
HAL Id: insu-02270097
https://insu.hal.science/insu-02270097

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code Generation Strategies from AADL Architectural
Descriptions Targeting the High Integrity Domain

Julien Delange, Jérôme Hugues, Laurent Pautet, Bechir Zalila

To cite this version:
Julien Delange, Jérôme Hugues, Laurent Pautet, Bechir Zalila. Code Generation Strategies from
AADL Architectural Descriptions Targeting the High Integrity Domain. Embedded Real Time Soft-
ware and Systems (ERTS2008), Jan 2008, toulouse, France. �insu-02270097�

https://insu.hal.science/insu-02270097
https://hal.archives-ouvertes.fr

Code Generation Strategies from AADL Architectural Descriptions
Targeting the High Integrity Domain

Julien Delange, Jérôme Hugues, Laurent Pautet, Bechir Zalila

GET-Télécom Paris – LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris cedex 13, France

{name}@enst.fr

Abstract: Distributed Real-time Embedded (DRE)
systems are increasingly used in critical domains
such as avionics, vehicle and industrial control as
well as in medical systems. They must be designed
carefully and have to provide safety properties
because a failure could mean loss of life. For these
reasons, it is recommended to automatically
generate a significant part of the code from the
models describing the critical aspects. In our
approach, we automatically generate two kinds of
code from architectural models. The first one plugs
the user functional code in the middleware, the
second one provides a significant part of the
middleware functions. Both rely on a hand coded
written middleware that provides the minimal
facilities to plug the generated code and to resolve
portability issues. In this paper, we present our code
generator and the middleware designed to generate
High Integrity (HI) systems. We demonstrate via
several use-cases how we succeeded in meeting the
requirements of DRE systems (small memory
footprint, no dead-code, etc...).

Keywords: AADL, code generation, high integrity

1. Introduction

Developing High Integrity (HI) systems is very
difficult compared to classical ones as they are used
in safety-critical domains such as space or avionics.
These systems have to conform to strong
requirements (small memory footprint, limited
computation capacity) and standards.
 Manually writing HI applications appears to be
very tedious for the developer. It is also very difficult
to comply with standards and requirements. It is
preferable to automatically generate a large part of
the code from analyzable models. Thus, the code
generation process avoids all programming errors
introduced by manual coding and ensures that it
follows the properties included in the model. In
addition, using model transformation, this process
produces a verifiable model (e.g.: Petri Net) from the
application model. It is simpler and safer than
producing this model from source code.
 AADL, which stands for “Architecture Analysis
and Design Language” [1] is an architecture

description language that allows the modelling of
distributed, real-time embedded applications. AADL
was first introduced to model the hardware and
software architectures in the avionics domain, but
was later extended to the general DRE (distributed
real-time embedded) domain. This pedigree results
in a language that is more amenable to static
analysis and verification than other more general
purpose modelling languages.
 Our past work led us to the design of a Ada
Ravenscar code generator [2] from AADL models.
The Ravenscar Profile [3] is a subset of rules and
coding guidelines for Ada that ensure certain
properties including static schedulability analyzability
and the absence of deadlock. Generation of
Ravenscar compliant Ada code ensures that the
generated code provides these properties. However,
Ada needs a specific runtime and this may reduce
the range of potential executive platforms. On the
contrary, the C language can be used on more
platforms than Ada. However, the C language does
not provide any static analysis method at compile
time such as Ravenscar, so we have to create it by
hand.
 The process of producing a working
application from an AADL model is divided into two
main parts: a code generator and a minimal
middleware. The code generator automatically
produces C code from AADL models. The generated
code relies on a minimal middleware that provides
all the services it needs by the generated code. The
middleware is considered as minimal because it only
contains the functions requested by the application.
Moreover, a large part of the middleware is
automatically generated from the model, whereas
another part is statically written. In our work, we
focus on embedded systems, so we designed the
middleware to be compliant with the requirements of
such high integrity and embedded systems (small
memory footprint, etc...).
 In the remainder of this paper, we present the
AADL language, the Ravenscar profile and give an
overview of the code generation process. We
explain the internals of the code generation process.
Then, we present the minimal middleware we
created to use the generated code:
PolyORB-HI-C [4]. We present its design and

 Page 1/9

architecture. We give three use cases and the
platforms used to perform our tests. Finally, we
conclude and give some ideas for future work.

