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Abstract: Synchronous model-based software 
development techniques have proven to be both 
rigorous and efficient for the development of safety 
critical real-time software. Currently, the most 
common practice is to limit the use of synchronous 
techniques to single tasking or locally synchronous 
globally asynchronous multitasking scheduling 
schemes. This paper presents a technique for 
implementing multi-rate software on several tasks 
whilst preserving the determinism and verifiability of 
the synchronous approach. Our technique uses the 
synchronous framework in order to ensure rigour 
and verifiability, but implements different parts of a 
global synchronous model into separate tasks with a 
simple and efficient architecture. This architecture 
ensures determinism even in the presence of 
variations in execution time, and it also allows 
verification of the complete software by simulation or 
formal verification. This architecture has been 
applied to avionics software of a real aircraft’s 
equipment. Further perspectives are also provided. 

Keywords: software, embedded, synchronous, real-
time, scheduling 

1. Introduction 

Development of safety-critical real time embedded 
software requires a combination of rigour, 
determinism and execution efficiency. Synchronous 
model-based software development techniques have 
proven to achieve these objectives on large civil 
avionics equipment [6], railway signalling systems [7] 
and nuclear power plant control systems [8]. 
However, the current application of these techniques 
to multi-rate software is most often based on one of 
the following (non exclusive) schemes: 
• Implementation of different locally synchronous 

software modules into different tasks running 
independently. This approach neither ensures 
determinism nor allows analysis of the global 
behaviour. 

• Decomposition of the application into elements, 
which are activated at appropriate periodic times 
by a pure sequential scheduler, all in a single 
task. This approach may become unpractical 
when such decomposition is complex. 

Going beyond these schemes is possible when the 
synchronous approach is understood as a powerful 
conceptual tool, not limited to what can be achieved 

with a loop in a sequential program. This paper 
describes a technique for a multi-rate, multi-tasking 
scheduling scheme in a synchronous framework that 
ensures determinism and supports verification of the 
global behaviour of the application. 
 
This paper is organized as follows: 
• Section 2 is a short presentation of synchronous 

software principles and current practice. 
• Section 3 reviews the most commonly used 

scheduling schemes for multi-rate synchronous 
software, with their benefits and limitations. 

• Section 4 describes the extended technique for 
multi-rate/multi-task software development in a 
synchronous framework. 

• Section 5 describes the application of this 
technique to avionics equipment software. 

• The conclusion summarises the benefits and 
limitations of this technique and draws 
perspectives for extensions of this technique. 

 

2.  Synchronous Software Development 
Techniques 

Objective of Synchronous Techniques 

Synchronous languages and their technology have 
been created in order to support the development 
and verification of reactive real-time systems for 
which confidence is essential, such that safety 
critical systems (eg: flight control software) or 
complex digital circuits. Indeed, when classical 
development techniques are used for real-time 
systems, development is complex, and it is 
extremely difficult or impossible to verify their 
behaviour, mainly because of the explosion of their 
state space. 
An excellent survey of the origin and state of the art 
for synchronous languages is provided in [9]. The 
synchronous languages Lustre [1], Esterel [10] and 
Signal [11] and are built on a common mathematical 
framework that combines: 

• Synchrony 
• Deterministic concurrency  
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The Essence of Synchrony 

One currently used definition of synchrony is that 
reactions take zero time. We prefer to consider that it 
uses an abstraction of time: 
The essence of synchrony is to: 
1) Abstract time as a sequence of discrete instants 
2) Restrict execution to a sequence of  atomic 
reactions.  
Reactions can be triggered by events or by time, as 
shown on Figure 1. 

 

Figure 1: Common synchronous execution schemes 

This type of model is used everyday under various 
forms in mathematics, automata, in the discrete-time 
dynamic systems of control engineering, and in 
synchronous digital logic familiar to hardware 
designers. 

