales Alenia Space, 100 bld du Midi – BP 99 06156 Cannes La Bocca Cedex France

Abstract: This paper describes a “seamless”
component driven engineering process for control
law or mode management software whose
algorithms are designed in Simulink/Stateflow. An
interface mechanism between this tool and a real-
time target allows gathering the components
modelling and the components implementation in a
unique process flexible and adaptable. The
component architecture is preserved during all the
development and the closed-loop between the
avionics components and the environment is never
broken, enabling the developper to perform
representative simulation form the first system model
until the final implementation.

Keywords: Component, Model, Transformation,
Simulink

1. Introduction

Component driven engineering has been introduced
to help managing the increasing complexity of
information systems. A component is a block that
implements a basic functionality. It is described by its
interface, i.e. the services it provides and the
services it uses. Recently, the component-based
development process has been introduced for real
time embedded systems. Real time software often
implements complex control laws or mode
management algorithms such as AOCS (Attitude
and Orbit Control System) for spatial aircraft.
Generally these algorithms are developed in two
phases. First they are designed with modelling tools
like Simulink/Stateflow. Once validated in these
tools, the algorithms are coded manually or by
automatic code generators and then validated on
real hardware. This two-phase process creates a
strict separation between the algorithms design and
the software implementation. This paper presents a
mechanism for interfacing the design tool (Simulink)
with real software running on the target. It makes it
possible to incrementally implement the component
models without breaking the component architecture.
By doing so, it improves the development process
and enables a fast prototyping on the hardware
target.
This paper is organized as follows: In section 2, we
present the process. In section 3, we introduce the
Simulink/OBSW (On-Board Software) interface

mechanism. In section 4, we present a full use case
and the main experimentation results. Finally, in
section 5, we summarize the contribution of this
paper and point out the future directions of this work.

2. The Component Modelling Process

2.1 The modular architecture

The modular architecture used [1] was designed to
improve the reuse of software components and the
dynamic modification of on-board software. It is
based on a library called framework that contains the
basic common functionalities (TC management, TM
management, software bus services…). The
services offered by this library enable the developer
to easily integrate software components into a
software bus. This mock-up is based as much as
possible on free standard or open technologies
(UDP, XML, Python, RPC…). The mock-up is
running on a Linux PC host with either a processor
simulator or a real target (FPGA or ASIC board)

2.2 Overview of the process

During the first phase of a project, a mission analysis
is performed to define the first architecture of the
avionic. The components are selected and
preliminary versions of the control algorithms are
modelled in Simulink. Simulink models are naturally
organized in sub models, which can be interpreted
as components. Generally, a Simulink model
contains:
• Sensor component models
• Actuator component models
• OBSW component models which implement the

control or mode management algorithms
• The environment model which describes the

physical laws that govern the target

Closed-loop simulation is performed between the
environment and the avionic architecture (sensors,
actuators and OBSW models).

The incremental model transformation process
proposed enables the transfer of the components

 Page 1/7

one by one from the Simulink model to the software
architecture. If a component model comes to
maturity before the other it can be implemented in
software and plugged into the modular avionic
architecture while the others components remains in
Simulink.
During these transformations, the closed-loop
constituted by the components and the environment
is never broken. As a consequence, the components
code can be easily tested with representative values
during all the development steps.

At the end of the process, all the components are
implemented in software and only the environment
model remains in Simulink. The software
architecture can still being simulated, Simulink
computing the input data of the OBSW and the
OBSW computing the input data of Simulink.

An example of incremental transfer is described in
figure 1.

Figure 1: An example of incremental transfer

2.3 Components interface description

With this process, the components can be
indifferently implemented as Simulink models or as
software code. The component interfaces can be
implemented either in Simulink (both components
are in Simulink), in software (both components are in
OBSW), or thanks to the Simulink/OBSW interface
mechanism if one component is in Simulink and the
other in OBSW. To keep the avionic architecture
constant, the component interfaces are preserved
during the transformation process.

The component interfaces (figure 2) are described
using the Interface Description Language (IDL [2]).
An IDL file is written for each component, describing

in particular the nature (type, name, and frequency)
of the signals exchanged by the component.

