
HAL Id: insu-02270096
https://insu.hal.science/insu-02270096

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using AADL to build critical real-time systems:
Experiments in the IST-ASSERT project

J Hugues, Laurent Pautet, B Zalila, P Dissaux, M Perrotin

To cite this version:
J Hugues, Laurent Pautet, B Zalila, P Dissaux, M Perrotin. Using AADL to build critical real-time
systems: Experiments in the IST-ASSERT project. Embedded Real Time Software and Systems
(ERTS2008), Jan 2008, toulouse, France. �insu-02270096�

https://insu.hal.science/insu-02270096
https://hal.archives-ouvertes.fr

Using AADL to build critical real-time systems:

Experiments in the IST-ASSERT project
J. Hugues1, L. Pautet1, B. Zalila1, P. Dissaux2, M. Perrotin3

1: GET-Telecom Paris, UMR 5141 CNRS, 46, rue Barrault – 75013 Paris, France
2: Ellidiss Technologies, 24, quai de la douane, 29200 Brest, France

3: European Space Agency, Keplerlaan 1 - 2201 AZ Noordwijk - The Netherlands

Abstract: In this paper, we discuss the use of the AADL
(Architecture Analysis and Design Language) in the IST-
ASSERT project, which spans from 2004 to 2007. In the
context of this project, the European Space Agency, in
collaboration with tool providers and academic partners
explored the use of AADL to build space systems. At the
completion of the project, we provide our report and
experiments on AADL for building critical systems.

Keywords: IST-ASSERT, AADL, MDD, Stood,
Ocarina.

1. Introduction

Building Distributed Real-Time Embedded systems
requires a stringent methodology. We note there is a
strong link between the requirements and the final
implementation (e.g. scheduling, resource dimensioning).
Modeling, formal verification and code generation are
state-of-the-art solutions to discuss requirements, validate
and implement a design.

The IST-ASSERT project, part of the 6th framework
program of the European Commission aimed at providing
tools, methods and runtime environments to ease the
development of space critical systems. This project began
in 2004, and will see its conclusion in January 2008. This
project involved 30 partners from both the industrial and
academic domain, for an overall budget of 15MEUR. At
the completion of the project, we draw some conclusions
on the outcome of this project.

Being an integrated project, ASSERT explored many
trends and solutions. There is not one common result in
the project, but instead a full range of solutions for
different steps in the engineering of complex systems.

In the remainder of this paper, we focus on the AADL
related results of this project. The SAE AADL language
was a novel aspect of ASSERT. After is standardization in
2004, AADL has been highly assessed by ASSERT
partners. Constructive feedback has been provided to
serve as “lessons learned” for defining AADLv2.

In the next sections, we present the ASSERT project, and
more specifically the ASSERT process for building space
applications. We then present the incarnation of this
process using AADL as a backbone to model applications.

We finally describe a case study based on the integration
of SCADE and SDL models. We show how an integrated
tool-suite based on AADL allows complete code
generation from high-level models to high-quality code,
conformant with ESA standards.

2. The ASSERT Project

The ASSERT Project (Automated proof-based System
and Software Engineering for Real-Time systems) is an
integrated project partially funded by the European
Commission within the Information Society Technologies
priority of the 6th Framework Programme in the area
embedded systems.

The project is coordinated by the European Space Agency
(ESA), and is a consortium made of 28 partners
representing the space industry, research laboratories,
software houses and tool developers. The project started
in September 2004 and ended in January 2008.

The main objective of ASSERT is to change the way
system and software engineering is performed today to
adopt a more reliable and scientific approach based on
modeling, preservation of system properties and model
transformation down to the final code.

The current results include a process, a set of tool
prototypes and case studies demonstrating the validity of
the overall approach. The figure 1 recaps the main logic
of the ASSERT process.

The process consists in three phases:

• A modeling phase, where the developer captures
the functional and non functional properties of
his system,

• A model transformation and verification phase,
which automatically verifies the feasibility of the
system,

 Page 1/8

• An automatic code generation phase which
produces a distributed real-time software system
that is ready for download on hardware target.

