
HAL Id: insu-02270095
https://insu.hal.science/insu-02270095

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A verifiable architecture for multi-task, multi-rate
synchronous software

Jean-Louis Camus, Pierre Vincent, Olivier Graff, Sebastien Poussard

To cite this version:
Jean-Louis Camus, Pierre Vincent, Olivier Graff, Sebastien Poussard. A verifiable architecture for
multi-task, multi-rate synchronous software. Embedded Real Time Software and Systems (ERTS2008),
Jan 2008, toulouse, France. �insu-02270095�

https://insu.hal.science/insu-02270095
https://hal.archives-ouvertes.fr

 Page 1/9

A verifiable architecture for multi-task, multi-rate synchronous
software

A. Jean-Louis Camus1,Pierre Vincent1, Olivier Graff2, Sebastien Poussard2

1: Esterel Technologies, 9 rue Michel Labrousse 31100 Toulouse
2 : Intertechnique, 61 rue Pierre Curie 78370 Plaisir

Abstract: Synchronous model-based software
development techniques have proven to be both
rigorous and efficient for the development of safety
critical real-time software. Currently, the most
common practice is to limit the use of synchronous
techniques to single tasking or locally synchronous
globally asynchronous multitasking scheduling
schemes. This paper presents a technique for
implementing multi-rate software on several tasks
whilst preserving the determinism and verifiability of
the synchronous approach. Our technique uses the
synchronous framework in order to ensure rigour
and verifiability, but implements different parts of a
global synchronous model into separate tasks with a
simple and efficient architecture. This architecture
ensures determinism even in the presence of
variations in execution time, and it also allows
verification of the complete software by simulation or
formal verification. This architecture has been
applied to avionics software of a real aircraft’s
equipment. Further perspectives are also provided.

Keywords: software, embedded, synchronous, real-
time, scheduling

1. Introduction

Development of safety-critical real time embedded
software requires a combination of rigour,
determinism and execution efficiency. Synchronous
model-based software development techniques have
proven to achieve these objectives on large civil
avionics equipment [6], railway signalling systems [7]
and nuclear power plant control systems [8].
However, the current application of these techniques
to multi-rate software is most often based on one of
the following (non exclusive) schemes:
• Implementation of different locally synchronous

software modules into different tasks running
independently. This approach neither ensures
determinism nor allows analysis of the global
behaviour.

• Decomposition of the application into elements,
which are activated at appropriate periodic times
by a pure sequential scheduler, all in a single
task. This approach may become unpractical
when such decomposition is complex.

Going beyond these schemes is possible when the
synchronous approach is understood as a powerful
conceptual tool, not limited to what can be achieved

with a loop in a sequential program. This paper
describes a technique for a multi-rate, multi-tasking
scheduling scheme in a synchronous framework that
ensures determinism and supports verification of the
global behaviour of the application.

This paper is organized as follows:
• Section 2 is a short presentation of synchronous

software principles and current practice.
• Section 3 reviews the most commonly used

scheduling schemes for multi-rate synchronous
software, with their benefits and limitations.

• Section 4 describes the extended technique for
multi-rate/multi-task software development in a
synchronous framework.

• Section 5 describes the application of this
technique to avionics equipment software.

• The conclusion summarises the benefits and
limitations of this technique and draws
perspectives for extensions of this technique.

2. Synchronous Software Development
Techniques

Objective of Synchronous Techniques

Synchronous languages and their technology have
been created in order to support the development
and verification of reactive real-time systems for
which confidence is essential, such that safety
critical systems (eg: flight control software) or
complex digital circuits. Indeed, when classical
development techniques are used for real-time
systems, development is complex, and it is
extremely difficult or impossible to verify their
behaviour, mainly because of the explosion of their
state space.
An excellent survey of the origin and state of the art
for synchronous languages is provided in [9]. The
synchronous languages Lustre [1], Esterel [10] and
Signal [11] and are built on a common mathematical
framework that combines:

• Synchrony
• Deterministic concurrency

 Page 2/9

The Essence of Synchrony

One currently used definition of synchrony is that
reactions take zero time. We prefer to consider that it
uses an abstraction of time:
The essence of synchrony is to:
1) Abstract time as a sequence of discrete instants
2) Restrict execution to a sequence of atomic
reactions.
Reactions can be triggered by events or by time, as
shown on Figure 1.

