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Abstract: Distributed Real-time Embedded (DRE) 
systems are increasingly used in critical domains 
such as avionics, vehicle and industrial control as 
well as in medical systems. They must be designed 
carefully and have to provide safety properties 
because a failure could mean loss of life. For these 
reasons, it is recommended to automatically 
generate a significant part of the code from the 
models describing the critical aspects. In our 
approach, we automatically generate two kinds of 
code from architectural models. The first one plugs 
the user functional code in the middleware, the 
second one provides a significant part of the 
middleware functions. Both rely on a hand coded 
written middleware that provides the minimal 
facilities to plug the generated code and to resolve 
portability issues. In this paper, we present our code 
generator and the middleware designed to generate 
High Integrity (HI) systems. We demonstrate via 
several use-cases how we succeeded in meeting the 
requirements of DRE systems (small memory 
footprint, no dead-code, etc...). 
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1. Introduction 

Developing High Integrity (HI) systems is very 
difficult compared to classical ones as they are used 
in safety-critical domains such as space or avionics. 
These systems have to conform to strong 
requirements (small memory footprint, limited 
computation capacity) and standards. 
 Manually writing HI applications appears to be 
very tedious for the developer. It is also very difficult 
to comply with standards and requirements. It is 
preferable to automatically generate a large part of 
the code from analyzable models. Thus, the code 
generation process avoids all programming errors 
introduced by manual coding and ensures that it 
follows the properties included in the model. In 
addition, using model transformation, this process 
produces a verifiable model (e.g.: Petri Net) from the 
application model. It is simpler and safer than 
producing this model from source code.  
 AADL, which stands for “Architecture Analysis 
and Design Language” [1] is an architecture 

description language that allows the modelling of 
distributed, real-time embedded applications. AADL 
was first introduced to model the hardware and 
software architectures in the avionics domain, but 
was later extended to the general DRE (distributed 
real-time embedded) domain. This pedigree results 
in a language that is more amenable to static 
analysis and verification than other more general 
purpose modelling languages.  
 Our past work led us to the design of a Ada 
Ravenscar code generator [2] from AADL models. 
The Ravenscar Profile [3] is a subset of rules and 
coding guidelines for Ada that ensure certain 
properties including static schedulability analyzability 
and the absence of deadlock. Generation of 
Ravenscar compliant Ada code ensures that the 
generated code provides these properties. However, 
Ada needs a specific runtime and this may reduce 
the range of potential executive platforms. On the 
contrary, the C language can be used on more 
platforms than Ada. However, the C language does 
not provide any static analysis method at compile 
time such as Ravenscar, so we have to create it by 
hand.  
 The process of producing a working 
application from an AADL model is divided into two 
main parts: a code generator and a minimal 
middleware. The code generator automatically 
produces C code from AADL models. The generated 
code relies on a minimal middleware that provides 
all the services it needs by the generated code. The 
middleware is considered as minimal because it only 
contains the functions requested by the application. 
Moreover, a large part of the middleware is 
automatically generated from the model, whereas 
another part is statically written. In our work, we 
focus on embedded systems, so we designed the 
middleware to be compliant with the requirements of 
such high integrity and embedded systems (small 
memory footprint, etc...).  
 In the remainder of this paper, we present the 
AADL language, the Ravenscar profile and give an 
overview of the code generation process. We 
explain the internals of the code generation process. 
Then, we present the minimal middleware we 
created to use the generated code: 
PolyORB-HI-C [4]. We present its design and 
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architecture. We give three use cases and the 
platforms used to perform our tests. Finally, we 
conclude and give some ideas for future work. 
 

2. Context 

In this section, we give an overview of AADL [1, 5], 
the language used to model critical systems. Then, 
we present the Ravenscar profile for Ada and what it 
implies for the code we generate. Finally, we 
describe the code generation process. 
 
 
2.1 Overview of AADL 
AADL has been designed by the SAE (Society of 
Automotive Engineers). This language has been 
created to model the architecture of systems. It 
allows the description of both software and hardware 
parts of a system and focuses on the definition of 
clear block interfaces and separate implementations 
from these interfaces. Models can be expressed 
using a graphical or textual interface.  
 The standard property set of the language and 
the possibility to add new ones offers a way to 
model low-level aspects of the system and defines 
the specific behavior of each component. The fine-
tuning of the model and the code-reuse ability 
constitute great advantages for choosing this 
modelling language. 
 AADL defines several components, each of 
them models a hardware or software entity. 
Hardware components are  

• Processor: models the processor of the 
system and the underlying executive. In 
other words, this component represents the 
operating system and the architecture of the 
system. For a standard computer, we 
declare a processor component and add 
properties to tell that it represents an x86 
platform with a Native operating system 
such as Linux or Windows.  