Capture of the
hardware architecture

Capture of the
Modeling phasesystem properties

Capture of the Capture of the
Modeling phase hardware architecturesystem properties

System real-time
architecture

Model transformation

System real-time
architecture

System real-time
architecture

Model transformation

Feasibility analysis

Complete system

Real-time
operating system

Automatic
code generation

Complete system

Real-time
operating system

Automatic
code generation

Figure 1 ASSERT Process

One of the main characteristics of this process is that,
except in the first phase, it is fully automated, This means
that apart from a set of models, no human intervention is
required to generate a complete software system made of
physically distributed nodes, and possibly developed
using heterogeneous modeling languages and tools.

The “zero manual-coding” approach has been in the heart
of the whole ASSERT logic and has driven the
development of innovative technologies and tools that
until now only existed as theoretical concepts.

To support this approach, two pillars have been built, that
we have called the Interface view and the Data view. The
objective behind these views is to capture as much
“implementation-neutral” information about the system as
possible, without constraining the user to select one
particular development environment for describing the
behavior of his system. The Interface view helps the user
capture his system structure, identify functional blocks,
and set non-functional attributes to interfaces. Example of
such attribute can be a period for activating a function
(see figure 2).

The Data view, on the other hand, contains the description
of all the messages that are exchanged between functional
blocks, in an implementation language-neutral
representation. We use for this description the ASN.1
notation that gives enough expressive power to represent
complex data types together with means to automatically
generate binary encoders and decoders at code level.

The functional blocks themselves can be implemented in
virtually any modeling language; provided that a tool
exists that can generate code for the behavior of the block.
This is where the tools develop in ASSERT enter the

game: by reading the Interface and Data view, they will
detect that a given (known) code generator is used and
automatically generate wrappers (that we call containers)
to make a link between the functional code and the run-
time environment to send and receive messages.

MODE MANAGEMENT

> run
> fdir

> calc

Functional view

Functional view

FBY

1 falsestop

statusstart

safe

op

go_op/
start

fdir

safe

op

go_op/
start

fdir >start

FDIR

> start

> alarm

Functional view

>fdir

proces s ABB1

idle

PI1

RI1
(myData)

w ait_ABB2

w ait_ABB2

PI2

idle

MODE MANAGEMENT

> run> run
> fdir> fdir

> calc> calc

Functional view

Functional view

FBY

1 falsestop

statusstart

safe

op

go_op/
start

fdir

safe

op

go_op/
start

fdir >start

FDIR

> start> start

> alarm> alarm

Functional view

>fdir

proces s ABB1

idle

PI1

RI1
(myData)

w ait_ABB2

w ait_ABB2

PI2

idle

Start-param ::= SEQUENCE {
cmd-word T_COMMAND,
mode-flag BOOLEAN

}
T-COMMAND ::= ENUMERATED
{ switch-on, switch-off }

DATA MODEL IN ASN.1

Start-param ::= SEQUENCE {
cmd-word T_COMMAND,
mode-flag BOOLEAN

}
T-COMMAND ::= ENUMERATED
{ switch-on, switch-off }

DATA MODEL IN ASN.1

Activation => CYCLIC
Period => 100 ms
WCET => 25 ms
Language => SCADE6

NON-FUNCTIONAL ATTRIBUTES

Activation => CYCLIC
Period => 100 ms
WCET => 25 ms
Language => SCADE6

NON-FUNCTIONAL ATTRIBUTES

Figure 2 Modeling an application

When it is appropriate, the contents of data structures are
automatically marshaled in a compact binary format
before being transmitted to a network. This mechanism,
that is added automatically, is required when sending data
in an heterogeneous environment, or when the bandwidth
of a bus is too limited to simply send a memory dump.
ASN.1 tools are used for the encoding and decoding
phases. When not needed, of course, the encoding
functions are not used.

The ASSERT technology can be adapted to any existing
modeling framework and associated code generator (so
far ObjectGeode SDL, SCADE, Simulink and Rhapsody
are supported) to build the functional parts.

The last “brick” of the ASSERT toolset is the virtual
machine (VM). This essential element is made of a real-
time and distributed operating system that is able to
ensure the preservation of the non-functional properties
expressed in the Interface view.

3. The “AADL” track

The ASSERT development process is composed of a set
of modeling and production activities which steps can be
summarized as follow:

- Data View: Definition of a set of data structures that
must be expressed in ASN.1;
- Functional View: Definition of a set of applicative
operations that can be implemented in various
implementation or modeling languages (Ada, C, Lustre,
SDL, etc.). Operation parameters must refer to data types
defined in the Data View.