Spacecraft

Ground
OperatorEnvironment

Startracker AOCS

<<interface>>
I_STR_acq

getAttitude (out quaternion_t q,
out status_t status)

<<interface>>
I_GYRO_acq

getSpeed (out speed_t speed,
out status_t status)

<<interface>>
I_RCT_cmd

setCommand (out cmd_t
cmd)

RCT

Gyro

Spacecraft

Ground
OperatorEnvironment

Startracker AOCSAOCS

<<interface>>
I_STR_acq

getAttitude (out quaternion_t q,
out status_t status)

<<interface>>
I_GYRO_acq

getSpeed (out speed_t speed,
out status_t status)

<<interface>>
I_GYRO_acq

getSpeed (out speed_t speed,
out status_t status)

<<interface>>
I_RCT_cmd

setCommand (out cmd_t
cmd)

<<interface>>
I_RCT_cmd

setCommand (out cmd_t
cmd)

RCTRCTRCT

GyroGyroGyro

Figure 2: Model Interface Specification

A set of specific IDL compilers (figure 3) is used to
generate automatically the OBSW interfaces and the
OBSW skeletons in order to ease the component
integration into the generic mock-up. The IDL files
are also processed to produce XML files used by the
ground software database to encode/decode the
TC/TM send or received by the ground operators.

Model2Model - Model2Text Transformations

AOCS
IDL
File

Gyro
IDL
File

STR
IDL
File

RCT
IDL
File

Model

Python
interf.
code

IDL 2 Simulink
IDL 2 Python

IDL 2 Python IDL 2 SwBus IDL 2 XML

Simulink
Model

SDB
input
files

Ground
SDB files

Ada
files

Component
skeleton

C
interface

files

Simulation
Framework
Component

Python
interf.
code

IDL 2 C

Simulink
closed
loop

Model2Model - Model2Text Transformations

AOCS
IDL
File

Gyro
IDL
File

STR
IDL
File

RCT
IDL
File

Model
AOCS

IDL
File

Gyro
IDL
File

STR
IDL
File

RCT
IDL
File

Model

Python
interf.
code

IDL 2 Simulink
IDL 2 Python

IDL 2 Python IDL 2 SwBus IDL 2 XML

Simulink
Model

SDB
input
files

Ground
SDB files

Ada
files

Component
skeleton

C
interface

files

Simulation
Framework
Component

Python
interf.
code

IDL 2 C

Simulink
closed
loop

Figure 3: Specific IDL Compilers

3. Simulink / On Board Software Interface

3.1 Overview of the Interface Mechanism

The Simulink/OBSW interface mechanism makes it
possible to exchange data between a Simulink

 Page 2/7

model and the OBSW running on the target. This
paragraph describes the process of interfacing a
component implemented in Simulink with another
implemented in the software modular architecture.
The first issue is to go out of the Simulink tool. The
interface mechanism takes advantage of the fact that
Matlab/Simulink tool is written in Java and it is very
easy to add dynamically a Java object in Matlab
workspace.
A class CptNameInterface.class is written and
contains several functions with a prototype similar to
the followings:
public Object setValues(float[] values)
public double getValues()
This class has a simple constructor with only two
parameters (the IP and port of the target). Entering
the following command in Matlab shell creates an
instance of the class:
CNItf=CptNameInterface('target',port);

After that, the object instance is visible in Matlab
workspace. The functions provided by this object can
now be called from Simulink model by using M-
functions blocks. The “Matlab Function” field of the
Simulink block is filled with the name of the function
to call taking as parameters, first the instance name
of the CptNameInterface object and secondly the
incoming signal. Due to Simulink restriction, the input
signal shall be of double type but can have several
dimensions.

Figure 4: Simulink/OBSW Interface Simulink Blocks

A component interface block containing a set of the
previous Simulink/OBSW interface blocks (cf. figure
5) is designed with the same interface than the
original model. The latter can then simply be
replaced by its interface block counterparts.

From the Java object, it is easy to send the data
through a TCP/IP network to the target. Although a
direct connection with the target is possible (if the
target provides a TCP or UDP link) we choose to
reuse an intermediary XML-RPC [3] server written in
Python, which already handle all the communication
(TC/TM) between the board and the ground in our
architecture. This enables us to have a unified
communication mechanism between the target and
the ground. We use Java XML-RPC libraries to

connect to the XML-RPC server from the Java and
for each component we add to the server a specific
class to handle the communication of the
component. Our software architecture comes with a
framework providing functions to send XML-RPC
message through an UDP link. The last step of the
Simulink/OBSW interface uses these functions to
transfer the data between XML-RPC Server and the
OBSW running on the target.
Finally, the global interface mechanism architecture
is the following:

SimulinkSimulink

Component C Interface
Interface
getData

Interface
setData

Component C Interface
(Java)

RPC Server
Component C Interface

(Python)

Component C Impl.

Component C Interface (c)

getData setData

OBSW ArchitectureOBSW Architecture

Component A Component B

Simulink/OBSW Interface

Interfaced Component

SimulinkSimulink

Component C Interface
Interface
getData

Interface
setData

Component C Interface
(Java)

RPC Server
Component C Interface

(Python)

Component C Impl.