• Memory: models any memory in the system, 
from RAM to ROM, or hard drives.  

• Bus: models different kinds of networks, 
wires, etc... 

• Device: models any other device in the 
system (sensor, motion detector, etc...). 

 
Software components are :  

• Process: models a single address space. 
The notion expressed in this component is 
similar the UNIX process. As in operating 
systems, a process component can contain 
thread components.  

• Thread: models lightweight process. This 
component can be understood as a POSIX 
thread. It can contain subprogram calls.  

• Subprogram: models a flow of instructions. 
This component typically represents a 

function or a procedure in a language. An 
execution unit (such as thread) can declare 
call section to invoke subprograms.  

• Data: models a type manipulated by an 
entity of the system. For example, it can be 
used to describe the type of the arguments 
of a subprogram or any variable declared in 
an execution unit (such as thread).  

 
 A special component (system) aggregates all 
the components of the system.  
 Components can contain subcomponents, in 
order to describe the hierarchy of the system. For 
example, a process component can contain several 
thread components. AADL contains a set of 
properties, which can be extended by the user. 
Properties are applied to components to model their 
characteristics and behaviors (such as the period of 
a thread, the size of the stack for a thread, etc...). 
AADL components can declare features, which are 
their interface to communicate with other 
components (for example, the parameters of a 
function are considered as features for an AADL 
subprogram). In addition, the connections clause of 
each component declares its relation with other 
entities (for example, a connection between the 
features of a thread and the ones of a subprogram 
means that the variables of the thread are used as 
arguments in a function-call). The features and 
connections section are used to model the 
communications between all nodes of a distributed 
system.  
  
 

2.2 The Ravenscar Profile 

The runtime of the Ada programming language 
provides extensive tasking capabilities. However, 
some of them are not suitable for safety-critical real 
time systems. Rendez-vous, multiple entries in 
protected objects and select statements render 
execution time analysis very complex. The 
Ravenscar Profile [3] is an effort to define a subset 
of Ada for use in High Integrity systems; the major 
restrictions therein are detailed below.  

• Static tasking stipulates that the task-set is 
statically defined, there is no task 
terminations or abort statements and no 
dynamic priorities  

• Static synchronization model enforces non-
hierarchical protected objects, a static set of 
protected objects, no select statements and 
no entries on tasks  

• Deterministic memory usage states that 
there be no implicit heap allocation  

• Deterministic execution stipulates that there 
is a maximum of one entry per protected 
object, the queue length of said entry be 
one, there  be no requeue statements, no 
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asynchronous control of tasks and delays be 
absolute 

• Runtime configuration states that task 
dispatching be FIFO_Within_Priorities, the 
priority ceiling protocol [7] be used for 
protected object access and that there be no 
suspendible code in a protected object 
procedure, function or  entry 

 
 Only periodic and sporadic tasks are allowed. 
Periodic tasks are dispatched at regular time 
intervals (their period). Sporadic tasks are 
dispatched as a result of events, but with a specified 
minimal inter-arrival time between events. The 
behavior in case of violation of this rule is 
implementation-dependant.  
 When using the Ravenscar profile in Ada 
source code, the compiler checks each statement. 
With the C language, we cannot check the behavior 
of the code at compile time. On the contrary, the 
code generation patterns create code that provides 
all the requirements of the Ravencar profile. 
Therefore, the C code generation process checks 
the behavior only one time (code generation), 
whereas the Ada code generation checks it twice 
(code generation and compilation).  
 
 

 
 

Figure 1 : Steps to create a distributed application 
from AADL model 

 
 
2.3 Overview of the code generation process 

The steps for building a distributed application from 
AADL models are illustrated in figure 1. The 
developer provides his architectural model and his 
own behavior code. Then, the code generator uses 
the model to automatically generate code (step 1 on 
the figure). The code generator knows the API of the 
minimal middleware so it uses it in the generated 

code. Consequently, it uses services provided by the 
middleware and statically allocates all the resources 
needed by the system. Then, the generated code is 
compiled with the minimal middleware and the code 
provided by the user (step 2). In this step, the 
middleware uses the resources allocated in the 
generated code to provide its services.  
 