2. Context

In this section, we give an overview of AADL [1, 5],
the language used to model critical systems. Then,
we present the Ravenscar profile for Ada and what it
implies for the code we generate. Finally, we
describe the code generation process.

2.1 Overview of AADL
AADL has been designed by the SAE (Society of
Automotive Engineers). This language has been
created to model the architecture of systems. It
allows the description of both software and hardware
parts of a system and focuses on the definition of
clear block interfaces and separate implementations
from these interfaces. Models can be expressed
using a graphical or textual interface.
 The standard property set of the language and
the possibility to add new ones offers a way to
model low-level aspects of the system and defines
the specific behavior of each component. The fine-
tuning of the model and the code-reuse ability
constitute great advantages for choosing this
modelling language.
 AADL defines several components, each of
them models a hardware or software entity.
Hardware components are

• Processor: models the processor of the
system and the underlying executive. In
other words, this component represents the
operating system and the architecture of the
system. For a standard computer, we
declare a processor component and add
properties to tell that it represents an x86
platform with a Native operating system
such as Linux or Windows.

• Memory: models any memory in the system,
from RAM to ROM, or hard drives.

• Bus: models different kinds of networks,
wires, etc...

• Device: models any other device in the
system (sensor, motion detector, etc...).

Software components are :

• Process: models a single address space.
The notion expressed in this component is
similar the UNIX process. As in operating
systems, a process component can contain
thread components.

• Thread: models lightweight process. This
component can be understood as a POSIX
thread. It can contain subprogram calls.

• Subprogram: models a flow of instructions.
This component typically represents a

function or a procedure in a language. An
execution unit (such as thread) can declare
call section to invoke subprograms.

• Data: models a type manipulated by an
entity of the system. For example, it can be
used to describe the type of the arguments
of a subprogram or any variable declared in
an execution unit (such as thread).

 A special component (system) aggregates all
the components of the system.
 Components can contain subcomponents, in
order to describe the hierarchy of the system. For
example, a process component can contain several
thread components. AADL contains a set of
properties, which can be extended by the user.
Properties are applied to components to model their
characteristics and behaviors (such as the period of
a thread, the size of the stack for a thread, etc...).
AADL components can declare features, which are
their interface to communicate with other
components (for example, the parameters of a
function are considered as features for an AADL
subprogram). In addition, the connections clause of
each component declares its relation with other
entities (for example, a connection between the
features of a thread and the ones of a subprogram
means that the variables of the thread are used as
arguments in a function-call). The features and
connections section are used to model the
communications between all nodes of a distributed
system.

2.2 The Ravenscar Profile

The runtime of the Ada programming language
provides extensive tasking capabilities. However,
some of them are not suitable for safety-critical real
time systems. Rendez-vous, multiple entries in
protected objects and select statements render
execution time analysis very complex. The
Ravenscar Profile [3] is an effort to define a subset
of Ada for use in High Integrity systems; the major
restrictions therein are detailed below.

• Static tasking stipulates that the task-set is
statically defined, there is no task
terminations or abort statements and no
dynamic priorities

• Static synchronization model enforces non-
hierarchical protected objects, a static set of
protected objects, no select statements and
no entries on tasks

• Deterministic memory usage states that
there be no implicit heap allocation

• Deterministic execution stipulates that there
is a maximum of one entry per protected
object, the queue length of said entry be
one, there be no requeue statements, no

 Page 2/9

asynchronous control of tasks and delays be
absolute

• Runtime configuration states that task
dispatching be FIFO_Within_Priorities, the
priority ceiling protocol [7] be used for
protected object access and that there be no
suspendible code in a protected object
procedure, function or entry