Notation 

In the remainder of this chapter, we illustrate the 
synchronous approach using examples based on the 
SCADE language and tools, since this is the one we 
used for the application described in chapter 5. 
The SCADE language supports the combination of 
two notations that are familiar to control engineers:  
• Block diagrams to specify the algorithmic part of 

an application, such as control laws and filters 
• Safe State Machines (SSM) to model the 

behaviour.  
SCADE adds a rigorous view of these well known, 
but often insufficiently defined formalisms. SCADE 
has a formal semantics based on Lustre [1], with a 
precise definition of time and concurrency. This 
ensures that all programs generated from SCADE 
behave deterministically. SCADE allows for 
automatic generation of C code from these two 
formalisms. 
The basic building block in SCADE is called a Node. 
A node is a user defined function, built from lower 
level nodes, down to predefined operators (logical, 
arithmetic, delay, etc). A node can be represented 
either graphically (Figure 2) or textually (Table 1). 

 

Figure 2: Graphical notation for an integrator node 

Table 1: Textual Notation 

Concept Text Fragment 
Formal 
interface 

node IntegrFwd(  

    U: real ; 

    TimeCycle: real) 

    returns ( Y: real); 

Local 
variables 

var 

    delta : real; 

    last_Y : real; 

Equations delta = u * TimeCycle ;   

y = delta + last_Y ; 

last_Y = fby(y,1, 0.0); 

Timing and Causality 

SCADE provides an approach to properly deal with 
issues of timing and causality. Causality means that 
if datum x depends on datum y, and then y has to be 
available before the computation of x starts. A 
recursive data circuit poses a causality problem, as 
shown in Figure 3, where “throttle” depends on 
itself, via the ComputeTargetSpeed and 
ComputeThottle node. The SCADE semantic 
checker detects this error and signals that throttle 
has a recursive definition. 

 

Figure 3: Detection of a causality problem 

Inserting an FBY (delay) operator in the feedback 
loop solves the causality problem, since the input of 
the ComputeTargetSpeed block is now the value of 
throttle from the previous cycle as shown in Figure 4  

Functional Dependency and Concurrency 

The SCADE language provides a simple and clean 
expression of concurrency and functional 
dependency at the functional level, as illustrated by 
Figure 4. 
SetRegulationMode and ComputeTargetSpeed are 
functionally concurrent, since they are independent; 
the relative computation order of these blocks does 
not matter (since in SCADE there are no side 
effects). ComputeThrottle functionally depends on an 
output of ComputeTargetSpeed.  
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Figure 4: Functional expression of concurrency 

The application is described in terms of logically 
concurrent activities in block diagrams or SSMs. The 
user needs not spend time performing tedious and 
error prone dependency analyses to determine the 
sequencing manually; the focus is elevated to the 
functions rather than the coding.  
Concurrency and dependencies are taken into 
account during code generation. KCG, the current 
commercial code generator is able to automatically 
generate sequential deterministic code for a 
reasonably wide category of situations (see sections 
3 and 4 for the scope and limitations of sequential 
implementation). This code strictly conforms to the 
model’s semantics. Notice that there is no overhead 
for communication which is implemented internally 
using well-controlled shared variables and avoiding 
any context switching. 

Safe State Machines for discrete control 

Discrete control is used when the behaviour varies 
qualitatively as a response to events. This is 
characteristic of modal human-machine interface, 
alarm handling, complex functioning mode handling, 
or communication protocols.  
SCADE hierarchical state machines are called Safe 
State Machines (SSM). These can be freely mixed 
with data flow. SSMs are hierarchical. States can be 
either simple states or macro states, themselves 
recursively containing a full SSM. When a macro 
state is active, so are the SSMs it contains. When a 
macro state is exited by taking a transition out of its 
boundary, the macro state is exited and all the active 
SSMs it contains are pre-empted, whichever state 
they were in. State machines communicate by 
exchanging signals, which may be scoped to the 
macro state that contains them. 