Figure 1: Common synchronous execution schemes

This type of model is used everyday under various
forms in mathematics, automata, in the discrete-time
dynamic systems of control engineering, and in
synchronous digital logic familiar to hardware
designers.

Notation

In the remainder of this chapter, we illustrate the
synchronous approach using examples based on the
SCADE language and tools, since this is the one we
used for the application described in chapter 5.
The SCADE language supports the combination of
two notations that are familiar to control engineers:
• Block diagrams to specify the algorithmic part of

an application, such as control laws and filters
• Safe State Machines (SSM) to model the

behaviour.
SCADE adds a rigorous view of these well known,
but often insufficiently defined formalisms. SCADE
has a formal semantics based on Lustre [1], with a
precise definition of time and concurrency. This
ensures that all programs generated from SCADE
behave deterministically. SCADE allows for
automatic generation of C code from these two
formalisms.
The basic building block in SCADE is called a Node.
A node is a user defined function, built from lower
level nodes, down to predefined operators (logical,
arithmetic, delay, etc). A node can be represented
either graphically (Figure 2) or textually (Table 1).

Figure 2: Graphical notation for an integrator node

Table 1: Textual Notation

Concept Text Fragment
Formal
interface

node IntegrFwd(

 U: real ;

 TimeCycle: real)

 returns (Y: real);

Local
variables

var

 delta : real;

 last_Y : real;

Equations delta = u * TimeCycle ;

y = delta + last_Y ;

last_Y = fby(y,1, 0.0);

Timing and Causality

SCADE provides an approach to properly deal with
issues of timing and causality. Causality means that
if datum x depends on datum y, and then y has to be
available before the computation of x starts. A
recursive data circuit poses a causality problem, as
shown in Figure 3, where “throttle” depends on
itself, via the ComputeTargetSpeed and
ComputeThottle node. The SCADE semantic
checker detects this error and signals that throttle
has a recursive definition.

Figure 3: Detection of a causality problem

Inserting an FBY (delay) operator in the feedback
loop solves the causality problem, since the input of
the ComputeTargetSpeed block is now the value of
throttle from the previous cycle as shown in Figure 4

Functional Dependency and Concurrency

The SCADE language provides a simple and clean
expression of concurrency and functional
dependency at the functional level, as illustrated by
Figure 4.
SetRegulationMode and ComputeTargetSpeed are
functionally concurrent, since they are independent;
the relative computation order of these blocks does
not matter (since in SCADE there are no side
effects). ComputeThrottle functionally depends on an
output of ComputeTargetSpeed.

 Page 3/9

FBY

10.0

throttlegamma

Spd

Alt

ComputeThrottle

ComputeTargetSpeed

ComputeTargetAltitude

Functional
concurrency

Dependency

Figure 4: Functional expression of concurrency

The application is described in terms of logically
concurrent activities in block diagrams or SSMs. The
user needs not spend time performing tedious and
error prone dependency analyses to determine the
sequencing manually; the focus is elevated to the
functions rather than the coding.
Concurrency and dependencies are taken into
account during code generation. KCG, the current
commercial code generator is able to automatically
generate sequential deterministic code for a
reasonably wide category of situations (see sections
3 and 4 for the scope and limitations of sequential
implementation). This code strictly conforms to the
model’s semantics. Notice that there is no overhead
for communication which is implemented internally
using well-controlled shared variables and avoiding
any context switching.

Safe State Machines for discrete control

Discrete control is used when the behaviour varies
qualitatively as a response to events. This is
characteristic of modal human-machine interface,
alarm handling, complex functioning mode handling,
or communication protocols.
SCADE hierarchical state machines are called Safe
State Machines (SSM). These can be freely mixed
with data flow. SSMs are hierarchical. States can be
either simple states or macro states, themselves
recursively containing a full SSM. When a macro
state is active, so are the SSMs it contains. When a
macro state is exited by taking a transition out of its
boundary, the macro state is exited and all the active
SSMs it contains are pre-empted, whichever state
they were in. State machines communicate by
exchanging signals, which may be scoped to the
macro state that contains them.

