
HAL Id: insu-02270094
https://insu.hal.science/insu-02270094

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Engine management software dynamic architecture
versus integration

Denis Claraz, Michael Niemetz

To cite this version:
Denis Claraz, Michael Niemetz. Engine management software dynamic architecture versus integration.
Embedded Real Time Software and Systems (ERTS2008), Jan 2008, toulouse, France. �insu-02270094�

https://insu.hal.science/insu-02270094
https://hal.archives-ouvertes.fr

Page 1/10

Engine management software dynamic architecture versus
integration

D. Claraz1, M. Niemetz2

1: Continental Automotive France SAS, 1, av. Paul Ourliac, BP 1149, Toulouse - France
2: Continental Automotive Germany AG, Siemensstr.12, Regensburg - Germany

Abstract

Variability, hard real time, increasing functional
complexity (due to emissions and driveability
standards), limited hardware (HW) resources : these
are some of the – sometimes antagonistic –
constraints a modern Engine Management Software
(EMS) has to deal with. In addition, to face the price
reductions in the automotive electronics industry, an
intensive reuse strategy is deployed, based on a
platform architecture and a component based
development, despite the high functional coupling
between those components, characteristic to the
engine management area.

Fig. 1: Memory vs. price of EMS

To respond to these constraints, a static (or
functional) architecture defines the split of the
software (SW) into compilation units: modules or
aggregations of modules. This static architecture
mostly focuses on reuse and decoupling of
functions. It is in general well managed,
documented, and supported by tools.

In parallel to this static facet, to respond to the real
time requirements, the dynamic architecture defines
the split of the SW into execution units: functions,
tasks, interruptions. This part of the architecture is
often underestimated, poorly documented, and
insufficiently supported by tools.

This dynamic facet is characterized by sporadic
events, time events in a range of 1 millisecond (ms)
to 1 second (s), and angular events in a range of
0.5ms to 100ms depending on engine configuration
and speed. The EMS functions have to be called

from these events, and in addition to their
recurrence, they may have phasing, sequencing,
and also deadline constraints.

Typical problems in the dynamic behavior are infinite
loops, wrong initializations of pointers, stack
overflows, recursivity, wrong calculation sequences,
data inconsistencies, and deadline misses. Whereas
some of these errors are intrinsic to SW-components
(SW-C), others are related to their integration within
the project. In other words, the same SW-C may
show a correct behavior in one project, but an
incorrect behavior in another project, because of
integration failure, or different integration contexts.

After an overall description of the EMS context, we
will describe in this paper the most common
integration failures with impact on dynamic behavior,
and means to avoid them. We will also show the
importance of the architecture and integration
activities in the specific area of engine management,
in particular due to the above mentioned constraint
of strong coupling.

Keywords: engine management, real time,
integration, dynamic architecture, scheduling, data
consistency.

Page 2/10

1. Context of Engine Management Software

A high end Electronic Control Unit (ECU) may have
up to 200 connectors, 250.000 lines of code, and
around 1000 functions to control all sensors and
actuators needed to manage the combustion
process of the engine.

Fig. 2: Gasoline direct injection system

The architecture of the software is mostly impacted
by the following constraints:

Coupling between EMS functions:

An EMS is a system with a high functional cohesion.
There are only few functions mapped to an EMS,
which could be exported to another ECU of the
vehicle. These functions interact together either
directly or through the engine and the components
they control, and thus can hardly be managed
independently.

Fig. 3: All sensors and actuators managed by EMS
are involved in the same physical process

For instance, misfire, injection and ignition functions
depend on each other and participate all to the same
combustion process. They are interacting together,
and thus communicate by exchanging data. In the
following figure, we give an overview of the coupling

of the main EMS functions on a typical high end
project.

Fig. 4: Coupling between main EMS functions

On this graphic, each dot represents interfaces
(links) between the functions. In particular, we see
that there is nearly no 1:1 link between functions,
and that most of the functions are linked to many
other ones. To be more concrete, typical variables of
the system like engine speed, coolant temperature,
ignition key, ... are needed in more than 100
modules, spread in around 50 functions.
This strong coupling between functions creates one
of the most important constraints on the architecture,
and is specific to Engine Management Systems.

Variability:

Due to the reuse objectives, the configurability of the
EMS SW is a key issue, in order to avoid parallel
branches, expensive to maintain. EMS applications
are similar, but have also a big level of variability,
due to different engine architectures, sensor and
actuator positions or electrical characteristics. This
variability is much higher at the supplier side than
the OEM side, due to a multi-customer and multi-
engine orientation.
As an example, the figure below shows the diversity
of camshaft target profiles that have to be handled
by the same SW.