Activ e

Stdby ConditionSpeed < SpeedMin

Accel > PedalsMin

Speed > SpeedMax

<SM3>

StandBy

CruiseStateSTDBY

On

local_CruiseSpeed

CruiseStateON

ThrottleCmd

Speed

2

CruiseRegulation

1

Stdby Condition

1

 not Stdby Condition

 

Figure 5: State Machine Fragment for Cruise Control 

The definition of SSMs strictly forbids dubious 
constructs found in other hierarchical state machine 
formalisms: transitions crossing macro state 
boundaries, transitions that can be taken halfway 
and then back-tracked, and so on. These are non-
modular, semantically ill defined, and very hard to 
understand, hence are inappropriate for safety-
critical designs. They are usually not recommended 
by methodological guidelines. 

3. Traditional Scheduling Schemes for Multi-
Rate Synchronous Software 

Separate Development and Tasking Technique 
With this technique, software modules that have to 
run at different rates are allocated to different tasks 
each running at the appropriate rate. These 
modules, which may be designed each as a 
synchronous model, are developed, scheduled and 
verified separately. There is no formal definition of 
the global behaviour. The global behaviour is 
generally not deterministic in the presence of 
execution time variations, and there are no 
techniques for accurately verifying this global 
behaviour, since testing or simulation can only 
explore parts of the complex state space. 

Single Tasking Scheme 

All software components run in a single task, 
activated at the highest frequency. This is best 
illustrated by the following example. 

The following application has two rates: Sys1, which 
is as fast as the top-level, and Sys2, which is four 
times slower, as shown on Figure 6. 

 

Figure 6: Basic Bi-rate Software Model 
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Sys2 is only executed every fourth time. It is 
executed within the same main top-level function as 
Sys1. This means that the code of whole application, 
Sys1 + Sys2, is executed at the fastest rate, which 
needs a powerful CPU. 

 

 

 

Figure 7: Basic Bi-rate Scheduling 

The solution consists in splitting the slow part into 
several smaller slow parts and distributing their 
execution on several fast rates. This is a safe way to 
design a multi-rate application. Scheduling of this 
application is fully deterministic and can be statically 
defined. The previous application example can be 
redesigned as shown on Figure 8.  

 

Figure 8: Multi-cycle Bi-Rate Model 

The slow part, Sys2, is split into four subsystems. 
Note that any data exchanges are possible between 
these decomposed parts, provided causality is 
respected (it is verified by the qualified code 
generator) and will be reflected correctly in the single 
task implementation.  

These subsystems are executed sequentially, one 
after the other, in four cycles, as shown on Figure 9. 

 

 

Figure 9: Multi-cycle Bi-rate Scheduling 

 

Advantages of this architecture: 

• It uses static scheduling; it is fully deterministic, 
and there is no risk of deadlock. 

• Data exchanges between subsystems are fully 
handled by SCADE (both at model level and by 
auto-code generator), respecting functional 
dependencies. 

• Synchronous simulation and proof are valid for 
the generated code. 

Constraints of this architecture: 

• It requires breaking the slow part into execution 
slices that are small enough to fit into the 
available time slots. This may be problematic 
when the control structure of the slow part does 
not match such a slicing. 

• It is necessary to handle the WCET (Worst Case 
Execution Time) of each slice to validate 
scheduling in all cases. The sum of the WCET of 
low part slices may be much larger than the 
WCET of the complete slow part. 

• Each change in the contents of the slow part 
may require redoing complex breakdown and 
WCET analysis. 

4. The Synchronous Multi-Rate Multi-Task 
Scheduling Scheme 

Objective of the presented technique 

The presented technique has the following 
objectives: 
• Support the global design and implementation of 

multi-rate software in situations where slicing of 
the slow part is problematic as explained above.  

• Support analysis of the global behaviour at the 
model level, for instance by simulation or formal 
verification. 

• To be implementable on a simple static priority-
based pre-emptive scheduler.  

• Ensure functional equivalence between the 
functional model and its implementation running 
in physical time. This equivalence has to be 
based on solid theoretical foundations. 