Activ e

Stdby ConditionSpeed < SpeedMin

Accel > PedalsMin

Speed > SpeedMax

<SM3>

StandBy

CruiseStateSTDBY

On

local_CruiseSpeed

CruiseStateON

ThrottleCmd

Speed

2

CruiseRegulation

1

Stdby Condition

1

 not Stdby Condition

Figure 5: State Machine Fragment for Cruise Control

The definition of SSMs strictly forbids dubious
constructs found in other hierarchical state machine
formalisms: transitions crossing macro state
boundaries, transitions that can be taken halfway
and then back-tracked, and so on. These are non-
modular, semantically ill defined, and very hard to
understand, hence are inappropriate for safety-
critical designs. They are usually not recommended
by methodological guidelines.

3. Traditional Scheduling Schemes for Multi-
Rate Synchronous Software

Separate Development and Tasking Technique
With this technique, software modules that have to
run at different rates are allocated to different tasks
each running at the appropriate rate. These
modules, which may be designed each as a
synchronous model, are developed, scheduled and
verified separately. There is no formal definition of
the global behaviour. The global behaviour is
generally not deterministic in the presence of
execution time variations, and there are no
techniques for accurately verifying this global
behaviour, since testing or simulation can only
explore parts of the complex state space.

Single Tasking Scheme

All software components run in a single task,
activated at the highest frequency. This is best
illustrated by the following example.

The following application has two rates: Sys1, which
is as fast as the top-level, and Sys2, which is four
times slower, as shown on Figure 6.

Figure 6: Basic Bi-rate Software Model

 Page 4/9

Sys2 is only executed every fourth time. It is
executed within the same main top-level function as
Sys1. This means that the code of whole application,
Sys1 + Sys2, is executed at the fastest rate, which
needs a powerful CPU.

Figure 7: Basic Bi-rate Scheduling

The solution consists in splitting the slow part into
several smaller slow parts and distributing their
execution on several fast rates. This is a safe way to
design a multi-rate application. Scheduling of this
application is fully deterministic and can be statically
defined. The previous application example can be
redesigned as shown on Figure 8.

Figure 8: Multi-cycle Bi-Rate Model

The slow part, Sys2, is split into four subsystems.
Note that any data exchanges are possible between
these decomposed parts, provided causality is
respected (it is verified by the qualified code
generator) and will be reflected correctly in the single
task implementation.

These subsystems are executed sequentially, one
after the other, in four cycles, as shown on Figure 9.

Figure 9: Multi-cycle Bi-rate Scheduling

Advantages of this architecture:

• It uses static scheduling; it is fully deterministic,
and there is no risk of deadlock.

• Data exchanges between subsystems are fully
handled by SCADE (both at model level and by
auto-code generator), respecting functional
dependencies.

• Synchronous simulation and proof are valid for
the generated code.

Constraints of this architecture:

• It requires breaking the slow part into execution
slices that are small enough to fit into the
available time slots. This may be problematic
when the control structure of the slow part does
not match such a slicing.

• It is necessary to handle the WCET (Worst Case
Execution Time) of each slice to validate
scheduling in all cases. The sum of the WCET of
low part slices may be much larger than the
WCET of the complete slow part.

• Each change in the contents of the slow part
may require redoing complex breakdown and
WCET analysis.

4. The Synchronous Multi-Rate Multi-Task
Scheduling Scheme

Objective of the presented technique

The presented technique has the following
objectives:
• Support the global design and implementation of

multi-rate software in situations where slicing of
the slow part is problematic as explained above.

• Support analysis of the global behaviour at the
model level, for instance by simulation or formal
verification.

• To be implementable on a simple static priority-
based pre-emptive scheduler.

• Ensure functional equivalence between the
functional model and its implementation running
in physical time. This equivalence has to be
based on solid theoretical foundations.

• Be efficient in terms of computing resources.
• Last but not least, for usability in an industrial

context, this shall be achieved by adhering to a
standardised architecture with simple and easy
to verify design rules.