E
R

R
M

IN
S

Y
E

G
C

P
E

N
S

D
C

H
R

G
TH

R
O

V
V

LI
LA

C
O

E
C

M
2

E
N

TE
V

V
TI

E
V

A
C

IN
JR

TQ
D

R
FM

S
P

TQ
S

P
E

G
TR

M
IS

F
E

N
S

C
E

V
A

M
E

C
M

3
FU

S
L

A
IR

T
E

X
TC

E
N

S
S

E
X

TD
K

N
C

K
A

LA
M

D
R

V
B

IG
R

E
E

N
R

D
FU

TL
D

R
R

Q
IG

S
P

TQ
LO

E
N

S
L

E
G

P
R

A
E

FP
LA

S
P

A
V

IM

EGCP 250 12 490 5 0 11 3 14 0 3 2 5 2 1 0 1 13 3 0 1 0 2 0 1 1 3 0 6 0 1 0 0 0 0 0 0 0 0 0 0

INSY 80 337 0 6 15 17 11 7 0 2 2 3 0 1 2 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1

CHRG 80 28 0 5 298 9 0 0 0 1 0 0 1 1 1 4 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERRM 243 31 21 6 5 11 8 16 2 11 6 4 1 2 1 0 3 6 3 2 0 8 5 0 3 5 2 2 0 1 1 0 2 0 1 0 0 2 0 0

EGTR 240 10 14 4 0 11 1 11 0 3 2 3 2 0 0 0 101 3 0 1 0 1 0 1 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0

VVLI 43 9 2 10 0 0 200 5 0 1 7 1 0 5 0 1 0 1 1 0 0 0 0 1 2 0 0 0 1 0 4 0 0 0 0 0 0 0 0 0

ECM2 6 3 1 4 0 11 1 3 190 3 2 0 6 5 11 4 0 0 16 1 18 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

EVAM 144 12 0 2 0 8 2 3 0 2 2 5 1 0 0 0 0 0 2 101 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

ENSD 40 0 0 208 0 0 0 0 0 0 4 0

LACO 11 12 16 6 0 3 1 164 0 3 3 9 3 0 2 0 5 3 0 4 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

VVTI 28 4 0 6 0 8 7 0 0 2 165 0 0 3 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1

ENSC 72 6 0 8 0 13 0 2 0 3 2 1 0 0 1 3 1 0 86 1 0 0 0 3 1 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0

AIRT 67 12 0 5 4 0 4 0 0 4 0 0 0 0 0 1 0 0 0 0 0 0 105 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EVAC 4 9 5 3 0 2 0 12 0 2 2 141 2 2 4 1 1 1 0 6 0 3 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

THRO 19 7 0 2 0 162 2 0 1 2 0 0 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

INJR 6 2 0 10 0 1 5 0 1 2 0 0 126 1 17 1 1 2 0 0 5 2 0 4 6 0 0 2 2 1 0 0 0 0 1 0 0 0 0 0

TQSP 6 3 0 3 1 5 4 0 5 2 0 1 1 27 1 85 0 0 9 0 0 5 0 7 1 1 1 0 7 0 0 0 0 0 1 1 0 0 0 0

ENTE 41 9 0 4 0 0 0 0 0 115 0 0 0 0 0 1 0 0 0 1 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FMSP 0 9 0 6 0 2 8 3 0 4 1 0 6 1 103 2 0 0 1 1 0 3 0 6 10 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

MISF 23 3 2 6 0 4 2 0 0 2 1 0 5 3 0 0 0 96 0 1 0 0 0 1 1 1 0 0 0 3 8 0 0 0 0 0 0 0 0 0

FUSL 21 0 2 4 0 0 1 6 0 4 0 2 3 1 2 2 1 2 0 2 0 87 0 5 7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

TQDR 0 9 0 4 0 1 3 0 0 2 0 0 2 91 0 14 0 0 4 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0

KNCK 22 4 0 8 0 3 1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 86 0 1 1 0 0 0 0 0 0 0 0 0 0

EXTD 23 2 2 1 1 0 1 0 0 4 0 0 2 1 2 0 1 0 0 0 0 0 0 0 2 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EXTC 1 8 0 4 1 3 1 2 0 3 2 0 2 3 2 4 1 1 0 1 0 1 0 72 1 5 0 0 1 1 0 0 0 0 0 0 0 0 0 0

ALAM 1 2 4 3 0 0 0 16 0 1 2 2 1 0 0 1 0 2 0 0 0 0 0 2 0 1 0 67 0 0 0 0 0 0 0 0 0 0 0 0

ECM3 4 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IGRE 27 2 0 9 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 2 0 0 0 0 55 0 0 0 0 0 0 0 0 0 0

DRVB 0 0 0 4 0 0 1 0 0 1 0 0 1 1 0 4 0 0 3 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 0

ENRD 8 2 0 9 0 4 0 0 0 1 0 0 1 0 0 0 0 4 0 1 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0

ENSS 6 0 0 3 0 0 0 0 0 2 0 0 2 0 1 0 1 0 0 0 0 1 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IGSP 0 3 0 3 0 0 9 0 0 1 0 0 0 3 4 1 0 0 0 0 0 0 0 1 3 0 1 0 0 0 0 0 0 24 0 0 0 0 0 0

DRRQ 16 0 0 2 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0

FUTL 8 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0

TQLO 1 4 0 2 0 2 2 2 1 4 2 0 1 0 1 0 0 1 3 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 15 0 0 0 0 0

ENSL 0 0 0 5 0 3 1 0 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 11 0 0 0 0

LASP 0 1 2 1 0 0 0 0 0 2 0 0 0 3 0 1 2 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0

AVIM 6 3 0 3 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

EGPR 0 3 0 1 4 0 0 0 0 0 0 0 0 0 1 0 9 0 0 0

AEFP 7 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> 10

6...10

< 6

Number
of links

40
 fu

nc
tio

ns
 e

xp
or

t..
.