2.4 Advantages of code generation process 

Writing a distributed application, even using a 
middleware, remains a tedious task for the 
developer, who always encounters some problems 
to design, deploy or configure it. Models provide the 
deployment and configuration information, so the 
generated application doesn’t need to be configured 
by the developer. The deployment of the generated 
applications is also automatically performed. While 
automatic code generation avoids all programming 
errors in the generated code, our approach 
automatically generate Ravenscar-like C code.  
 A traditional application often embeds some 
dead-code and has a memory overhead, due to 
many reasons (use of externals libraries, etc...). If 
these properties are not significant for most 
applications, they are important for embedded 
platforms that have memory constraints. In the code 
generation process, the architectural model is used 
to allocate statically all the resources at the 
initialization (threads, buffers, etc...). We allocate 
only the resources needed by the system. Such a 
method ensures a minimal memory footprint. We 
use the information from the model to create all data 
structures used by our algorithms. In the middleware 
it is easy to bound the execution time of our 
algorithms. This helps us to compute the worst 
execution time.   
 
2.5 Related work 

Research on AADL is very intense, and many 
applications have been created to manipulate AADL 
models. The Topcased [15] project offers a way to 
model systems with AADL using a textual as well as 
graphical representation. 
 In addition, AADL models can be used to 
check properties of the system. The Cheddar tool [6] 
can prove the system’s schedulability. To make this 
possible, one adds some properties on the 
components to describe their timing constraints 
(deadline, scheduling algorithm, mutexes ceilings, 
etc...). Then, Cheddar analyzes the schedulability 
and tells its feasibility.  
 Code generation process from models is a 
topic already developed. Many code generation 
techniques have been developed. Most of them use 
UML models [8]. However, these methods are used 
to help the user to write his code and do not fit with 
the requirements of HI systems. Other methods 
focus on the HI domain [9], but always use UML 
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models and may introduce a memory overhead. 
 On the contrary, the originality of the present 
approach resides in the possibility of automatically 
generating a Ravenscar-compliant application 
written in C with a reduced memory overhead. 
 
 

3. Automatic code generation 

This section details the code generation process. It 
presents the code generation patterns used to 
transform AADL models into C code. We explain 
what part of code of the middleware we generate 
and how we can generate Ravenscar-compliant 
code. The internal structure of the code generator is 
also described.  
 
 
3.1 Internals of our code generator 
 
 For each component of the model, we apply 
patterns that translate the AADL declaration into C 
code. For example, a thread component is mapped 
into a thread in the system. Consequently, when we 
find this kind of component, we generate a function 
call to create the thread and define a function for its 
execution. If the mapping of the thread component is 
easy to understand, the mapping of other 
components is more complex. Moreover, we have to 
be compliant with the Ravenscar profile, so our 
patterns must create code that follows the 
Ravenscar restrictions. All the code generation 
patterns defined in our code generator are explained 
in this section.  
 We designed a tool for manipulating AADL 
models: Ocarina [10]. It is used to manipulate 
models and have many features: semantic analysis 
of AADL models, code generation for the PolyORB 
middleware [11], graphic model representation from 
a textual one, etc... It contains the entire 
infrastructure to manipulate AADL models and 
describe other languages (as target languages for C 
code generation). It was natural for us to extend this 
tool and implement our code generator as a new 
feature. We use the existing code to read and 
manipulate AADL models and implement our code-
generation patterns and code writing method. In the 
following paragraphs, we explain the internal work of 
Ocarina and the steps of the code generation.  
 Our code generation process uses at least two 
syntaxic trees: one for the modelling language (in 
our case, AADL), and another for the target 
language (Ada, C, etc...). The structure of each tree 
is described and we automatically generate 
functions to create and manipulate the tree. This 
architecture eases the creation of new syntaxic trees 
and the extension of our tool to new languages.  
 The code generation process is divided into 
four steps:  

1. The parser analyzes the model. This first pass 
on the model creates a syntaxic tree, which 
contains all the declarations of the model. 
When parsing the model, we check that it is 
well formed.  

2. We create an instance-tree, based on the 
syntaxic tree. This tree has one root system 
component with all its subcomponents. It 
precisely describes the model with its 
component hierarchy. Creating this tree is 
very important, because the model is well 
organised and unused components are not 
included in the instance-tree.  