Foundations

Contrary to a common prejudice, the scope of
synchronous techniques is not inherently limited to
periodic software, where single thread code is
generated from a model. It is also a powerful
framework for describing and analysing a wider class

 Page 5/9

of real time systems, such as multi-periodic or even
sporadic processing.
The technique presented in this paper is based on
solid theoretical foundations, published in [3].
Compared to [3], we rely on usage conditions which
simplify the design and verification tasks, thus
making the approach affordable to common
engineering practice. Tasks are periodic (not
sporadic) and the presentation is limited to a
situation with 2 tasks. We found these conditions
appropriate for our application context. More general
hypotheses may be adopted at the price of a higher
complexity, using the approach described in [3].

Scheduling

The application is composed of two periodic parts,
named “minor” (noted “m”) for the faster one and
“major” (noted “M”) for the slower one. TM (the
period for M) is an integer multiple of Tm (the period
for m).
Deadline monotonic pre-emptive scheduling is used.
Each task is assigned a unique priority. The task
with the highest priority executes first. Tasks are
periodic, and all periods are multiples of the shortest
period called the ‘base period‘.
The following constraints on the Worst Case
Execution Time (WCET) are imposed:

1. WCET(minor) + other < Tm
2. N*WCET(minor+other)+WCET(Major)< TM

where other includes time needed by other tasks (ex;
input/output) and context switching.

What is the Central Issue?

No model or implementation can be considered as
good by itself: we need representativeness of the
model with respect to the implementation and
determinism of both the implementation and the
model. The central issue is to define a consistent set
of modelling and implementation rules such that the
behaviour of the model (as defined by the
synchronous semantics, and reflected by simulators
or formal verification tools) and the behaviour on the
target are functionally equivalent: the same input
sequence produces the same output sequence at
the times where a subsystem communicates with
outside. Indeed, the model semantics are defined in
terms of logical instants (cycles), with no physical
duration, while the execution of the real
implementation runs in physical time. Execution time
may vary within the limits defined in the previous
section.
For a single task implementation, equivalence is
simply ensured if the Worst Case Execution Time
(WCET) is smaller than the CPU time allocated to
the task for a period. For a multi-rate, multi-task
execution scheme, this is more complex; we also
need to ensure that actual data, computation and
ordering remain consistent despite variations in

execution time under the WCET and scheduling
hypotheses described above.
As we shall see in the next sections, the key of this
problem lies in the communication: what should be
communicated and when should communication
occur?

Global Application Model

We model the scheduling and communication in
SCADE by creating a root node containing an
instance of the following children nodes (see Figure
10):

• Node Major contains all SCADE nodes
running on the major rate

• Node Minor, contains all SCADE nodes
running on the basic (fast) rate.

• The connections formalise the
communication to/from the environment and
between these nodes.

1

ClockGenerator

3

LowToHigh

InitVal

4

LowToHigh

InitVal

MainOut2

MainOut1

MainIn2

MainIn1

1

Major

InitVal InitVal

1

Minor

SlowClockSlowClockSlowClock

Figure 10: Model of a Synchronous Bi-Rate System

The scheduling is expressed by putting the major
node under control of a clock named SlowClock,
which is true every major cycle. From a synchronous
viewpoint, even the computation of the major node is
instantaneous. In the real world, the minor process
may interrupt the major process before it has
completed its computation, and one may think that
the synchronous model is inherently inappropriate to
match reality. We will see in the following sections
that this depends on communication. For the time
being, let us consider that we have no formal model
of communication between the major and minor
nodes. We will define this communication based on
analysis of the relationship between the model and
the real world.

Minor to Major Communication

Communication from minor to major cycle can occur
instantly after completion of minor cycle computation
and is modelled by a direct connection from minor to
major nodes. However, minor shall not communicate
to Major during a computation of Major (see Figure
11). The reason is that this might lead M into an
inconsistent state. Assume for instance that m
passes related data such as a pressure and its

 Page 6/9

related validity flag and that the output of m in cycle
k contains a valid pressure with the validity flag set
to true. Assume that M starts computing, sees that
the pressure is valid and bases following
computations of its current cycle on this validity. If
m(k+1) m puts an invalid pressure (even with the
validity flag set to false) into M’s input vector, this
may clearly lead M to perform erroneous
computations. The general rule for synchronous
software is that the input vector of a component shall
remain frozen during the complete computation of its
cycle; this also concerns data coming from other
parts of the real world.