 Only periodic and sporadic tasks are allowed.
Periodic tasks are dispatched at regular time
intervals (their period). Sporadic tasks are
dispatched as a result of events, but with a specified
minimal inter-arrival time between events. The
behavior in case of violation of this rule is
implementation-dependant.
 When using the Ravenscar profile in Ada
source code, the compiler checks each statement.
With the C language, we cannot check the behavior
of the code at compile time. On the contrary, the
code generation patterns create code that provides
all the requirements of the Ravencar profile.
Therefore, the C code generation process checks
the behavior only one time (code generation),
whereas the Ada code generation checks it twice
(code generation and compilation).

Figure 1 : Steps to create a distributed application
from AADL model

2.3 Overview of the code generation process

The steps for building a distributed application from
AADL models are illustrated in figure 1. The
developer provides his architectural model and his
own behavior code. Then, the code generator uses
the model to automatically generate code (step 1 on
the figure). The code generator knows the API of the
minimal middleware so it uses it in the generated

code. Consequently, it uses services provided by the
middleware and statically allocates all the resources
needed by the system. Then, the generated code is
compiled with the minimal middleware and the code
provided by the user (step 2). In this step, the
middleware uses the resources allocated in the
generated code to provide its services.

2.4 Advantages of code generation process

Writing a distributed application, even using a
middleware, remains a tedious task for the
developer, who always encounters some problems
to design, deploy or configure it. Models provide the
deployment and configuration information, so the
generated application doesn’t need to be configured
by the developer. The deployment of the generated
applications is also automatically performed. While
automatic code generation avoids all programming
errors in the generated code, our approach
automatically generate Ravenscar-like C code.
 A traditional application often embeds some
dead-code and has a memory overhead, due to
many reasons (use of externals libraries, etc...). If
these properties are not significant for most
applications, they are important for embedded
platforms that have memory constraints. In the code
generation process, the architectural model is used
to allocate statically all the resources at the
initialization (threads, buffers, etc...). We allocate
only the resources needed by the system. Such a
method ensures a minimal memory footprint. We
use the information from the model to create all data
structures used by our algorithms. In the middleware
it is easy to bound the execution time of our
algorithms. This helps us to compute the worst
execution time.

2.5 Related work

Research on AADL is very intense, and many
applications have been created to manipulate AADL
models. The Topcased [15] project offers a way to
model systems with AADL using a textual as well as
graphical representation.
 In addition, AADL models can be used to
check properties of the system. The Cheddar tool [6]
can prove the system’s schedulability. To make this
possible, one adds some properties on the
components to describe their timing constraints
(deadline, scheduling algorithm, mutexes ceilings,
etc...). Then, Cheddar analyzes the schedulability
and tells its feasibility.
 Code generation process from models is a
topic already developed. Many code generation
techniques have been developed. Most of them use
UML models [8]. However, these methods are used
to help the user to write his code and do not fit with
the requirements of HI systems. Other methods
focus on the HI domain [9], but always use UML

 Page 3/9

models and may introduce a memory overhead.
 On the contrary, the originality of the present
approach resides in the possibility of automatically
generating a Ravenscar-compliant application
written in C with a reduced memory overhead.

3. Automatic code generation

This section details the code generation process. It
presents the code generation patterns used to
transform AADL models into C code. We explain
what part of code of the middleware we generate
and how we can generate Ravenscar-compliant
code. The internal structure of the code generator is
also described.