40 functions import ...

Fc
t_

04
Fc

t_
02

Fc
t_

01
Fc

t_
09

Fc
t_

03
Fc

t_
15

Fc
t_

06
Fc

t_
10

Fc
t_

41
Fc

t_
18

Fc
t_

11
Fc

t_
14

Fc
t_

16
Fc

t_
22

Fc
t_

19
Fc

t_
17

Fc
t_

05
Fc

t_
20

Fc
t_

12
Fc

t_
08

Fc
t_

27
Fc

t_
21

Fc
t_

13
Fc

t_
25

Fc
t_

31
Fc

t_
24

Fc
t_

23
Fc

t_
26

Fc
t_

29
Fc

t_
28

Fc
t_

30
Fc

t_
34

Fc
t_

33
Fc

t_
32

Fc
t_

35
Fc

t_
36

Fc
t_

39
Fc

t_
40

Fc
t_

37
Fc

t_
38

Fct_01
Fct_02
Fct_03
Fct_04
Fct_05
Fct_06
Fct_07
Fct_08
Fct_09
Fct_10
Fct_11
Fct_12
Fct_13
Fct_14
Fct_15
Fct_16
Fct_17
Fct_18
Fct_19
Fct_20
Fct_21
Fct_22
Fct_23
Fct_24
Fct_25
Fct_26
Fct_27
Fct_28
Fct_29
Fct_30
Fct_31
Fct_32
Fct_33
Fct_34
Fct_35
Fct_36
Fct_37
Fct_38
Fct_39
Fct_40

Composite
Manifold

Active
Carbon
Caniste

Canister
Purge

Solenoid

Fuel Supply
Unit

High Pressure
Fuel Pump with

Flow Control
Valve

Fuel Pressure
Sensor

NOx
Linear /
Binary

O2 Sensor

Mass Air Flow
Sensor with
Integrated

Temp. Sensor

Exhaust

T
e

Dual Cont.
Var.

Cam Phaser

Electronic
Throttle Control

Exhaust Gas
Recirculation
Valve (EGR)

Air Cleaner
Box

3-Way Catalyst Lean NOx

Trap Catalyst

Camshaft
Position
Sensor

Active Crankshaft
Position Sensor

Engine Coolant
Temperature

Sensor

Knock Sensor

Manifold
Absolute Pressure

Sensor

Piezo Direct
Injection Piezo

Injector

Ignition

Engine
Control

Page 3/10

Fig. 5: Same SW for different camshaft targets

In total, more than 160 points of configuration are
needed to configure the acquisition of engine
position and speed, depending on the shape of the
crankshaft, the type and position of sensors, the type
of diagnosis, etc... For a complete application, more
than 10.000 points of configuration are used.

Real time:

As the physical process in a combustion engine is
fast and repetitive, an EMS is a fast system:
Acquisitions, diagnosis, treatments, and corrections
on control strategies are done very often. To reach
new emission regulations, new functionalities require
multiple acquisitions of the same parameter and
multiple actuations of the same output within one
same combustion cycle. Engine synchronous
calculations may have a recurrence of 2.5 ms on 8
cylinder systems, and fast time bases like 5 ms are
widely used. As a result, around 80% of the
calculations are executed within a 10ms (or faster)
time frame.

Fig. 6: Relative weight of main recurrences

In addition to this speed, the complexity of an EMS is
due to the mixture between sporadic events (like for
instance an ignition key transition), time periodic
events, and angle periodic events. For instance,
many calculations are synchronous to the crankshaft
position. Their recurrence is variable, and can range
from 100ms at low engine speed to 5ms at high
engine speed, for a 4 cylinders engine. In total,

around 70 different events are needed with
sometimes precise phasing or deadlines needs.

Fig. 7: Time and Angle based events

Reuse:

As mentioned, reuse is a key driver of the
architecture, in order to reach productivity objectives
inherent to the automotive electronics industry. This
reuse impacts mostly the static architecture, i.e. the
split into functional bricks. The decoupling of
functionalities is done using a top-down approach
and an aggregate concept already described in
ERTS2004 [1]. This is done through a better and
formalized management of interfaces, and through
an application of abstraction principle, in order to
define sub-packages (aggregates) with a high
internal coherency.

Fig. 8: Hierarchical architecture: packages of SW-Cs
(Hood-like representation)

Finally, a hierarchical architecture is defined, with
different levels of interfaces.