Major to Minor Communication

Communication from major node to minor node
requires specific handling. For simplicity, we will use
as an example a situation where TM=2*Tm.
First of all, let us analyse the most usual case, where
M takes nearly as much as it WCET, i.e. it completes
just before the next minor cycle where it will perform
its new major cycle, as shown on Figure 11. In cycle
k m is executed first and then it passes its output to
M, which starts computing. M is interrupted and
suspended by m executing its k+1 cycle. Then M
resumes and completes computation of its major
cycle during cycle k+1. The output of M is used as
input by m at cycle k+2.

m

Finish M

m m

k+1 k+2

Begin M Suspend
M

 Figure 11: Case when M computes slowly

Now, let us analyse the less intuitive situation shown
in Figure 12, were (in some cycles) M needs
significantly less than its WCET. In the example, M
completes during cycle k+2, rather than cycle k+3. It
would seem natural that M sends its output to
computation k+3 of m. But if we do that, then the
global behaviour will vary, depending on the current
execution time of M. Even a variation of a
microsecond in execution time of M may abruptly
switch from the previous situation to this situation or
vice-versa (this is a kind of chaotic behaviour). The
global behaviour becomes non deterministic and
impossible or extremely difficult to analyse.

m

M

m m

k+2 k+3 k+4

Figure 12: Case where M computes faster than
usual

So, in order to keep the system deterministic, we
should systematically communicate from M to m at
the beginning of the minor cycle where M will starts
its next major cycle, even if M finishes earlier.

Model of the Communication

We have analysed the behaviour in real time, so we
can now define the communication scheme that will
represent this consistently in the global model. The
"LowToHigh" node is used in order to ensure that
communication from major to minor occurs with a
delay of one major cycle. Its reference definition
(Figure 13) is a “fby” operator (unit delay) under
activation condition by the slow clock.

3

LowToHigh

InitVal InitVal

FBY

1
Output1Input1

Figure 13: Low To High Node

Summarizing Mapping between Logical and Real Time

Table 2 summarises the mapping between the
SCADE design specification (which is defined in
logical synchronous time) and the implementation
(which runs in real time on 2 processes and where
computation time is variable).

 Page 7/9

Table 2: Mapping Logical to Physical Time

Synchronous
Model

Target Program

Minor node triggered
every basic cycle

Computation of minor C
function at beginning of
every minor cycle in minor
process

Major node triggered
every major cycle (M
basic cycles)

Computation of major C
function, in major process,
starting after computation
of minor function. It is
distributed over one major
cycle (N minor cycles).

Communication from
minor node to major
node: is only taken
into account by the
major node at major
cycles

Just before starting
computation of major
function

Communication from
major node to minor
node: contains a
delay of one major
cycle

Just before starting
computation of minor
function in a cycle where
major will start

Implementation of the Model

The code for nodes minor and Major can easily be
automatically generated as pure sequential code,
using a code generator such as the SCADE qualified
code generator KCG. For each node there are two C
functions: an initialisation function and a cyclic
function, to be called at each cycle where the
corresponding node has to be executed.

On the contrary, the root node, modelling activation
of minor and major nodes, and communication
between them has to be understood as a conceptual
model. It cannot be implemented by simple
sequential code. This is for instance beyond the
scope of the current KCG. However this is not a
major issue, since the code implementing the root
node is quite simple. It just contains:

• Scheduling of minor an major processes using
rate monotonic scheduling

• Transfer of data between the processes in the
exact conditions described above

Data transfer has to be triggered either by the
scheduler or by the fast process, if it can
communicate with the slow process via shared
memory.

It has to be implemented partially manually, possibly
using KCG as a support to generate part of that code
(in particular data type definitions and
communication patterns).