3. We traverse the instance tree and apply 
patterns on components to create the 
syntaxic-tree of the target language. For the C 
code generation, the result of this step is a 
tree with all generated C declarations. 

4. The generated files are printed and we 
generate Makefiles to compile the code 
with the minimal middleware. At this step, the 
code shall be fully functional and the user can 
directly compile it.  

 
 
3.2 Code generation patterns 
 
 The code generation patterns are very 
important, they automatically generate the code in 
the target language from the components of the  
model. For each component in the model, a pattern 
is applied and creates code in the syntaxic tree of 
the target language. The code-generation patterns 
are summarized in table 1.  
 For a thread component we generate 
statements that create the thread at initialization 
time and define a macro that describes the number 
of threads in the local node. These declarations 
ensure that the threads are created at initialization 
time, and that we allocate a fixed amount of threads. 
No other resources are allocated. 
 For each subprogram component, we 
generate a function that calls user-defined routines 
or generated ones. 
 For data component, we map it to a 
predefined type (such as integer, float, etc) 
according to its properties. However, data 
components could have subprograms as features 
(as the data component in listing 1). These 
subprograms get access to the data to read or write 
it. For these reasons, such data must be protected 
from concurrent access. We map such component to 
a structure with all its subcomponents and we add a 
unique identifier to this structure (the pos_impl 
structure in listing 2). Then, this identifier is used to 
lock or unlock the data before we read or write it 
(see the implementation of the functions in listing 2). 
The name of the structure is derived from the name 
of the component.  
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data POS_Internal_Type 
properties 
  ARAO::Data_Type => Integer; 
end POS_Internal_Type; 
 
data POS 
features 
  Update : subprogram Update; 
  Read   : subprogram Read; 
end POS; 
 
data implementation POS.Impl 
subcomponents 
  Field : data POS_Internal_Type; 
end POS.Impl; 

Listing 1: AADL model of a type that uses 
subprograms as features  

 
 
 
AADL Component Code-generation pattern 

System Create a directory which 
contains each process 

Process Create a directory which 
contains the source code. 

Thread 

• Instantiate the thread at 
initialization time  
• Create function executed by 
the thread after the initialization 
• Define a macro to tell how 
many threads are created on the 
local node  
• Create identifiers for its ports  
• Create an entity identifier to 
communicate with other threads 
in the whole distributed system  

Subprogram 
Create a function that call other 
mapped subprograms or user-
defined functions.  

Data 

• Map the data to existing 
predefined types  
• Declare a protected identifier if 
the data must be protected from 
concurent access  

Processor 

Put the right execution platform 
(architecture and operating 
system) in the Makefile in order 
to choose the right cross-
compilation tools.  

Table 1: Code generation patterns 

 
 To generate a fully working distributed system, 
we had to consider the features of each thread and 

analyse communications between the entities. For 
each thread that may communicate, we create a 
unique identifier in order to identify threads on each 
node. Information about the location of each node 
(IP address, port) is added in the code so the system 
automatically initializes connections between nodes. 
 The processor component models the 
architecture and the operating system. So, we use it 
to solve the portability problem. In our case, we 
defined a property set for all supported platforms 
and operating systems. We add the property value 
of the processor component in the Makefile used 
to compile each node. This value is used to choose 
the cross-compilation tools.  
 
typedef int pos_internal_type; 
typedef struct 
{ 
  __po_hi_protected_t protected_id; 
  pos_internal_type field; 
} pos_impl; 
 
void pos_impl_update (pos_impl* v) 
{ 
  lock(v->protected_id); 
  update(&(v->field)); 
  unlock(v->protected_id); 
} 
 
void pos_impl_read  (pos_impl* v) 
{ 
  lock(v->protected_id); 
  read(&(v->field)); 
  unlock(v->protected_id); 
} 
 

Listing 2: Generated code from a data component 
with subprograms as features  

4. Middleware designed for the generated code 

 The previous section presents the code 
generation internals and its patterns to translate 
AADL models into C code. The generated code 
contains the resources used by the application and 
defines the functions used by each thread. However, 
the code needs to rely on services to use the 
operating system primitives. A service provides 
functionalities to execute the program: 
communications with other nodes, facilities to create 
and schedule tasks, etc... This is the purpose of the 
middleware: it manages the resources allocated in 
the generated code and calls the operating system’s 
services. In this section, we describe the services 
provided by a traditional middleware and explain 
why we need to define a new middleware that is 
more compliant with high integrity system. Then, we 
present the minimal middleware we design, detail its 
services, its architecture and its compliance with 
commonly used operating systems. 
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4.1 Canonical middleware architecture 
  