Camshaft
Position Sensor

TDC 5 ms 10 ms 1000 ms100 ms

60 %

50 %

40 %

30 %

20 %

10 %

0 %

% of ROM size

P
ro

je
ct

 A

80% of SW every 10ms

P
ro

je
ct

 B
P

ro
je

ct
 C

P
ro

je
ct

 D

Cam
shaft CAM CAM

Crank
shaft

GAP

TDCTDC

Angular
Events

1 ms
5 ms
10 ms

1000 ms
100 ms

Time
Events

Page 4/10

Hardware resources:

In order to minimize the ECU price, the RAM, ROM
and CPU load consumptions have to be limited. The
balance has to be done between the economy of
HW resources and the typical objectives of
maintainability, testability, and in particular
reusability. In the simple example shown below, a
calculation done every top dead center (tdc)
depends on interpolations on input variables with
different dynamics. Some of them change every tdc,
but some other only every 100ms or every 1s. To
ease the integration (testability and maintainability)
of such a function, a monolithic calculation every tdc
would be the best choice. But this would cost
approximately twice the CPU load as a calculation
optimized according to the input variables dynamics.

Fig. 9: CPU load vs. dynamic architecture

On the other side, the non monolithic solution would
be the most efficient in term of CPU load, but would
be more expensive in term of RAM and ROM
consumption.

Business model:

With the introduction of OSEK in 2001, a
fundamental change of the business process has
been initiated: before that date, the complete SW
embedded in the ECU was developed by the
supplier (based on own, or on OEM specifications).
Today, a complete project is – and will be more and
more – built from individual SW-C coming from the
OEMs, suppliers, tool vendors, and even
competitors. The formats of the SW-C to be
integrated are disparate (C, obj, libraries, MDL,
XML), and have increasing impact on the
architecture. For instance, a non-negligible part of
the CPU, RAM, ROM is dedicated to interface
adaptation.

2. Different views on an EMS architecture

According to the above constraints, the EMS
architecture is split into different facets (or areas),
corresponding to different types of problems.
Architectural choices and mechanisms are defined in
each of these areas, and may apply either to a
complete platform (or product line, or project family),
to a single project, or finally to a single function.

Fig. 10: Facets and scope of architecture

The Static architecture , or functional architecture,
aims to split the system into functional abstractions,
with an objective of decoupling functionalities. These
functional abstractions will be either modules (i.e.
compilation units, SW-Cs), or groups of SW-Cs.
These SW-Cs will be the base for reuse, or for
distributed development1.

Typical topics of static architecture are:
- In which SW-C to locate the torque correction

due to air conditioning?
- Is it possible to exchange calibration data

between SW-Cs? Which kind of exchange is
allowed? Why?

Fig. 11: Static (or functional) architecture of EMS

The Layer architecture defines the split into
hardware abstractions, with an objective of
independence from microcontroller, hardware, or

1 With increasing size and complexity of applications, a good
partitioning is becoming essential to reduce coupling, allow work
split between teams, and ease further integration.

var = interpolation (v,w) + interpolation (x,y) * interpolation (z)

tdc 100 ms tdc tdc tdc 1 sec
CPU Load at 6000 rpm:

Calculation at each tdc = 0.12 %
Calculation split in tdc, 100ms and 1s = 0.06 %

Factor = 2

Engine states Fuel Engine
cooling &
lubrication

Electric
power

Torque Ignition Engine
Position &

Speed

Body & interior Basic
ECU

functions

Combustion
process

Air Exhaust
gas

Electric drive

Transmission

Chassis System
manager

Vehicle

Powertrain

Engine - Gasoline or Diesel

Transverse
FunctionsVehicle Motion

Powertrain Management

Communicati
on

Page 5/10

harness. The constraints of reuse, efficiency, hard
real time, etc... may be different in different layers,
leading to different architecture rules.

Fig. 12: Functional architecture plugged on layer
architecture of EMS

Typical topics of layer architecture are:
- In which layer to locate the ignition dwell

control?
- How to exchange information between layers?

The "Operational" (logistical) architecture defines
the mechanisms used in all SW-Cs and applications,
with an objective of standardization of
implementation. Similar problems have to be treated
in a consistent way, when they appear in different
SW-Cs or projects.

Some examples of such choices are:
- Which data type to use for a temperature?
- Which mechanism for data exchange between

SW-Cs, which include structure? Which use of
floating point? Which memory allocation?

The "Configurational" architecture focuses on the
management of the variability, with an objective of
reducing its impact on development effort and
hardware resources. Once integrated in a project, a
SW-C designed to be "configurable" will then
become "configured". This configuration can be done
either at "build time" (same source code, different
executables), at "runtime" (same source code, same
executable, different parameters), or both.
Examples of topics related to this facet are:
- How to decouple the ignition functionality from

the number of cylinders?
- How to encapsulate the diversity? How to handle

its impact on the interfaces?

The Dynamic architecture, finally, aims to split the
system into execution units (i.e. tasks), with an
objective of schedulability and efficiency. This facet
is described in the following chapter.