Component C Interface (c)

getData setData

OBSW ArchitectureOBSW Architecture

Component A Component B

Simulink/OBSW Interface

Interfaced Component

Figure 5: Overview of the interface mechanism

3.2 Simulink/OBSW Synchronization

The interface mechanism shall assure that the signal
frequencies are preserved during the simulation. The
software components send get and set requests to
the XML-RPC server according to their own base
frequency and possibly to some sub-frequencies.
For each software component, both the input and
output data are gathered by frequency. Simulink
interface blocks are configured to have the same
relative frequencies for each set of signals. As a
consequence, each time a value is computed by
Simulink it shall be consumed by the OBSW and
conversely. For that a synchronization mechanism is
implemented in the python component class added
to the XML-RPC. This mechanism causes the RPC
calls to be blocking if the data has not been
refreshed since the last call. To clarify the
explanation, lets suppose that only one component
is implemented in software. For each set of signals,
the OBSW component tries to get its input data from
Simulink. If the data are not available it is blocked.
When Simulink set the corresponding data, the
OBSW is awoken, get the data and begin to
compute its outputs. In the mean time Simulink tries
to get the outputs of the component and is blocked
because they are not yet available. Finally the
OBSW component set its output data, and Simulink
can resume its execution and compute the rest of

 Page 3/7

the model. The sequence diagram figure 6 illustrates
this mechanism.
Once in Simulink the data can obviously be over-
sampled (by using a transition rate block).

Figure 6: OBSW/Simulink synchronization

3.3 Real-time representativeness

To preserve the real-time representativeness of the
simulation the whole OBSW is frozen when a call to
a getValues is blocked. As a consequence the task
scheduling and the relative task execution time are
preserved but all the data acquisitions take no time
from the OBSW point of view. Simulink/OBSW
interface mechanism provides a good temporal
representation for systems, which use a data
acquisition server running in a dedicated task. The
interface mechanism creates also a big overhead
mainly due to network latencies and Simulink
computation time. On representative example our
simulation is three times slower than the real time.

3.4 Automatic generation of the Simulink/OBSW
Interface

The Simulink/OBSW interface mechanism (Simulink
blocks, the Java and Python classes and the OBSW
part) is only dependant of the types, the names, and
the frequencies of the data exchanged between
Simulink and the OBSW. As a consequence it can
be automatically generated to speed-up and simplify
the interfacing process.
A dedicated IDL compiler has been developed and
integrated in the already existing set of IDL
compilers. For each component, this tool generate
four files:
• A Simulink model for the incoming signals (.mdl)
• A Simulink model for the outgoing signals (.mdl)

• A Java Class which received the signals from
Simulink and transferred them to the Python
server (.java)

• A Python class which enables the XML-RPC
server to handle the component communication
(*.py)

• A C file which implements the functions to get
and set signals values from the OBSW (*.c)

3.5 Automatic generation of the component code

The Simulink/OBSW interface mechanism can be
associated an automatic code generator (ACG) to
produce a fully automatic implementation process.
The code of the component models are generated
with the ACG and integrated into the modular
software architecture with the code generated by the
IDL compiler. This process is a mean of quickly
prototyping a component on a representative
hardware environment. If the automatic code
generator used authorizes to define the prototype of
the functions used to get and set the input and
output signals, no extra manual code is needed to
interface the generated OBSW code with the
interface mechanism.

The global process is the following:
• Generation of the component skeleton (from

IDL)
• Generation of the component code (from

Simulink model)
• Integration of the component code in the

generated skeleton
• Generation of the interface mechanism
• Exchange of the Simulink block by the interface

blocks generated
• Dispatch of the interface code (Java class in

Matlab path, add of the Python class in the XML-
RPC server and add of OBSW interface code in
the project compilation file)

• Compilation of the binary

This process is mainly automatic. It does not require
a lot of manual intervention and as a consequence is
very fast.

3.6 Software distribution

The global architecture can be distributed on three
machines:
• A Matlab station where the model part of the

architecture runs

 Page 4/7

• A host machine where the ground/board server
runs. This machine is linked with the real
hardware target where the generic avionic and
the software components run.

• A Ground Station where an HMI displays the
measures (TM) received from the board and
also enables the user to send commands (TC)

The various machines are connected through a
classical network link.