3.1 Internals of our code generator

 For each component of the model, we apply
patterns that translate the AADL declaration into C
code. For example, a thread component is mapped
into a thread in the system. Consequently, when we
find this kind of component, we generate a function
call to create the thread and define a function for its
execution. If the mapping of the thread component is
easy to understand, the mapping of other
components is more complex. Moreover, we have to
be compliant with the Ravenscar profile, so our
patterns must create code that follows the
Ravenscar restrictions. All the code generation
patterns defined in our code generator are explained
in this section.
 We designed a tool for manipulating AADL
models: Ocarina [10]. It is used to manipulate
models and have many features: semantic analysis
of AADL models, code generation for the PolyORB
middleware [11], graphic model representation from
a textual one, etc... It contains the entire
infrastructure to manipulate AADL models and
describe other languages (as target languages for C
code generation). It was natural for us to extend this
tool and implement our code generator as a new
feature. We use the existing code to read and
manipulate AADL models and implement our code-
generation patterns and code writing method. In the
following paragraphs, we explain the internal work of
Ocarina and the steps of the code generation.
 Our code generation process uses at least two
syntaxic trees: one for the modelling language (in
our case, AADL), and another for the target
language (Ada, C, etc...). The structure of each tree
is described and we automatically generate
functions to create and manipulate the tree. This
architecture eases the creation of new syntaxic trees
and the extension of our tool to new languages.
 The code generation process is divided into
four steps:

1. The parser analyzes the model. This first pass
on the model creates a syntaxic tree, which
contains all the declarations of the model.
When parsing the model, we check that it is
well formed.

2. We create an instance-tree, based on the
syntaxic tree. This tree has one root system
component with all its subcomponents. It
precisely describes the model with its
component hierarchy. Creating this tree is
very important, because the model is well
organised and unused components are not
included in the instance-tree.

3. We traverse the instance tree and apply
patterns on components to create the
syntaxic-tree of the target language. For the C
code generation, the result of this step is a
tree with all generated C declarations.

4. The generated files are printed and we
generate Makefiles to compile the code
with the minimal middleware. At this step, the
code shall be fully functional and the user can
directly compile it.

3.2 Code generation patterns

 The code generation patterns are very
important, they automatically generate the code in
the target language from the components of the
model. For each component in the model, a pattern
is applied and creates code in the syntaxic tree of
the target language. The code-generation patterns
are summarized in table 1.
 For a thread component we generate
statements that create the thread at initialization
time and define a macro that describes the number
of threads in the local node. These declarations
ensure that the threads are created at initialization
time, and that we allocate a fixed amount of threads.
No other resources are allocated.
 For each subprogram component, we
generate a function that calls user-defined routines
or generated ones.
 For data component, we map it to a
predefined type (such as integer, float, etc)
according to its properties. However, data
components could have subprograms as features
(as the data component in listing 1). These
subprograms get access to the data to read or write
it. For these reasons, such data must be protected
from concurrent access. We map such component to
a structure with all its subcomponents and we add a
unique identifier to this structure (the pos_impl
structure in listing 2). Then, this identifier is used to
lock or unlock the data before we read or write it
(see the implementation of the functions in listing 2).
The name of the structure is derived from the name
of the component.

 Page 4/9

data POS_Internal_Type
properties
 ARAO::Data_Type => Integer;
end POS_Internal_Type;

data POS
features
 Update : subprogram Update;
 Read : subprogram Read;
end POS;

data implementation POS.Impl
subcomponents
 Field : data POS_Internal_Type;
end POS.Impl;

Listing 1: AADL model of a type that uses
subprograms as features

AADL Component Code-generation pattern

System Create a directory which
contains each process

Process Create a directory which
contains the source code.

Thread

• Instantiate the thread at
initialization time
• Create function executed by
the thread after the initialization
• Define a macro to tell how
many threads are created on the
local node
• Create identifiers for its ports
• Create an entity identifier to
communicate with other threads
in the whole distributed system

Subprogram
Create a function that call other
mapped subprograms or user-
defined functions.

Data

• Map the data to existing
predefined types
• Declare a protected identifier if
the data must be protected from
concurent access

Processor

Put the right execution platform
(architecture and operating
system) in the Makefile in order
to choose the right cross-
compilation tools.