 Page 2/8

- Interface View: Definition of a set of interacting
Application level containers (APLC). APLC interfaces
must refer to operations defined in the Function View.
- Concurrency View: Definition of a set of interacting
Virtual Machine level containers (VMLC). VMLC model
aims at being automatically deduced from the three
preceding views, by applying generation rules known as
“Vertical Transformations”.

The VMLC model can then be processed again, firstly by
binding it onto execution platform architecture defined in
a Deployment View, then by generating target language
source code (i.e. Ada or C) to produce a set of executable
files to be run on top of an ASSERT compliant run time
executive.

The ASSERT development process has been implemented
in two parallel tracks. One of them uses the HRT-UML
technology, and the other one is based on the Architecture
Analysis and Design Language (AADL) international
standard. This latter implementation of the ASSERT
process, known as the “AADL track” is presented in
details in this paper.

3.1 A Quick Overview of AADL

In this section, we provide a quick overview of the AADL
modeling language. AADL is a versatile modeling
language that can provide a basis to model all aspects of a
system.

AADL (Architecture Analysis and Design Language) [1]
aims at describing DRE (Distributed Real-time
Embedded) systems by assembling blocks separately
developed. The AADL allows for the description of both
software and hardware parts of a system. It focuses on the
definition of clear block interfaces, and separates the
implementations from these interfaces. It can be expressed
using both a graphical or a textual syntax.

An AADL model can incorporate non-architectural
elements: embedded or real-time characteristics of the
components (execution time, memory footprint, etc.),
behavioral descriptions, etc. Hence it is possible to use
AADL as a backbone to describe all the aspects of a
system.

An AADL description is made of components. The
AADL standard defines software components (data,
thread, thread group, subprogram, process), execution
platform components (memory, bus, processor, device)
and hybrid components (system).

Components describe well identified elements of the
actual architecture. Subprograms model procedures like in
C or Ada. Threads model the active part of an application
(such as POSIX threads). AADL threads may have
multiple operational modes. Each mode may describe a
different behaviour and property values for the thread.

Processes are memory spaces that contain the threads.
Thread groups are used to create a hierarchy among
threads. Processors model micro-processors and a
minimal operating system (mainly a scheduler).
Memories model hard disks, RAMs, buses model all
kinds of networks, wires, devices model sensors, etc.
Unlike other components, Systems do not represent
anything concrete; they actually create building blocks to
help structure the description.
Component declarations have to be instantiated into
subcomponents of other components in order to model an
architecture. At the top-level, a system contains all the
component instances. Most components can have
subcomponents, so that an AADL description is
hierarchical. A complete AADL description must provide
a top-most level system that will contain the other
components, thus providing the root of the architecture
tree. The architecture in itself is the instantiation of this
system.

The interface of a component is called component type. It
provides features (e.g. communication ports).
Components communicate one with another by
connecting their features. To a given component type
correspond zero or several implementations. Each of them
describe the internals of the components: subcomponents,
connections between those subcomponents, etc. An
implementation of a thread or a subprogram can specify
call sequences to other subprograms, thus describing the
execution flows in the architecture. Since there can be
different implementations of a given component type, it is
possible to select the actual components to put into the
architecture, without having to change the other
components, thus providing a convenient approach to
configure applications.

The AADL defines the notion of properties that can be
attached to most elements (components, connections,
features, etc.). Properties are attributes that specify
constraints or characteristics that apply to the elements of
the architecture: clock frequency of a processor, execution
time of a thread, bandwidth of a bus, etc. Some standard
properties are defined; but it is possible to define one’s
own properties. A more detailed introduction to the
AADL can be found in [2].

3.2 Data View

Applicative data types must be specified using the
specialized ASN.1 language. An utility tool provides an
automatic conversion of these data type descriptions into a
sequence of AADL declarations that allows for a proper
reference of these data types during the other phases of
the ASSERT modeling process in AADL.

References to ASN.1 data types are represented by AADL
Data components types and implementations whose

 Page 3/8

specification may be located inside a separate package or
copied into the others “views” that must reference them
for the purpose of typing ports, subprogram parameters or
shared data subcomponents.