• Be efficient in terms of computing resources. 
• Last but not least, for usability in an industrial 

context, this shall be achieved by adhering to a 
standardised architecture with simple and easy 
to verify design rules. 

Foundations 

Contrary to a common prejudice, the scope of 
synchronous techniques is not inherently limited to 
periodic software, where single thread code is 
generated from a model. It is also a powerful 
framework for describing and analysing a wider class 
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of real time systems, such as multi-periodic or even 
sporadic processing. 
The technique presented in this paper is based on 
solid theoretical foundations, published in [3]. 
Compared to [3], we rely on usage conditions which 
simplify the design and verification tasks, thus 
making the approach affordable to common 
engineering practice. Tasks are periodic (not 
sporadic) and the presentation is limited to a 
situation with 2 tasks. We found these conditions 
appropriate for our application context. More general 
hypotheses may be adopted at the price of a higher 
complexity, using the approach described in [3]. 

Scheduling 

The application is composed of two periodic parts, 
named “minor” (noted “m”) for the faster one and 
“major” (noted “M”) for the slower one. TM (the 
period for M) is an integer multiple of Tm (the period 
for m). 
Deadline monotonic pre-emptive scheduling is used. 
Each task is assigned a unique priority. The task 
with the highest priority executes first. Tasks are 
periodic, and all periods are multiples of the shortest 
period called the ‘base period‘. 
The following constraints on the Worst Case 
Execution Time (WCET) are imposed: 

1. WCET(minor) + other < Tm 
2. N*WCET(minor+other)+WCET(Major)< TM 

where other includes time needed by other tasks (ex; 
input/output) and context switching. 

What is the Central Issue? 

No model or implementation can be considered as 
good by itself: we need representativeness of the 
model with respect to the implementation and 
determinism of both the implementation and the 
model. The central issue is to define a consistent set 
of modelling and implementation rules such that the 
behaviour of the model (as defined by the 
synchronous semantics, and reflected by simulators 
or formal verification tools) and the behaviour on the 
target are functionally equivalent: the same input 
sequence produces the same output sequence at 
the times where a subsystem communicates with 
outside. Indeed, the model semantics are defined in 
terms of logical instants (cycles), with no physical 
duration, while the execution of the real 
implementation runs in physical time. Execution time 
may vary within the limits defined in the previous 
section.  
For a single task implementation, equivalence is 
simply ensured if the Worst Case Execution Time 
(WCET) is smaller than the CPU time allocated to 
the task for a period. For a multi-rate, multi-task 
execution scheme, this is more complex; we also 
need to ensure that actual data, computation and 
ordering remain consistent despite variations in 

execution time under the WCET and scheduling 
hypotheses described above. 
As we shall see in the next sections, the key of this 
problem lies in the communication: what should be 
communicated and when should communication 
occur? 

Global Application Model 

We model the scheduling and communication in 
SCADE by creating a root node containing an 
instance of the following children nodes (see Figure 
10): 

• Node Major contains all SCADE nodes 
running on the major rate 

• Node Minor, contains all SCADE nodes 
running on the basic (fast) rate. 

• The connections formalise the 
communication to/from the environment and 
between these nodes. 

1

ClockGenerator

3

LowToHigh

InitVal

4

LowToHigh

InitVal

MainOut2

MainOut1

MainIn2

MainIn1

1

Major

InitVal InitVal

1

Minor

SlowClockSlowClockSlowClock

 

Figure 10: Model of a Synchronous Bi-Rate System 

The scheduling is expressed by putting the major 
node under control of a clock named SlowClock, 
which is true every major cycle. From a synchronous 
viewpoint, even the computation of the major node is 
instantaneous. In the real world, the minor process 
may interrupt the major process before it has 
completed its computation, and one may think that 
the synchronous model is inherently inappropriate to 
match reality. We will see in the following sections 
that this depends on communication. For the time 
being, let us consider that we have no formal model 
of communication between the major and minor 
nodes. We will define this communication based on 
analysis of the relationship between the model and 
the real world. 
 