Table 1: Code generation patterns

 To generate a fully working distributed system,
we had to consider the features of each thread and

analyse communications between the entities. For
each thread that may communicate, we create a
unique identifier in order to identify threads on each
node. Information about the location of each node
(IP address, port) is added in the code so the system
automatically initializes connections between nodes.
 The processor component models the
architecture and the operating system. So, we use it
to solve the portability problem. In our case, we
defined a property set for all supported platforms
and operating systems. We add the property value
of the processor component in the Makefile used
to compile each node. This value is used to choose
the cross-compilation tools.

typedef int pos_internal_type;
typedef struct
{
 __po_hi_protected_t protected_id;
 pos_internal_type field;
} pos_impl;

void pos_impl_update (pos_impl* v)
{
 lock(v->protected_id);
 update(&(v->field));
 unlock(v->protected_id);
}

void pos_impl_read (pos_impl* v)
{
 lock(v->protected_id);
 read(&(v->field));
 unlock(v->protected_id);
}

Listing 2: Generated code from a data component
with subprograms as features

4. Middleware designed for the generated code

 The previous section presents the code
generation internals and its patterns to translate
AADL models into C code. The generated code
contains the resources used by the application and
defines the functions used by each thread. However,
the code needs to rely on services to use the
operating system primitives. A service provides
functionalities to execute the program:
communications with other nodes, facilities to create
and schedule tasks, etc... This is the purpose of the
middleware: it manages the resources allocated in
the generated code and calls the operating system’s
services. In this section, we describe the services
provided by a traditional middleware and explain
why we need to define a new middleware that is
more compliant with high integrity system. Then, we
present the minimal middleware we design, detail its
services, its architecture and its compliance with
commonly used operating systems.

 Page 5/9

4.1 Canonical middleware architecture

 Our past research led us to design
PolyORB [16], a schizophrenic middleware. It
separates concerns between distribution model, API,
communication protocols, and their implementation
by refining the definition and role of personalities.
The schizophrenic architecture consists of three
layers: application-level personalities (adaptation
layer between application components and
middleware through a dedicated API) and protocol-
level personalities (handles the mapping of
personality-neutral requests onto messages
exchanged using a chosen communication network
and protocol) built around a neutral core. The neutral
core layer enables the selection of any combination
of application and/or protocol personalities. Several
personalities can be collocated and cooperate in a
given middleware instance, leading to its
schizophrenic nature. The neutral core defines
generic services used by application and protocol-
level personalities. We also focus on it because it
contains fundamental services for a middleware. The
µBroker is the core component that provides support
for interaction between the other canonical services :

1. Addressing service looks up objects on servers.

This service is used when a client ask the server
for an access to an object

2. Binding factory service establishes
communications with the server using one
communication channel

3. Representation service gives a common
representation for the data (e.g: CDR). This
solves the problem of endianness.

4. Protocol service provides several protocols to
communicate with other nodes.

5. Transport service provides several transport
layer to send and receive the data

6. Activation service ensures an entity can execute
the request.

7. Execution service gives the resources to
execute the request.

8. Typing service manages the typing system in
the application (sophisticated when it comes to
the CORBA any mechanism for instance)

9. Interaction service manages the liaisons
between connected entities in the application,

 However, such middleware deals with object-
oriented methods and is not compliant with HI
systems. Their configuration is performed at run-time
(creating and managing POA), their resources are
dynamically allocated (buffers, threads, etc...) and it
is difficult to evaluate the worst case execution time
of some functionalities. Such a design introduces
temporal indeterminism and it remains hard to
analyze the behavior of such system.