3.3 Functional View

Applicative functions can be described as black boxes by
AADL subprogram components. Such an AADL
representation of applicative functions consists in a
subprogram component type expressing a typed parameter
list if any, and a subprogram component implementation
providing necessary details about the actual
implementation language, the name of the corresponding
piece of code in the source files and the functional
dependencies (required remote functions).

Additional information such as worst case execution time
can also be handled by appropriate AADL properties to
allow for various checks (schedulability, dependability,
etc.). The set of AADL subprogram components that form
the “Function View” can be grouped inside a separate
package or directly included inside the other “views” that
reference it. The picture below represents a functional
view, with a set of cascaded calls.

Figure 3 Functional View in AADL

3.4 Interface View

This view is the only one of the overall ASSERT process,
that required some semantic add-ons to the standard
AADL definitions. The “Interface View” can be
expressed by a set of interacting AADL system
components whose interfaces contain respectively in and
out event ports, representing provided and required
services.

Interfaces define interactions between the components. To
bring precise hard real time semantics, the ASSERT
project restricted the semantics of the interactions to the
one amenable to verification. ASSERT retained the
Ravenscar Profile[6], defined in the context of the Ada
language. This profile defines a subset of concurrent
interactions that can be fully analyzed.

The Ravenscar profile can be adapted to other semantics,
and formed the root of the computational model supported
by the interface view: the Ravenscar Computational
Model. The precise RCM semantics is brought by a few
specific AADL properties that have been invented for that
purpose and are specified within the ASSERT property
set: a few properties have been defined to represent cyclic
(CYC), sporadic (SPO) or protected activities (PRO).

The components defined in this view are called
Application-Level Components (APLCs).

Figure 4 Interface View in AADL

3.5 Deployment View

The description of the execution platform and the
allocation of the software entities onto it can be performed
in standard AADL. In an AADL operational system,
computing hardware is represented by a set of processor
and memory components, whereas executable software is
composed of a set of threads within a process. Binding
properties allows for proper allocation of threads to
processors and processes to memories.

3.6 Concurrency View

The Interface View defines a high-level abstraction of the
model, made of APLCs. To go downwards to fully
executable system, we map this interface view, made of
cyclic, sporadic or protected activities onto AADL
components that actually perform such actions, namely
threads and data components. These components are
referred to as VM-level containers.

The full definition of a software architecture in terms of
ASSERT run-time compliant entities (VMLCs) could be
directly performed in AADL, by specifying a set of
interacting threads and shared data within processes.
However, one of the goals of the ASSERT development
process consists in enforcing automatic construction of
the concurrent software architecture from the previous
modeling views of the application. Such a generation of

 Page 4/8

the “Concurrency View” from the other views is known
as the “Vertical Transformations”.

By mapping the interface view (an ASSERT-specific
model) onto the concurrency view, we retrieve the
benefits of a fully standardized model that can be
analyzed using AADL compliant tools.

3.7 Code Generation

Concurrency, Deployment and Data views are three
complementary AADL models that define orthogonal
aspects of a system. By combining these three models, the
user has a full view on his system.

Each AADL model is completed with supporting code;
e.g. functional views come with SDL or SCADE models
and associated C code, Data views come with ASN.1
models and ASN.1 C marshalling code. From the
concurrency view, one can derive a set of concurrency
constructs that will animate these codes.

We developed the Ocarina toolsuite as a “compiler for the
AADL”. Ocarina maps AADL constructs onto a runtime
that supports the semantics of AADL. We also devised
PolyORB-HI, a runtime that supports both AADL and
Ravenscar, written in Ada2005.

Ocarina maps the various components of the AADL
model onto corresponding pieces of code. It supports both
local and distributed interactions. To do so, it fully
exploits information from each view to build concurrent
entities that will animate the model:

• Data view: it defines type exchanges, so it is
used to produce ASN.1 marshallers. One can also
deduce an upper bound on the memory required
to exchange information;

• Interface view: it defines signatures of the
functional blocks, from which one can deduce
stub/skels (a la CORBA) to send/receive
requests and process them on each node;

• Concurrency view: it provides definition of
computational resources (threads, mutexes, etc.)
required to support the semantics of this system.

• Deployment view: it defines the position of the
different entities, and the communication path
between them. It is used to configure the
different naming tables within the system.