3. Dynamic architecture of an EMS

As described before, an EMS is stimulated by
around 70 sporadic, periodic, or angular events,
mostly represented by Operating System tasks. The
phasing between these events is sometimes
important, and for one same recurrence, there might
be different events with different phasing. For
instance, in order to be precise in the combustion
cycle, different events are necessary between 2 tdc
of the same cylinder. So, the first dynamic
architecture choice, when designing, and integrating
a control strategy, is the selection of the adequate
event(s), out of a list of around 60. The below figure
shows the functions split on some events and puts in
focus that the EMS functions are not monolithic in
term of dynamics, but use various events (for
functional or HW resources optimization reasons).

Fig. 13: Functions vs. events mapping

Consequently, in addition to the static data flow
described in Fig. 4, a dynamic data flow can be
displayed, corresponding to the exchange between
events, or tasks: A variable is modified by one (or
more) event, and read by one (or more) other event.

Fig. 14: Data flow (coupling) between main tasks

LI
B

R
A

R
IE

S

O
SE

K
 O

PE
R

A
TI

N
G

 S
YS

TE
M

INFRASTRUCTURE

(HW DEPENDENT)
INTERFACE FUNCTIONALITY

...
 c

on
su

m
e

TA
S

K
_C

0_
R

S
T

TA
S

K
_C

1_
10

M
S

TA
S

K
_C

1_
10

00
M

S
TA

S
K

_C
1_

10
0M

S
TA

S
K

_C
1_

S
E

G
TA

S
K

_C
2_

10
M

S
TA

S
K

_C
1_

20
M

S
TA

S
K

_C
1_

H
A

LF
_S

E
G

TA
S

K
_C

2_
10

0M
S

TA
S

K
_C

1_
C

O
M

_C
A

N
_1

0M
S

TA
S

K
_C

1_
C

A
M

_I
N

1
TA

S
K

_C
1_

40
M

S
TA

S
K

_C
1_

C
A

M
_I

N
2

TA
S

K
_C

1_
5M

S

TA
S

K
_C

1_
C

R
K

_G
A

P
TA

S
K

_C
1_

C
R

K
_M

C
P

S
TA

S
K

_P
_1

M
S

TA
S

K
_C

2_
5M

S
TA

S
K

_E
V

T_
IN

J_
E

O
C

TS
K

_E
V

T_
R

X
_C

C
P

_T
S

K
TA

S
K

_B
G

_M
E

S
TS

K
_E

V
T_

TX
_C

C
P

_T
S

K
TA

S
K

_C
1_

M
O

N
2

TA
S

K
_C

1_
C

A
M

_E
X

1
TA

S
K

_C
1_

C
A

M
_E

X
2

TA
S

K
_C

3_
10

M
S

TASK_C1_SEG 2204 3002 927 699 0 331 502 522 218 243 111 101 111 90 124 45 10 24 12 0 0 1 0 0 0 0

TASK_C2_10MS 968 957 213 182 1377 0 157 248 200 131 90 70 90 79 89 49 14 0 11 0 0 1 0 0 0 0

TASK_C1_10MS 2026 0 787 561 8 254 132 82 132 21 38 36 38 45 32 25 7 6 5 0 0 0 1 0 0 0

TASK_C0_RST 0 95 154 187 116 285 149 90 177 38 53 59 53 49 54 39 11 12 8 6 2 1 2 1 1 1

TASK_C1_1000MS 694 61 0 103 33 57 38 24 79 6 16 21 16 14 14 13 0 0 0 0 0 0 0 0 0 0

TASK_C1_20MS 321 277 70 133 36 71 0 34 40 7 17 17 17 20 17 17 1 2 0 0 0 0 0 0 0 0

TASK_C2_100MS 183 134 59 51 158 73 29 28 0 6 7 26 7 22 7 6 0 0 0 0 2 0 0 0 0 0

TASK_C1_100MS 314 22 100 0 25 56 63 18 25 7 12 11 12 12 16 9 0 0 1 0 1 0 0 0 0 0

TASK_C1_COM_CAN_10MS 222 222 16 8 0 66 9 0 23 0 0 34 0 0 0 0 0 1 0 0 0 0 0 0 0 0

TASK_C2_5MS 130 112 5 3 117 78 3 0 10 126 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TASK_C1_HALF_SEG 112 142 41 36 0 44 35 0 30 2 11 27 11 26 11 10 3 0 9 0 0 0 0 0 0 0

TASK_C1_CRK_GAP 66 77 10 14 1 8 6 7 7 1 63 2 63 3 0 1 3 1 1 0 0 0 0 0 0 0

TASK_C1_CAM_IN2 55 58 10 8 1 9 6 7 7 1 87 2 0 3 0 1 3 1 1 0 0 0 0 0 0 0

TASK_C1_40MS 81 55 27 22 3 18 2 1 8 6 1 0 1 1 1 1 2 3 0 0 0 0 0 0 0 0

TASK_P_1MS 38 20 6 6 37 41 8 14 3 0 3 4 3 12 3 3 0 0 0 0 0 0 0 0 0 0

TASK_C1_5MS 59 35 28 18 5 9 4 3 2 0 0 24 0 0 0 0 6 0 1 0 0 0 0 0 0 0

TASK_C1_CAM_IN1 55 58 10 8 1 9 6 7 7 1 0 2 0 3 0 1 3 1 1 0 0 0 0 0 0 0

TASK_C1_MON2 0 59 0

TASK_C1_CRK_MCPS 11 7 7 1 0 0 1 1 1 0 6 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0