 The middleware we wrote (PolyORB-HI-C [4])
matches a small memory footprint and ensures
predictable properties. The use of AADL models
eases the configuration as it provides the user
requirements and the deployment information.
Consequently, the configuration of the middleware is
made at compile time and resources are statically
allocated. It ensures that no dynamic configuration
or allocation is performed at runtime such as in
traditional object-oriented middleware. Moreover,
AADL models precisely describe the
communications between the node of the distributed
system. Using this information, we can automatically
establish communications between the nodes that
may communicate at initialization time. It prevents
dynamic creation of connections to other nodes.
According to this static configuration, some services
included in PolyORB become useless. For example,
the addressing service and the binding factory are
no longer used because we automatically add code
to locate nodes and establish communications.
 A large part of the middleware is automatically
generated whereas another is statically written. The
generated part of the middleware contains
functionalities that are specific to the model. The
statically written part defines generic functionalities
used by all applications Moreover, the model
provides the architecture of the system so we can
select the services needed by the generated code
(e.g.: if the model defines a single process, we don't
include services that enable communication). Such
method reduces the introduction of memory
overhead and dead-code.
 Many research projects designed
middleware [12] for real-time and high-integrity
embedded software and use other approaches than
the one described in this paper. While projects tend
to provides more and more features in their
middleware, it is important to keep in mind that we
just try to provide few services, and include only
those needed by the generated code.
 In the next subsection, we present our
middleware PolyORB-HI-C. We describe its
architecture and services according to their
equivalence with the PolyORB ones. In addition, we
explain what part of the middleware is automatically
generated and what part we wrote by hand. We also
explain how it fits with the requirements of the
Ravenscar profile. Finally, we describe how we
design it to be compliant with many systems.

4.2 Architecture of PolyORB-HI-C

 The services provided by the middleware are
listed below:

1. Execution service creates threads and
provides scheduling functionalities.

2. Representation service configures the types
available on the target platform and provides

 Page 6/9

a common representation of the types in the
distributed system

3. Transport service provides functionalities to
send and receive data from other nodes

4. Protocol service provides protocols to
exchange data between the nodes of the
distributed system

 The execution service is used to create and
manage threads on a local node. This service is
quite different from the one in PolyORB : threads do
not execute requests on an object, they execute an
infinite loop with the code provided by the user. The
execution service handles periodic and sporadic
tasks as defined in the Ravenscar profile. It provides
all the functions to be compliant with the strong
timing requirements of HI systems. The task
dispatching policy by the middleware is
FIFO_Within_Priorities. This policy helps us analyze
schedulability.
 The representation service configures the
middleware to choose the types on the target
platform (set data representation according to the
types available on the target such as 8, 16 or 32 bits
integer, float, etc…) and provides functionalities to
marshal/unmarshal data into a message. This
service is the same as the one defined in PolyORB,
we just add some functionalities such as type
configuration and data protection. This service is
partly generated (the code to marshal requests is
automatically generated), whereas another part is
statically written.
 Transport service enables communication
channels between the nodes of the distributed
system. This service is equivalent to the one in
PolyORB. Several transport layers can be
implemented in the middleware so the user can
choose it. At this time, only BSD sockets are
implemented. Most of the code of the transport
service is statically written.
 Protocol service provides functionalities to
structure the messages exchanged in the distributed
system. The service is equivalent to the one of
PolyORB. As for transport service, several protocols
can be implemented. At this time, we implement two
protocols: IIOP (Internet Inter-ORB Protocol, the
protocol of CORBA [13]) and another protocol that
directly serialize the data. The resources used by
this service are automatically generated whereas the
code remains statically written.
 Figure 2 shows the architecture of the
middleware and the organisation of the source files
of each service. The execution service uses the
representation service to express a representation of
the time. The representation service is used by the
transport and protocol services to get the types
available on the platform. Finally, the transport
service uses the execution service to create a thread
that listen for incoming messages from other nodes.

 All the resources of the system are statically
allocated at compile time, as is the deployment
information. If the resources cannot be allocated at
compile time (creation of threads, mutexes, etc...),
we do it at initialization time. In each program, a
function initializes all resources before the system
starts. This ensures that we don’t make any dynamic
allocation or configuration at runtime.