By exploiting these different views, Ocarina generates
Ada code that is fully compliant with both the Ravenscar
profile, the restrictions defined by ESA for on-board
space systems; and reflects the execution profile defined
in the system.

4. Tool support
The ASSERT “AADL track” is supported by a tool-chain
prototype that is composed of the following elements:

• ASN.1 to AADL conversion tool, a C framework
and associated code generator to build ASN.1
marshallers developed on purpose by Semantix;

• Stood AADL modeling tool, and vertical
transformation engines developed by Ellidiss [4];

• Ocarina AADL code generator and associated
runtime developed by ENST University [5].

One of the advantages of using the AADL track for
supporting the ASSERT process is that it is possible to
express the various modeling views in a textual way, by
the mean of a simple editor.

However, in order to enforce the guided modeling process
that is promoted by ASSERT, a prototype customization
of the Stood graphical AADL tool has been performed
during the project to support the Data, Function, Interface,
and Deployment Views, as well as the Vertical
Transformations. The following chapters show how these
various modeling steps are currently supported by Stood.

5. Evaluation

To assess the AADL track, we have worked on a system
based on a real industrial case-study. This case study
comprises behavioural models developed in specialized
languages: SDL for state machines and SCADE for
dedicated computation of algorithms. The idea behind this
choice was to demonstrate how the ASSERT process
could handle a development where independent teams
work separately and develop sub-systems using the most
appropriate language.

5.1 Case study

This case study is representative of real system
development, in particular in the space domain where
industries are spread all over Europe, and where
communication between teams is hard to manage.

In that context, it is frequent that incompatible interfaces
are discovered at integration time only. The cost for
updating pieces of software and validating the global
consistency of these systems is therefore high.

In our case study, we have specified, at system level, a set
of functional blocks communicating together and put a
high effort in describing the precise data model in ASN.1.
This data model contains about 70 complex data types
that are used to describe messages between the state
machines and data to feed the calculation functions.

 Page 5/8

The system is a real-time system that has the following
cyclic behaviour:

• At each cycle one function reads some sensors
and make calculation to estimate the position of
the spacecraft and send data to Earth,

• One cycle out of five, another function is
triggered by the first one to calculate some
actuators output sent back to the first function;
the time of this calculation is unknown (it is not a
synchronous, blocking call);

• The cyclic function continues being activated
and making some calculation waiting for the
answer of the second one; once it gets it, it sends
the results to control the actuators.

We consider this system as distributed: the first (cyclic)
function is on one processor, and the second one on
another processor. Each physical node contains a complex
state machine and several calculation functions that work
on their own static data. Some of these functions are
therefore protected and are purposively developed by
independent teams.

The main non-functional property we require in the virtual
machine is to guarantee an end-to-end reactivity between
the reading of the sensors and the action on the actuators.
In the scope of this paper we do not enter into the details
on this aspect since what we want to show here is how the
use of AADL to describe the system concretely help
software engineers to build their system without writing
any line of manual code, in particular to make the data
structure conversions and link with the virtual machine.

5.2 Building system’s views

To build this system, we first devised the Data view of the
system: an ASN.1 model of the different data types to be
exchanged by the different functions to represent states.
From this ASN.1 model, ASN.1 tools produce an AADL
model that references these types, and a set of C functions
for the corresponding marshallers .

Then, we defined the Functional view of the system. For
each automaton, we defined a SDL model to represent the
behaviour of the system. For each computation function, a
SCADE model is built. From these models, we also
produced automatically a set of AADL models, and
generated code using vendor-provided code generator.

The next step is to produce the Interface view,
representing the interaction between the different blocks:
the SDL models are embodied by sporadic containers,

each port of the SDL model is mapped onto a port of this
container. SCADE models are passive subprograms called
by the sporadic containers. Cyclic activation (“clock”
signal) is performed by a cyclic container.

The figure 3 shows an example of an APLC with sporadic
activation of its interface. The figure is followed by the
corresponding AADL textual specification where the
ASSERT specific properties have been highlighted.