Minor to Major Communication 

Communication from minor to major cycle can occur 
instantly after completion of minor cycle computation 
and is modelled by a direct connection from minor to 
major nodes. However, minor shall not communicate 
to Major during a computation of Major (see Figure 
11). The reason is that this might lead M into an 
inconsistent state. Assume for instance that m 
passes related data such as a pressure and its 
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related validity flag and that the output of m in cycle 
k contains a valid pressure with the validity flag set 
to true. Assume that M starts computing, sees that 
the pressure is valid and bases following 
computations of its current cycle on this validity. If 
m(k+1) m puts an invalid pressure (even with the 
validity flag set to false) into M’s input vector, this 
may clearly lead M to perform erroneous 
computations. The general rule for synchronous 
software is that the input vector of a component shall 
remain frozen during the complete computation of its 
cycle; this also concerns data coming from other 
parts of the real world.  

Major to Minor Communication 

Communication from major node to minor node 
requires specific handling. For simplicity, we will use 
as an example a situation where TM=2*Tm. 
First of all, let us analyse the most usual case, where 
M takes nearly as much as it WCET, i.e. it completes 
just before the next minor cycle where it will perform 
its new major cycle, as shown on Figure 11. In cycle 
k m is executed first and then it passes its output to 
M, which starts computing. M is interrupted and 
suspended by m executing its k+1 cycle. Then M 
resumes and completes computation of its major 
cycle during cycle k+1. The output of M is used as 
input by m at cycle k+2. 

m

Finish M

m m

k+1 k+2

Begin M Suspend 
M

 Figure 11: Case when M computes slowly 
 
Now, let us analyse the less intuitive situation shown 
in Figure 12, were (in some cycles) M needs 
significantly less than its WCET. In the example, M 
completes during cycle k+2, rather than cycle k+3. It 
would seem natural that M sends its output to 
computation k+3 of m. But if we do that, then the 
global behaviour will vary, depending on the current 
execution time of M. Even a variation of a 
microsecond in execution time of M may abruptly 
switch from the previous situation to this situation or 
vice-versa (this is a kind of chaotic behaviour). The 
global behaviour becomes non deterministic and 
impossible or extremely difficult to analyse. 

m

M

m m

k+2 k+3 k+4
 

Figure 12: Case where M computes faster than 
usual 

 
So, in order to keep the system deterministic, we 
should systematically communicate from M to m at 
the beginning of the minor cycle where M will starts 
its next major cycle, even if M finishes earlier. 

Model of the Communication 

We have analysed the behaviour in real time, so we 
can now define the communication scheme that will 
represent this consistently in the global model. The 
"LowToHigh" node is used in order to ensure that 
communication from major to minor occurs with a 
delay of one major cycle. Its reference definition 
(Figure 13) is a “fby” operator (unit delay) under 
activation condition by the slow clock.  

3

LowToHigh

InitVal  InitVal

FBY

1
Output1Input1

 
Figure 13: Low To High Node 

Summarizing Mapping between Logical and Real Time 

Table 2 summarises the mapping between the 
SCADE design specification (which is defined in 
logical synchronous time) and the implementation 
(which runs in real time on 2 processes and where 
computation time is variable). 
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Table 2: Mapping Logical to Physical Time 

Synchronous 
Model 

Target Program 

Minor node triggered 
every basic cycle 

Computation of minor C 
function at beginning of 
every minor cycle in minor 
process 

Major node triggered 
every major cycle (M 
basic cycles) 

Computation of major C 
function, in major process, 
starting after computation 
of minor function. It is 
distributed over one major 
cycle (N minor cycles).  