Figure 2: Architecture of the minimal middleware

4.3 Portability

 All portability aspects are included in the
middleware as well. This problem is solved in two
steps. At configuration time, the middleware detects
the endianness of the architecture and available
types. It chooses its functions and the type
management method according to the information it
has on the platform. The second aspect is about
compilation: choosing the right cross-compilation
tools, using specific command-line options when
compiling, etc... To solve this problem, we use the
information about the execution platform provided in
the generated Makefile for each node. The
middleware then has a configuration of each
compilation step for all execution platforms and
adapts its behavior according to all these
parameters. Moreover, we pay attention to the
functions used in the middleware to get portable
code. Most of the code uses POSIX standard, in
order to be easily ported to other systems that
support it. Also, we add an abstraction layer to the
POSIX one in order to remain Ravenscar-compliant.
 The code of the middleware must respect all
constraints of the HI domain. The execution time of
the algorithms used can be easily bounded and all
resources are statically allocated at compile time or
at initialization time. The size of each resource is
defined with the information provided by the
generated code. This ensures that we have a
minimal footprint (no more memory is allocated), and
no non-deterministic service is used at runtime
(dynamic memory allocation, etc...).

 Page 7/9

5. Tests and benchmarks

This section gives an overview of the platforms we
used and their specifications. Moreover, we present
some benchmarks we carried out. They detail the
memory footprint on each platform.

5.1 Platforms

We tested our examples on the following platforms:
1. Nokia N770: ARM architecture, 64 MB of RAM

with a Linux-based operating system.
2. Nintendo DS: ARM architecture, 4 MB of RAM

(2Mb for the operating system, 2MB for userland
applications) with a port of Linux: DSLinux [14].

3. Native system: x86 architecture with Linux
operating system.

 The Nokia N770 platform proves that our
approach could be used for personal systems such
as smartphone, PDA and other personal embedded
systems. Such devices have a limited capacity of
computation, but do not have hard memory
constraints. On the contrary, the Nintendo DS has
strong memory constraints. Only 2 MB of RAM are
available for the execution of third-party programs,
so it shows that our generated applications have a
small memory footprint. The last architecture, called
native may not seem to be as interesting as the
others. On the contrary, this platform shows that the
generated code works on a standard personal
computer and helps us for debugging purposes.

5.2 Tests

During the design of the middleware, we designed
some tests that use the code generator and the
minimal middleware. We focus on three of them:
RMA, Sunseeker and Flight Management [17]. All
these use-cases are available on our website
dedicated to AADL [10].
 The RMA test creates two periodic tasks (T1
and T2) in one process with the following properties:
2 x Period(T1) = Period(T2). Each task prints a
message to show when it is being run. This test
shows the correctness of the scheduling.
 The Sunseeker test was written by the
Software Engineering Institute (SEI) of the Carnegie
Mellon University (CMU) in order to test some AADL
features and code generation patterns. It models a
missile guidance example. It defines two periodic
tasks. Each task receives data from the other,
computes a value and sends it to the other task.
This test introduces data exchange between
distributed nodes so that the code related to
distributed application is added in each program of
the system.
 The last test (Flight Management [17]) creates
five tasks: three periodic tasks and two sporadic
tasks. The communication graph between tasks is
quite complex. All kinds of ports are used (event

port, data port and event data port). This test shows
the correct mapping of each port type to C and that
communications with several ports works well.

5.3 Metrics

From these tests, we carried out some metrics on
memory footprints. Table 2 shows the memory
footprint of each test on each platform. All the
binaries are compiled with GCC and are statically
linked. In all cases, the size of the binary is less than
one megabyte. The Nintendo DS uses a port of
Linux (DSLinux [14]), but uses a C-library designed
for embedded system: µClibC. The binary created
with this embedded-profiled C-library is smaller than
the ones that use traditional C-library (such as the
binaries compiled for the native platform).