TSK_EVT_RX_CCP_TSK 15 0 2 2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

TASK_EVT_INJ_EOC 1 2 0 0 5 5 0 4 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

TSK_EVT_TX_CCP_TSK 1 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

TASK_BG_MES 0 0 0 1 0

TASK_C1_CAM_EX1 0

TASK_C1_CAM_EX2 0

TASK_C3_10MS 0

... produce

26 tasks

> 40

11...40

< 11

Number
of links

TASK_01
TASK_02
TASK_03
TASK_04
TASK_05
TASK_06
TASK_07
TASK_08
TASK_09
TASK_10
TASK_11
TASK_12
TASK_13
TASK_14
TASK_15
TASK_16
TASK_17
TASK_18
TASK_19
TASK_20
TASK_21
TASK_22
TASK_23
TASK_24
TASK_25
TASK_26

TA
S

K
_0

4
TA

S
K

_0
3

TA
S

K
_0

5

TA
S

K
_0

8
TA

S
K

_0
1

TA
S

K
_0

2
TA

S
K

_0
6

TA
S

K
_1

1
TA

S
K

_0
7

TA
S

K
_0

9

TA
S

K
_1

7
TA

S
K

_1
4

TA
S

K
_1

3
TA

S
K

_1
6

TA
S

K
_1

2
TA

S
K

_1
9

TA
S

K
_1

5

TA
S

K
_1

0
TA

S
K

_2
1

TA
S

K
_2

0
TA

S
K

_2
3

TA
S

K
_2

2
TA

S
K

_1
8

TA
S

K
_2

4

TA
S

K
_2

5
TA

S
K

_2
6

Page 6/10

The above matrix shows the data flow between
some producing and consuming tasks.

A comparison between the static data flow (between
SW-Cs) and the dynamic data flow (between tasks)
shows that the static one is much better controlled
than the dynamic one: The static flow is easy to
formalize and to encapsulate. In general, there is
only one single producer for various consumers, and
the access to external data can be protected using
special mechanisms. Finally, a failure of the static
flow can hardly generate a failure at run time, but
rather at build time. Which means that it is much
easier to detect.
None of these characteristics apply to the dynamic
flow: formalization and encapsulation are difficult;
there is often more than only one producer-task; and
no simple mechanism permits reducing the access
to a data from a single task. And finally, a failure
here will hardly be detected at build time, and will be
difficult to identify at run time.

Due to this huge "dynamic flow" (like the static one,
a particularity of EMS systems), data consistency
issues will be more difficult to handle, in particular in
case of preemptive scheduling. This is a second
aspect of the dynamic architecture.

Another consequence of the coupling between
functions is the importance of the calculation
sequence between them: When a new function is
added, it has to be inserted at the right place in the
program flow corresponding to one event. Different
criteria are defined by the dynamic architecture, to
ensure a correct and reproducible sequencing (the
same combination of functions should be integrated
in the same way on different applications).

Fig. 15: A task: sequence of functions

Another important parameter of a function is its
deadline, or maximum allowed response time. The
response time is the delay between the activation of
a function and its completion. For instance, the time

elapsed between the decision to update the injection
time (detection of the tdc), and the point in time it
actually is updated. The intrinsic duration of the
function is included in its response time, but also the
delay introduced by the other functions and events of
higher priority. All these information depend on the
integration platform, and a correct behavior has to be
ensured on the slowest one.

Fig. 16: Response time and deadline

In summary, the dynamic view on the architecture is
orthogonal to the static view, without simple link: A
function uses various events, while an event is used
by various functions.

Fig. 17: Static vs. Dynamic architecture of EMS

In this context, variables are widely exchanged
between SW-Cs, and between operating system
tasks. As an example, the engine speed information
(in rpm) is used in 1200 lines of code (out of
250.000), 250 SW-Cs (out of 1200), and is accessed
around 700 times every 10ms. Therefore the
mechanism to access this information must be
efficient in term of HW resources consumption
(RAM, ROM, CPU load).

Activation

Response time

Deadline

Function in Task

Dynamic Architecture:
Efficiency, Functionality

Sequential Grouping

Package = Task / ISR
Event used by different functions

Static Architecture:
Reuse, Functionality
Functional Grouping

Package = Module / SW-C
Function uses different events

Page 7/10

4. Integration faults and how to avoid them

Like described in a previous document [2], dynamic
architecture failures can be classified in 3 categories:
intrinsic to the reused component, intrinsic to the
frame it is plugged into, or finally failure due to an
integration error or incompatibility.

In the first category are the typical problems of
infinite loops, wrong pointer initializations, recursivity,
interrupt disabling. They are independent of the
integration environment, and a verification needs to
be done only once on a SW-C, independently of its
reuse level. A correct SW-C will be correct even if
reused many times on different platforms. On the
other side, a faulty SW-C will be faulty on any
integration platform. These typical problems are
detected by peer reviews, architecture mechanisms,
unit testing, or static analysis tools generally
available on the market.