Communication from 
minor node to major 
node: is only taken 
into account by the 
major node at major 
cycles 

Just before starting 
computation of major 
function 

Communication from 
major node to minor 
node: contains a 
delay of one major 
cycle 

Just before starting 
computation of minor 
function in a cycle where 
major will start 

Implementation of the Model 

The code for nodes minor and Major can easily be 
automatically generated as pure sequential code, 
using a code generator such as the SCADE qualified 
code generator KCG. For each node there are two C 
functions: an initialisation function and a cyclic 
function, to be called at each cycle where the 
corresponding node has to be executed. 

On the contrary, the root node, modelling activation 
of minor and major nodes, and communication 
between them has to be understood as a conceptual 
model. It cannot be implemented by simple 
sequential code. This is for instance beyond the 
scope of the current KCG. However this is not a 
major issue, since the code implementing the root 
node is quite simple. It just contains: 

• Scheduling of minor an major processes using 
rate monotonic scheduling 

• Transfer of data between the processes in the 
exact conditions described above 

Data transfer has to be triggered either by the 
scheduler or by the fast process, if it can 
communicate with the slow process via shared 
memory. 

It has to be implemented partially manually, possibly 
using KCG as a support to generate part of that code 
(in particular data type definitions and  
communication patterns). 

Extension to Multi-Rate Software 

Some reasonably simple extensions of the above 
analyses can be made for periodic multi-rate 
software when rates ratios are all a power of two 
(more general situations require the solution 
described in [3]). 
First of all the principle for communication from a 
slow node to a fast node remains the same:  
• In the model, communication from a slow node 

to any other node has to be modelled as a delay 
of the clock of the slow node 

• In the implementation, communication from the 
slow task to any other task has to occur at the 
beginning of the next slow cycle 

Second, the introduction of modules with 
intermediary rates introduces additional potential 
problems: the start of the slowest computation may 
be delayed by a task with an intermediary priority up 
to another cycle. 

m

complete
M1

m m

M1

m m

k k+1 k+2 k+3 k+4

Begin M1 Suspend 
M1

Begin 
M2

Suspend M2 resume
M2

complete
M2

Suspend 
M2

 

Figure 14: Three rate scheduling and communication 

 
So, the rule is the following; when a task A produces 
data that is consumed by a lower rate task B, it has 
to write into an (A,B) communication buffer the data 
corresponding precisely to the basic cycle where the 
slower task is supposed to start logically (and not 
when it really starts). In the example shown on 
Figure 14, if medium priority task M1 completes only 
in cycle k+1, it will delay the start of the lowest 
priority task M2. Yet, m should communicate to M2 
its output from cycle k, and not its output from cycle 
k+1. 
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5. Application to Avionics Equipment Software 

Context 

Intertechnique company is part of Zodiac Aircraft 
Systems Segment. Its fuel management, oxygen and 
life support, electrical power management and 
monitoring and management safety-critical systems 
are installed in the airplanes and helicopters of all 
the leading international airframe manufacturers. 
Intertechnique chose to develop the software of a 
piece of safety-critical avionics equipment using the 
SCADE tool. 
The software is bi-rate deterministic scheduled. Two 
models were created, one for each task 
(minor_process, major_process).  
To check the behaviour of the global software, 
simulations were performed to make minor_process 
and major_process work together. 

Multi-task issues 

The main effort was the management of data 
exchanges between both tasks, as explained in the 
previous section. The decision was taken to 
experiment the use of KCG to generate a code 
which could work correctly on the real target. Since 
KCG is designed for generating single thread code, 
the code generated by KCG from the root node 
modelled in Figure 10 would not work correctly on 
the real target. The following approach has been 
adopted: build a root node such that: 
• From a modelling perspective it should be 

semantically equivalent to the model of Figure 
10 

• The generated code is such that it 
communicates appropriately thanks to buffering 
and triggering conditions. 

Communication from minor_process to 
major_process can occur instantly after completion 
of minor_process; however, re-entrance may have 
unwanted side effects on major_process. 

Since KCG passes structured data by reference, it 
might happen that a minor_process pollutes the 
inputs of the running major_process which it 
interrupts. 