RMA Sunseeker Flight management

Nokia N770 589 KB 645 KB 638 KB
Nintendo DS 144 KB 204 KB 209 KB
Native 471 KB 527 KB 532 KB

Table 2: Memory footprint for each test

6. Conclusions and Future Work

Using architectural models to automatically generate
code is a good way to create code for high-integrity
systems. Such a method avoids all errors
traditionally introduced by manually produced code,
it can also create code that provides safety
properties. In our approach, the code generator
implements the Ravenscar profile for C.
 The minimal middleware limits the memory
overhead and is compiled only with the needed
functions. A large part of the middleware (functions
and resources) is automatically generated whereas
a static part uses the resources and calls the
services specific to the underling operating systems.
The architecture of the middleware eases its port to
other platforms.
 If our code generator produces code that
provides all the requirements of the Ravenscar
profile, we can’t ensure that the user-code does not
break our safety rules. Besides, if the Ada compiler
checks the compliance of the Ravenscar profile on
the whole system, the C compiler doesn’t perform
any check. Consequently, even if the generated
code is well formed, the user can break all the safety
rules introduced in the system with his functions.
 We can extend the current work in many
ways. First, we can create other language
generators in order to automatically produce a
distributed system with several nodes that use

 Page 8/9

different languages. At this time, our code generator,
Ocarina, only supports Ada and C languages.
Another way consists of adding some security and
safety information to the model. Such information is
used to automatically generate a safe and secure
distributed system (data-flow analysis between
nodes, encryption in data transfer, etc...). Research
on architecture models will probably remain very
intense in the next years, due to the needs to check
and validate the system before its implementation.

Acknowledgment: This work is partly funded by the
RNTL Flex-eWare project.

References

[1] SAE Aerospace. Architecture Analysis & Design
Language (AADL), September 2004

[2] B. Zalila, I. Hamid, J. Hugues, and L. Pautet.

Generating Distributed High Integrity Applications
from their Architectural Description. In
AdaEurope’07, Geneva, Switzerland, jun 2007.

[3] Brian Dobbing, Tullio Vardenega and Alan Burns.

Guide for the use of the Ada Ravenscar Profile in
high integrity systems. January 2003.

[4] Julien Delange. PolyORB-HI-C User Guide, 2007.

[5] Peter H. Feiler, David P. Gluch and John J. Hudak.

The Architecture Analysis & Design Language
(AADL) : An Introduction. Technical report,
February 2006.

[6] F. Singhoff, J. Legrand, L. Nana and L. Marcé.

Cheddar : a flexible real time scheduling
framework. ACM, 11 2004.

[7] Lui Sha, Ragunathan Rajkumar and John P.

Lehoczky. In IEEE Transactions on Computers,
pages 1175–1185, Washington DC, USA, 1990.

[8] Pornsiri Muenchaisri and Mathupayas Thongmak.

Design of Rules for Transforming UML Sequence
Diagrams into Java code. 2002.

[9] Matteo Bordin and Tullio Vardaneda. Automated

Model-Based Generation of Ravenscar-Compliant
Source Code. 2005.

[10] T. Vergnaud, B. Zalila and J. Hugues. Ocarina

documentation, see http://aadl.enst.fr.

[11] Jérôme Hugues, Fabrice Kordon, Laurent Pautet,

and Thomas Vergnaud. A Factory To Design and
Build Tailorable and Verifiable Middleware. In
Proceedings of the Monterey Workshop 2005 on
Networked Systems: realization of reliable systems
on top of unreliable networked platforms, volume
LNCS 4322, pages 123–144, University of

California. Irvine, CA, USA, Feb 2007. Springer
Verlag.

[12] D. Schmidt, D. Levine, and C. Cleeland.

Architectures and patterns for developing high-
performance, real-time orb endsystems, 1999.

[13] Object Management Group. Common object

request broker architecture : Core specification.
Technical report, OMG, 2004.

[14] Dslinux. http://www.dslinux.org.

[15] Toolkit in Open Source for Critical Applications &

Systems (TOPCASED). http://www.topcased.org.

[16] Jérôme Hugues, Laurent Pautet and Fabrice

Kordon. A framework for DRE middleware, an
application to DDS. In Proceedings of the 9th IEEE
International Symposium on Object-oriented Real-
time distributed Computing (ISORC'06), April 2006

[17] Irfan Hamid, Elie Najm, Bechir Zalila and Jérôme

Hugues. A Generative Approach to Building a
Framework for Hard Real-Time Applications. In
31st IEEE Software Engineering Workshop (SEW
2007), 2007

 Page 9/9