The second category of problems refers to the
behavior of the project the SW-C is plugged into.
CPU overload, or stack overflow are generally
detected by embedded mechanisms, by static
analysis tools, or by a combination of those. Regular
measurements are done along the complete project
life, in order to react before the limits are exceeded.

In this paper, we will focus on the third category of
problems, which concerns the behavior of a SW
component once it is integrated in the complete
project. As the integration environment changes (e.g.
due to the influence of other SW components), the
behavior may change: The same SW-C shows
different behavior on 2 different projects, being or not
integrated in the same way2. These problems are
generally less tracked; their specification,
formalization, and verification can be a cumbersome
job. Their effect is not immediate, difficult to
reproduce, and in extreme cases, can be
destructive. These problems are:

Wrong recurrences:

A calculation is not executed with the right
recurrence, or has an unexpected jitter. In general,
this problem is due to an integration error, or to high
CPU load conditions.
By static analysis, consistency between expected
recurrence and integration task or container can be
checked. By regular measurements on bench,
engine, or vehicle, and by simulation, the correct

2 It should be specified, here, what means "integrated in the same
way", when the 2 integration frames are different. Indeed,
integration instructions are dependant on the integrated object
itself, but also on the integration environment, which is not
portable. This is particularly true on the dynamic aspects.

recurrence of the tasks can checked, as well as their
jitters.

Fig. 18: Jitter verification by simulation

Exceeding deadlines:

Depending on the functionality, a missed deadline
can be destructive (e.g. injection update), or have
such a light consequence that it is better to simply
skip the calculation (e.g. coolant temperature
acquisition). An EMS system uses a mixture of hard
and soft deadlines, typically in the range of 1ms to 1
sec.
In general, defining the deadline of a functionality is
not a simple issue, and requires a good system
knowledge. Violating deadlines is a typical problem
of integration, as the response time of one function is
mostly impacted by the other functions sharing the
same CPU: The response time of a function
integrated since a while can be impacted by the
introduction of a new one.
In order to fulfill the deadlines, priorities are assigned
to tasks, based on a standard scheduling policy and
task priority scheme. Standard priority orders ensure
consistent response times between projects.

Fig. 19: Standardization of priority scheme

To verify deadlines, advanced techniques can be
used, like schedulability prediction, simulation of the
dynamic behavior, or simply measurements. These
techniques need a very good understanding of the
dynamic behavior and are used by architects.

TASK TDC

TASK CAM
TASK GAP

TASK 5MS
TASK 10MS
TASK 100MS
TASK 1000MS

P = 9

P = 3

Page 8/10

Fig. 20: Response time verification by simulation

Wrong calculation sequence:

To define the correct sequence between functions of
the same event, one of the criteria which can be
used is the data flow criterion. A function producing a
variable should be located before all the functions
that consume this data, in the program flow.
Otherwise, the consuming functions will work with an
old (or, even worst, non initialized) value. It is also
preferable, in general, that all the consumers get a
consistent value for the variable, which means that
all consumers should be either before, but preferably
after the producer module. Furthermore, in some
cases, enlacing between functions is required: a
function has to be inserted between 2 parts of
another one3.

Fig. 21: Correction of function sequence based on
data flow

Thus, defining the right sequence of functions
connected to the same event can be a complex job:
the below figure shows the amount of direct
(produced, then consumed) and reverse (consumed,
then produced) data flow in a typical task. Note here
that one green or red arrow may encapsulate more
than one variable. The amount of arrows (links) here
is an additional testimony of the high coupling
between EMS functions.

3 At first sight, this seems to be a wrong architecture, but in
reality, this may be a consequence of the static partitioning, which
is mainly driven by reuse aspects..

Fig. 22: Data flow between synchronous functions

To reduce the coupling between functionalities and
to better control the sequencing, standard sequence
orders or ordering criteria are defined, and
sequencing modules are used. Standard initialization
mechanisms and standard task scheduling ensure
that data are available at the right time.

Fig. 23: Intermediate scheduler reduces integration
effort and risk of wrong sequence

Finally, the correct sequence of functions within a
task is verified by a static analysis tool, based on
data production and consumption order. Due to the
big number of links between functions, finding the
right precedence order may be a complicated job.
Because of algebraic loops, the solution to the
precedence problem is not always obvious, and
needs some system choices. For the sequence flow
across tasks (when defined), the same kind of
analysis can be conducted.

Inconsistency of data:

The modification, by a high priority task, of a variable
during its use in a low priority task, corrupts the
behavior of the low priority functionality4 , as its 2
parts work with different values for the same
variable. This standard problem of real time software
is particularly important in EMS context due to the
big coupling (and data flow) between functions and
between tasks.

4 This also applies across different functions which need to work
with the same input values. For instance, misfiring, ignition,
injection functions are strongly coupled together.

Reverse flow

Direct flow

Call sequence of functions

...

...

inj_diag();

ign_diag();

inj_setpoint();

ign_setpoint();

ign_sp

inj_err

TaskA
...