Figure 3: Sporadic activation in AADL

SYSTEM APLC
FEATURES
 op1 : IN EVENT PORT
 { Compute_Entrypoint => "OPCS1";
 Assert_Properties::RCMoperation

=> SUBPROGRAM OPCS1;
 Assert_Properties::RCMoperationKind

=> sporadic;
 Assert_Properties::RCMPeriod

=> 100 ms; };
 op2 : IN EVENT PORT
 { Compute_Entrypoint => "OPCS2";
 Assert_Properties::RCMoperation

=> SUBPROGRAM OPCS2;
 Assert_Properties::RCMoperationKind

=> variator; };
 op3 : IN EVENT PORT
 { Compute_Entrypoint => "OPCS3";
 Assert_Properties::RCMoperation

=> SUBPROGRAM OPCS3;
 Assert_Properties::RCMoperationKind

=> variator; };
END APLC;

SYSTEM IMPLEMENTATION APLC.others
SUBCOMPONENTS
 FS : DATA FUNC_STATE;
PROPERTIES
 Assert_Properties::RCMoperationWorksOn

=> REFERENCE FS APPLIES TO op1;
 Assert_Properties::RCMoperationWorksOn

=> REFERENCE FS APPLIES TO op2;
 Assert_Properties::RCMoperationWorksOn

=> REFERENCE FS APPLIES TO op3;
END APLC.others;

 Page 6/8

Finally, the Deployment view is built to define the
mapping of functions onto computational resources.

Figure 5: AADL Deployment View with Stood

Let us note these different models can be built by different
teams, independently and then gathered to form the
complete system.

Tools play a big role for the system designer. One can use
the most adequate tool for these different steps, e.g.
ObjectGeode, SCADE Studio, ASN.1 editors for Data and
Functional Views. The Interface and Deployment views
require either a simple textual editor, or an AADL CASE
tool like STOOD.

The genericity of the ASSERT process also comes from
the capability to let the designer use the most adequate
tools for its current task. Versatility of AADL helps
combining models in an easy way.

5.3 Weaving views

The Interface view is an abstraction to ease the modelling
of the system, but it remains non-standard. The first
automated step is to map this view onto the concurrenct
view, that is plain AADL.

This step is supported by STOOD. STOOD supports a full
model-to-model transformation engine, built around
declarative rules. These rules are exercised on the system
until the model does not evolve anymore. Each rule maps
one high-level constructs (cyclic container, protected
activity), onto a lower-level AADL equivalent one
(AADL thread, data component).

Data, Functional, Concurrency and Deployment views
denote orthogonal models that can be combined to form
the system. To each element of this models, a piece of
code can be attached (ASN.1 C marshaller, SCADE node,
concurrent Ada code).

Ocarina exploits these different views to deduce the exact
set of threads, buffers required to animate the model.
Furthermore, it produces the naming table, stubs and
skeletons to support interactions among nodes.

The next step is to use an orchestration builder script so
that the different pieces of code are woven together to
form the final application. Defining such script is highly
technical: it involves understanding precisely how the
each code generator produces code so that one can “plug”
other code, e.g. calling SCADE code from a SDL model;
triggering a SDL port. By defining a complete process,
the system designer only needs to focus on its own set of
models: Data, Functional and Interface views. From these
models, a complete automated process handles code
generation.

Current tool support allows one to process this case study,
leading to a full running example.

5.4 Running the system

The different tools generate either portable C or Ada code.
We compile the system on native platforms, or embedded
one. ASSERT partners defined an Ada compiler for the
LEON2 processor. This processor has been selected by
ESA for its next generation platforms. Final executable
runs well on either the tsim LEON simulator, or Gaisler’s
RASTAN boards, meeting all resource requirements.
However, it will be optimized in next iterations of
ASSERT.

Let us note this case study was performed without writing
a single line of code; focusing on the models and moving
directly to executable system is a key achievement of the
ASSERT project. This achievement had to be validated by
industrial partners to strengthen ASSERT achievements,
with actual systems run on their own development boards.
Other case studies, proposed and performed by ASSERT
industrial partners demonstrated the same level of
achievement.

6. Lessons Learned
During this exercise, we have been able to assess the
suitability of AADL to capture a system’s structure,
interfaces, and non-functional attributes, in order to
“implement” the assert process.

Given the initial requirements from the project, it was first
not possible to directly map all the project’s “entities” to
AADL constructs. In general, the first evaluations showed
that AADL was more suitable to express physical system
architectures rather than more abstract logical architecture
(independent from implementation), and this first glance
led to discard AADL as the main system language by
some assert partners, in favour of a UML profile.