Extension to Multi-Rate Software

Some reasonably simple extensions of the above
analyses can be made for periodic multi-rate
software when rates ratios are all a power of two
(more general situations require the solution
described in [3]).
First of all the principle for communication from a
slow node to a fast node remains the same:
• In the model, communication from a slow node

to any other node has to be modelled as a delay
of the clock of the slow node

• In the implementation, communication from the
slow task to any other task has to occur at the
beginning of the next slow cycle

Second, the introduction of modules with
intermediary rates introduces additional potential
problems: the start of the slowest computation may
be delayed by a task with an intermediary priority up
to another cycle.

m

complete
M1

m m

M1

m m

k k+1 k+2 k+3 k+4

Begin M1 Suspend
M1

Begin
M2

Suspend M2 resume
M2

complete
M2

Suspend
M2

Figure 14: Three rate scheduling and communication

So, the rule is the following; when a task A produces
data that is consumed by a lower rate task B, it has
to write into an (A,B) communication buffer the data
corresponding precisely to the basic cycle where the
slower task is supposed to start logically (and not
when it really starts). In the example shown on
Figure 14, if medium priority task M1 completes only
in cycle k+1, it will delay the start of the lowest
priority task M2. Yet, m should communicate to M2
its output from cycle k, and not its output from cycle
k+1.

 Page 8/9

5. Application to Avionics Equipment Software

Context

Intertechnique company is part of Zodiac Aircraft
Systems Segment. Its fuel management, oxygen and
life support, electrical power management and
monitoring and management safety-critical systems
are installed in the airplanes and helicopters of all
the leading international airframe manufacturers.
Intertechnique chose to develop the software of a
piece of safety-critical avionics equipment using the
SCADE tool.
The software is bi-rate deterministic scheduled. Two
models were created, one for each task
(minor_process, major_process).
To check the behaviour of the global software,
simulations were performed to make minor_process
and major_process work together.

Multi-task issues

The main effort was the management of data
exchanges between both tasks, as explained in the
previous section. The decision was taken to
experiment the use of KCG to generate a code
which could work correctly on the real target. Since
KCG is designed for generating single thread code,
the code generated by KCG from the root node
modelled in Figure 10 would not work correctly on
the real target. The following approach has been
adopted: build a root node such that:
• From a modelling perspective it should be

semantically equivalent to the model of Figure
10

• The generated code is such that it
communicates appropriately thanks to buffering
and triggering conditions.

Communication from minor_process to
major_process can occur instantly after completion
of minor_process; however, re-entrance may have
unwanted side effects on major_process.

Since KCG passes structured data by reference, it
might happen that a minor_process pollutes the
inputs of the running major_process which it
interrupts.

On the other hand, inconsistencies can occur
between inputs of minor_process of the first minor
cycle and minor_process of the second minor cycle if
communication from major_process to
minor_process occurs instantly after completion of
major_process.

Thus, in order to ensure determinism, the
communication from major to minor cycles shall
occur only after full completion of a major cycle,
rather than as soon as computation is completed

Adopted Solution

In order to avoid these communication issues,
dedicated nodes were designed.

Communication from minor_process to major_process

Inputs of major node shall stay invariant during major
node processing. Since the actual implementation
runs on two threads (minor and major),
communication from major node to minor node
requires specific handling.

This is ensured by inserting a dedicated node
MinorToMajor activated before executing the node
major_process. This MinorToMajor node shall not be
interrupted.

Input1 Output1

Figure 15: MinorToMajor node definition

The SCADE activation operator (condact) ensures
that when activation condition is true, Output1 takes
Inputs1 value and when activation condition is false,
Output1 stays invariant.

Communication from major_process to minor_process
Inputs of the minor_process shall not be dependent
of major_process time processing.
Inserting a dedicated node MajorToMinor ensures
that communication from major_process to
minor_process occurs only before the first
minor_process of the first minor cycle. This node is
activated at each cycle (no activation condition).

FBY

1

FBY

1
Output1

InitVal

Input1

Clock

Figure 16: MajorToMinor node definition:

Leftmost "fby" stores the output of major_process;
rightmost "fby" sends the last valid output from
major_process. The switch sends the updated
major_process output stored by the leftmost “fby”
and updates the rightmost “fby”.
The simulation scheduler node definition is then as
follows, and includes also “and” gates to model a
scheduling validity signal:

LL_Transf erMinorToMajor

RootMajorWeight
RootMajorW eightOut

RootMinorW eightOut
RootMinorW eight

LL_N oScheduleError

LL_D oMinorCy c le LL_DoMajorCy c le LL_Transf erMajorToMinor

1

in_MinorToMajor

InitMinW eightO2_Cst

InitMinW eightO1_Cst

InitMajorWeight_Cst

1

in_MajorToMinor

1

MinorProcess

1

MajorProcess

Figure 17: Simulation Root Node

 Page 9/9

Benefits and Limitations

Model driven simulation enables testing of functional
software very early in the development cycle.
Scheduling the model using the chosen architecture
allows a global simulation and the detection of
potential errors in data exchanges between minor
and major cycles.
This simulation activities reduced integration time on
hardware by around 60%, most of functional
malfunctions being detected early on simulation
environment.
Since the code generator is not designed to create
multi-task code, human review of the code
generated for the root node is required in order to
check that it is compatible with the multi-task real-
time integration. The code for minor and major
nodes runs in the nominal conditions for which KCG
has been designed and qualified and so does not
need to be reviewed.

Perspectives

Intertechnique chose to develop more software using
the SCADE tool. SCADE 6, implementing new
constructs, allows the use of model driven
development on more programs than the previous
versions.
These new constructs, especially qualified state
machines could ease the development of real-time
simulations. This will be carefully studied by
Intertechnique to continue reducing integration costs
using scheduling simulation on simulation
environment.

6. Conclusion

We have defined a simple and efficient technique for
the development and verification of multi-rate
software. This technique makes it possible to
specify, implement and accurately verify the global
behaviour of a multi-rate application, without paying
the price for a complex synchronisation mechanism,
such as semaphores or polling, and introduces no
risk of deadlock. This was made possible by using
the synchronous software concepts, not just as a
means for implementing a piece of software in a
program loop, but also as a powerful conceptual
framework able to describe behaviour distributed
over several tasks.
Future work will explore the following areas:
1 Use of the extended approach described in [5]
2 Automation of the implementation of

scheduling and communication

7. Acknowledgement

The authors acknowledge the contribution of Paul
Caspi (Verimag), Thierry Lesergent (Esterel
Technologies) and Sébastien Penot
(Intertechnique/Turbomeca) to this work. The

foundations of this technique are based on results of
the EC project RISE (38117) and dissemination is
partly supported by the EC project INTEREST
(3361).

8. References

[1] N. Halbwachs, P. Caspi, P. Raymond, and D.
Pilaud. “The synchronous dataflow programming
language Lustre”. Proceedings of the IEEE,
79(9):1305-1320, September 1991.

[2] “SCADE Language Reference Manual”, Esterel
Technologies 2007

[3] N. Scaife and P. Caspi: “Integrating model-based
design and preemptive scheduling in mixed time
and event-triggered systems” Euromicro
conference on Real-Time Systems (ECRTS'04),
Catania, Italy, June 2004

[4] N. C. Audsley, A. Burns, M. F. Richardson, and A.
J. Wellings. “Hard Real-Time Scheduling: The
Deadline Monotonic Approach. In Proceedings 8th
IEEE Workshop on Real-Time” Operating Systems
and Software, Atlanta, 1991. 3.3

[5] S. Tripakis, C. Sofronis, N. Scaife and P. Caspi.
“SemanticsPreserving and MemoryEfficient
Implementation of InterTask Communication on
StaticPriority or EDF Schedulers” - EMSOFT 05

[6] Pilarski, F “Cost effectiveness of formal methods in
the development of avionics systems at
Aerospatiale”, Digital Avionics Systems
Conference, 1998. Proceedings., 17th DASC

[7] G. Legoff & P. Sainton, “Using synchronous
language for signalling”, Computers in Railways V,
Vol 1, 1996

[8] J.-M. Palaric and A. Boué. “Advanced safety I&C
system for nuclear power plants”. In ENC'98 World
Nuclear Congress, Nice, France, October 1997

[9] A Benveniste, P Caspi, Stephen A. Edwards, N.
Halbwachs, P. Le Guernic, R. De Simone “The
Synchronous Languages 12 Years Later”,
PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1,
JANUARY 2003

[10] F. Boussinot, R. de Simone, “The Esterel
language”, Proc. IEEE, vol. 79, pp. 1293–1304,
Sept. 1991.

[11] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le
Maire, “Programming real-time applications with
SIGNAL”, Proc. IEEE, vol. 79, pp. 1321–1336,
Sept. 1991

9. Glossary

KCG: SCADE qualified code generator

SCADE: Safety Critical Application Development
Environment

WCET: Worst Case Execution Time