...

inj_err

TaskA

ign_sp

inj_diag();

inj_setpoint();

ign_setpoint();

ign_diag();

10ms
100ms
tdc
...

...

...

air_10ms();

inj_10ms();

ign_10ms();

Task 10MS

Inj SW-C C 10MS

inj SW-C A 10MS

inj SW-C B 10MS

inj function

D
ea

dl
in

e
=

20
m

s

Page 9/10

Fig. 24: Data inconsistent within 100ms functionality

So, to reduce the risk of misuse of shared data,
specific design patterns, atomic libraries, restrictions
like controlled use of preemption, and encapsulation
principles are applied.
The data consistency problem can also be analyzed
statically by a tool, by checking the data flow
between tasks ("dynamic flow"). Identifying this flow
between the tasks is the first step for a better control.

Fig. 25: Shared data between tasks of different
priorities and recurrences

Dynamically, it is nearly impossible to verify the
consistence of data, as the occurrence of the critical
case is very unlikely and difficult to reproduce. This
is particularly the case in an EMS context, where
regular time based tasks and engine angle based
tasks can interact at any time.

5. Organization

In addition to the above measures, an adequate
organization allows to control the dynamic
architecture:

SW architects analyze new concepts, define
standard methods and mechanisms, and support the
projects in their deployment. SW integrators focus on
their own project and ensure a correct integration of
the reused functionalities. Both are well trained to
the architecture mechanisms and constraints, and
are highly skilled engineers. Developers of functions
are specialists on their own functional scope and
know perfectly how to develop a generic solution,
portable on different system and HW configurations.
They control the internal architecture of their
function, in order to ease its maintainability and
configurability.

Architecture and integration activities are budgeted,
empowered, and considered in the early project
planning, as major activities, particularly in a context
of intensive reuse.

Architecture assessments are conducted by
architecture specialists independent from the
projects. They are done at an early phase of the
project, to be able to take corrective or preventive
actions.

6. Standardization

As seen in the above chapters, the frame a SW-C is
plugged into has a major impact on its behavior, in
particular in the EMS context of hard real time and
high coupling between functions. For instance, a
SW-C designed for a non-preemptive environment
cannot simply be used in a preemptive one. Even in
a given proprietary architecture, the behavior of a
reused proprietary SW-C is not automatically the
same, due to the different system and HW
configurations.

With the trend to integrate more and more external
SW-Cs, the need for adaptation layers increases,
and consequently the need for HW resources. As
long as the number of external SW-Cs is limited,
such an integration can be managed. But with an
increasing number, a standardization is necessary.

Ahead from the pure mechanisms (like interfacing
mechanisms), a standardization of the architecture
itself is necessary to build complete projects out of
SW-Cs. Which events, which recurrences, which
links between them (precedence, phasing, exclusion,
...) ? Which scheduling concept, which priorities,
which deadlines for the functions, and how to ensure
them? Which sequencing between components, and
how to control it? Which data to be protected against
concurrent accesses, and which mechanism to
protect them, compatible with the HW resources
constraints? These are some of the challenges to be
solved by AUTOSAR or any standard willing to
authorize porting of SW-Cs across different
platforms.

7. Conclusion

Compared to other automotive areas like car body,
an Engine Management System has specific
constraints which make the integration of functions
more difficult. High coupling between functions, hard
and complex real time, and limited HW resources
are the ones with major impact on the dynamic
behavior. Combined with the strong reuse objectives
inherent to the automotive business, these

...
inj_tdc ();
ign_tdc ();
egr_tdc ();

...

...
egr_100ms ();
obd_100ms ();
ign_100ms ();

...

P = 8 P = 5Shared Data:

ign_status
inj_err

egr_cmd
egr_ctl

...

R = 100ms
Task B

R = tdc
TaskA

...
func_tdc

(set flag = false)

...
func_100ms

(use flag = true)

func_100ms
(use flag = false)

...

Task A
Activation

Task A (priority = 8)

Task B (priority = 5)
Task B interrupted
within func_100ms

Page 10/10

constraints increase the challenge of integration
activities. Hidden part of the iceberg, the dynamic
integration of a SW-C is certainly much more difficult
to put under control than its static one. But there are
nevertheless various techniques and means to reach
this goal. Standardization will help in this direction,
but has to be supported by efficient mechanisms and
tools, and has to consider all the facets of the
problem.

8. References

[1] D. Claraz / K. Eppinger / L. Berentroth: "Reuse
Strategy at Siemens VDO Automotive : The EMS 2
Powertrain Platform Architecture", in Revue des
Ingénieurs de l'Automobile, 2004.

[2] D. Claraz: "Fiabilité des logiciels embarqués,
exemple architecture dynamique logicielle d'un
contrôle moteur", SIA congress "La fiabilité des
systèmes électroniques et mécatroniques", 2008

9. Glossary

Ecu: Electronic Control Unit
EMS: Engine Management Software
Tdc: Top dead centre
SW-C: Software Component (atomic or not)
Rpm: Round per minute
Ms: Millisecond
OEM: Original Equipment Manufacturer (car makers)