But it quickly appeared that AADL had also unique
strengths and potential that UML could not compete with
(such as being an unambiguous textual language, as
opposed to an informal graphical notation with “fuzzy”
semantics). If data types are not well supported in AADL,

 Page 7/8

it was possible to build an elegant way to make a link with
another textual-friendly notation (ASN.1). Such flexibility
allowed us to quickly build tools around AADL to
connect AADL partial models to other modelling tools (so
far, we tested ASN.1, SCADE, SDL).

Besides, AADL appeared to be a very flexible language
that goes further than most conventional modelling tools
thanks for example to the extensible properties
mechanisms. Here, there is no complex “stereotypes” and
“tags” expressed as extensions of a meta-model, but
simple property sets that allow us to combine the use of
ASSERT-specific system attributes with standard, off-the-
shelves AADL tools. Such property sets are defined as
plain-text for easier adaptation. Tool support can then
simply parse these new property sets to add new
capabilities.

Let us note also that the graphical AADL notation,
supported by the STOOD tool, is used by ESA as a
complement to the textual notation to give a higher-level
view of the model when required.

In the future it is planned to improve the graphical AADL
notation and CASE tool to provide a more integrated
toolset and guide the user through all the steps of the
process. At the moment, the automated part concerns the
code generation, once all the models are ready.

Current tools do not help much yet on the best ways to
build these models: how to capture the system
architecture, defining the semantics of these attributes, the
best step in the process to set them, how to select the most
appropriate language to model the system behaviour, etc.
Such extension to build “wizards” is certainly an
important challenge for future industrial projects.

7. Conclusion
In this paper, we showed the main achievements
performed within the scope of the ASSERT project.

The ASSERT project focuses on the definition of an
integrated process to build ESA next generation mission –
critical systems. By focusing on model-driven
engineering, we aimed at exploiting state of the art
software engineering process.

ASSERT defines a generic process, where one defines
high-level components (APLCs), data types and
functional models (expressed using industry-strength tools
like SDL, SCADE …). By mapping these different
models onto an AADL model, we showed how to
combine these complementary views to build a full
executable model of the system, expressed in standard
AADL 1.0; and then to generate code from it. Generated
code combines code from different origins; AADL, SDL,

SCADE, ASN.1 code generator’s output is orchestrated to
produce one full executable.

We validate this approach on industrial case studies
provided by ESA. Such evaluation demonstrated the
pertinence of the approach. Code quality is satisfactory,
model are built in full compliance with the ASSERT
process and is partially automated from model to code.

Future work, to be carried out in further projects, will
contemplate defining tools to help building models. This
is a strong industrial challenge for complex critical
systems.

8. Acknowledgement

This work has been funded in part by the IST Program of
the European Commission under project IST-004033
(ASSERT). The authors thank the different partners of
this project for their valuable feedbacks when defining the
ASSERT process.

9. References

[1] SAE: “Architecture Analysis & Design Language
(AS5506)”, available at http://ww.sae.org, 2004

[2] Feiler, P. H., Gluch D. P. and Hudak J.J : "The
Architecture Analysis & Design Language (AADL):
An Introduction ", Tech. rep. CMU/SEI-2006-TN-
011, 2006

[3] ISO/IEC 8652:2007: “Annotated Ada 2005
Language Reference Manual”, 2007

[4] Ellidiss-Software: “STOOD”, available at
http://www.ellidiss.com/stood.shtm, 2007

[5] ENST: “Ocarina”, available at
http://aadl.enst.fr/ocarina, 2007

[6] Brian Dobbing, Tullio Vardenega and Alan Burns.

Guide for the use of the Ada Ravenscar Profile in
high integrity systems. January 2003.

 Page 8/8

http://ww.sae.org/
http://www.ellidiss.com/stood.shtm
http://aadl.enst.fr/ocarina

	3.1 A Quick Overview of AADL
	3.2 Data View
	3.3 Functional View
	3.4 Interface View
	3.5 Deployment View
	3.6 Concurrency View
	3.7 Code Generation
	5.1 Case study
	5.2 Building system’s views
	5.3 Weaving views
	5.4 Running the system