On the other hand, inconsistencies can occur 
between inputs of minor_process of the first minor 
cycle and minor_process of the second minor cycle if 
communication from major_process to 
minor_process occurs instantly after completion of 
major_process. 

Thus, in order to ensure determinism, the 
communication from major to minor cycles shall 
occur only after full completion of a major cycle, 
rather than as soon as computation is completed 

Adopted Solution 

In order to avoid these communication issues, 
dedicated nodes were designed. 
 
Communication from minor_process to major_process 

Inputs of major node shall stay invariant during major 
node processing. Since the actual implementation 
runs on two threads (minor and major), 
communication from major node to minor node 
requires specific handling. 

This is ensured by inserting a dedicated node 
MinorToMajor activated before executing the node 
major_process. This MinorToMajor node shall not be 
interrupted. 

Input1 Output1  

Figure 15: MinorToMajor node definition 

The SCADE activation operator (condact) ensures 
that when activation condition is true, Output1 takes 
Inputs1 value and when activation condition is false, 
Output1 stays invariant. 
 
Communication from major_process to minor_process 
Inputs of the minor_process shall not be dependent 
of major_process time processing. 
Inserting a dedicated node MajorToMinor ensures 
that communication from major_process to 
minor_process occurs only before the first 
minor_process of the first minor cycle. This node is 
activated at each cycle (no activation condition). 

FBY

1

FBY

1
Output1

InitVal

Input1

Clock

 

Figure 16: MajorToMinor node definition: 

Leftmost "fby" stores the output of major_process; 
rightmost "fby" sends the last valid output from 
major_process. The switch sends the updated 
major_process output stored by the leftmost “fby” 
and updates the rightmost “fby”. 
The simulation scheduler node definition is then as 
follows, and includes also “and” gates to model a 
scheduling validity signal: 

LL_Transf erMinorToMajor

RootMajorWeight
RootMajorW eightOut

RootMinorW eightOut
RootMinorW eight

LL_N oScheduleError

LL_D oMinorCy c le LL_DoMajorCy c le LL_Transf erMajorToMinor

1

in_MinorToMajor

InitMinW eightO2_Cst

InitMinW eightO1_Cst

InitMajorWeight_Cst

1

in_MajorToMinor

1

MinorProcess

1

MajorProcess

  

Figure 17: Simulation Root Node 
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Benefits and Limitations  

Model driven simulation enables testing of functional 
software very early in the development cycle. 
Scheduling the model using the chosen architecture 
allows a global simulation and the detection of 
potential errors in data exchanges between minor 
and major cycles. 
This simulation activities reduced integration time on 
hardware by around 60%, most of functional 
malfunctions being detected early on simulation 
environment. 
Since the code generator is not designed to create 
multi-task code, human review of the code 
generated for the root node is required in order to 
check that it is compatible with the multi-task real-
time integration. The code for minor and major 
nodes runs in the nominal conditions for which KCG 
has been designed and qualified and so does not 
need to be reviewed. 

Perspectives 

Intertechnique chose to develop more software using 
the SCADE tool. SCADE 6, implementing new 
constructs, allows the use of model driven 
development on more programs than the previous 
versions. 
These new constructs, especially qualified state 
machines could ease the development of real-time 
simulations. This will be carefully studied by 
Intertechnique to continue reducing integration costs 
using scheduling simulation on simulation 
environment. 

6. Conclusion 

We have defined a simple and efficient technique for 
the development and verification of multi-rate 
software. This technique makes it possible to 
specify, implement and accurately verify the global 
behaviour of a multi-rate application, without paying 
the price for a complex synchronisation mechanism, 
such as semaphores or polling, and introduces no 
risk of deadlock. This was made possible by using 
the synchronous software concepts, not just as a 
means for implementing a piece of software in a 
program loop, but also as a powerful conceptual 
framework able to describe behaviour distributed 
over several tasks. 
Future work will explore the following areas: 
1 Use of the extended approach described in [5] 
2 Automation of the implementation of 

scheduling and communication 
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