Figure 7: Software distribution

4. Assessment and Results

4.1 Utilization Example

The ESA ExoMars mission aims at sending a rover
on mars. The process described in this paper has
been used in the preliminary studies of this project.
In case of a crash of the nominal processor module
during the boost phase of the ExoMars orbit
insertion, the Main Engine (ME) shall be stopped at
most 10 seconds. Once the ME is operational, the
satellite attitude must converge again.
The processor module warm redundancy concept
has been developed to guarantee at any conditions
a quick restart of the OBSW on the redundant
processor module, to be able to resume the attitude
control and the boost.
Simulink/OBSW interface has been used to set-up a
Fail-Op demonstration with the following goals:

• Refining and verifying the warm redundancy

concept specifications, in both HW and SW
fields.

• Demonstration that the timing constraints are
met (boost resumed before 10 seconds).

• Demonstration of the potential re-use of the
AOCS source code in the frame of the ExoMars
development

The architecture presented in the previous chapters
has been tailored for the purpose of this
demonstration:
• Use of two LEON processor boards.
• Modelling of the carrier dynamics in Simulink

(figure 8)
• Reuse of the AOCS component of another

project

Interfaces with
AOCS

Carrier dynamics
model

Figure 8: Simulink model of the ExoMars

demonstration

The crash of the Nominal processor module during
ME firing has been achieved in the demonstration by
disconnecting the board power.
After the failure, the redundant processor module
shall be woken up and restore the previously saved
context to resume the ME firing as soon as possible.

When the nominal processor module is switched off,
Simulink model is blocked because there are no
available actuators data. When the redundant makes
the first sensor acquisition, the nominal processor
module is put in stand-by mode and some forced
AOCS cycles are executed to compute the dynamics
of the carrier during the crash.
The demonstration has provided the expected
results:
• The second processor module was reconfigured

and it had taken back the control of actuators in
less than 5000 ms.

• The mission was not lost even if one of ΔV
(targeted or accumulated) data was corrupted.

• Additional measures were provided (Maximum
attitude error, time to stabilize the carrier
attitude)

 Page 5/7

Figure 9 shown an example of result provided by the
demonstration:

Figure 9: Simulation Results

4.2 Improvement of the design process

The principle presented improve the development
process on the following points:

• Incremental transformation:
The possibility to incrementally implement the
component in software makes it possible to
parallelize the component development. A software
component can be developed and tested alone
without breaking this architecture.

• Early and representative tests:
Simulink/OBSW interface mechanism enables the
developers to perform closed-loop simulation during
all the development steps. As a consequence the
components implemented in software can be tested
and validated earlier on the target and with
representative input values. It is not necessary to
wait the development of complex hardware test
bench to begin to test the component
implementation.

• Early validation of the component architecture:
The overall component architecture can be validated
on the real target. Performance and metric measures

can be obtained earlier in the software development
cycle.

• Proof of reusability: Impact of Main Engine restart after

reconfiguration The Simulink/OBSW interface is a mean of proving
the reusability of a component already implemented
in software. This component can be quickly
integrated in the architecture of the new project and
it is possible to prove that the component fits in the
architecture and meets the new requirements.

5. Conclusion

As shown by the description of the ExoMars use
case, Simulink/OBSW interface can really improve
the development process of component-based
architecture. By enabling parallelization of the
component development, fast-prototyping of the
architecture and earlier and more representative
tests it simplifies the software development planning.
It is also a good way to quickly prove the reusability
of existing component implementation.

Reconfiguration Even if the mechanism described here use an
intermediary server, it is possible to directly connect
Simulink to the target board if this one provides an
UDP or TCP link. So, the mechanism is not
dependent of a particular kind of operating system or
API and can be used on most of the embedded
target.
Although with positive impact, this process does not
enable to simulate every phenomenon due to its
poor real-time representativeness. For that, the
future work will try to increase the real-time
representativeness by lowering the network
communication latency.

6. Acknowledgement

I would like to acknowledge J. Villa (TAS-F) for its
cooperation on the ExoMars demonstration
development.

7. References

[1] C. Moreno and G. Garcia: "Plug & Play architecture
for on-board software components", proceedings of
DASIA, 2003.

[2] Interface Description Language, www.omg.org

[3] XML-RPC, Simple cross-platform distributed

computing, based on the standards of the Internet,
www.xmlrpc.com.

 Page 6/7

http://www.xmlrpc.com/

8. Glossary

AOCS: Attitude and Orbit Control System
ESA: European Space Agency
HMI: Human Machine Interface
IDL: Interface Description Language
OBSW: On-Board Software
ME: Main Engine
PM: Processor Module
RPC: Remote Procedure Call
SW: Software
TAS: Thales Alenia Space
TC: Telecommand
TM: Telemeasure

 Page 7/7