 Our past research led us to design 
PolyORB [16], a schizophrenic middleware. It 
separates concerns between distribution model, API, 
communication protocols, and their implementation 
by refining the definition and role of personalities. 
The schizophrenic architecture consists of three 
layers: application-level personalities (adaptation 
layer between application components and 
middleware through a dedicated API) and protocol-
level personalities (handles the mapping of 
personality-neutral requests onto messages 
exchanged using a chosen communication network 
and protocol) built around a neutral core. The neutral 
core layer enables the selection of any combination 
of application and/or protocol personalities. Several 
personalities can be collocated and cooperate in a 
given middleware instance, leading to its 
schizophrenic nature. The neutral core defines 
generic services used by application and protocol-
level personalities. We also focus on it because it 
contains fundamental services for a middleware. The 
µBroker is the core component that provides support 
for interaction between the other canonical services : 
  
1. Addressing service looks up objects on servers. 

This service is used when a client ask the server 
for an access to an object 

2. Binding factory service establishes 
communications with the server using one 
communication channel 

3. Representation service gives a common 
representation for the data (e.g: CDR). This 
solves the problem of endianness. 

4. Protocol service provides several protocols to 
communicate with other nodes. 

5. Transport service provides several transport 
layer to send and receive the data 

6. Activation service ensures an entity can execute 
the request. 

7. Execution service gives the resources to 
execute the request.  

8. Typing service manages the typing system in 
the application (sophisticated when it comes to 
the CORBA any mechanism for instance) 

9. Interaction service manages the liaisons 
between connected entities in the application,  

 
 However, such middleware deals with object-
oriented methods and is not compliant with HI 
systems. Their configuration is performed at run-time 
(creating and managing POA), their resources are 
dynamically allocated (buffers, threads, etc...) and it 
is difficult to evaluate the worst case execution time 
of some functionalities. Such a design introduces 
temporal indeterminism and it remains hard to 
analyze the behavior of such system.  

 The middleware we wrote (PolyORB-HI-C [4]) 
matches a small memory footprint and ensures 
predictable properties. The use of AADL models 
eases the configuration as it provides the user 
requirements and the deployment information. 
Consequently, the configuration of the middleware is 
made at compile time and resources are statically 
allocated. It ensures that no dynamic configuration 
or allocation is performed at runtime such as in 
traditional object-oriented middleware. Moreover, 
AADL models precisely describe the 
communications between the node of the distributed 
system. Using this information, we can automatically 
establish communications between the nodes that 
may communicate at initialization time. It prevents 
dynamic creation of connections to other nodes. 
According to this static configuration, some services 
included in PolyORB become useless. For example, 
the addressing service and the binding factory are 
no longer used because we automatically add code 
to locate nodes and establish communications. 
 A large part of the middleware is automatically 
generated whereas another is statically written. The 
generated part of the middleware contains 
functionalities that are specific to the model. The 
statically written part defines generic functionalities 
used by all applications Moreover, the model 
provides the architecture of the system so we can 
select the services needed by the generated code 
(e.g.: if the model defines a single process, we don't 
include services that enable communication). Such 
method reduces the introduction of memory 
overhead and dead-code. 
 Many research projects designed 
middleware [12] for real-time and high-integrity 
embedded software and use other approaches than 
the one described in this paper. While projects tend 
to provides more and more features in their 
middleware, it is important to keep in mind that we 
just try to provide few services, and include only 
those needed by the generated code. 
 In the next subsection, we present our 
middleware PolyORB-HI-C. We describe its 
architecture and services according to their 
equivalence with the PolyORB ones. In addition, we 
explain what part of the middleware is automatically 
generated and what part we wrote by hand. We also 
explain how it fits with the requirements of the 
Ravenscar profile. Finally, we describe how we 
design it to be compliant with many systems. 
 
4.2 Architecture of PolyORB-HI-C 
 
 The services provided by the middleware are 
listed below: 

1. Execution service creates threads and 
provides scheduling functionalities. 

2. Representation service configures the types 
available on the target platform and provides 
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a common representation of the types in the 
distributed system 

3. Transport service provides functionalities to 
send and receive data from other nodes 

4. Protocol service provides protocols to 
exchange data between the nodes of the 
distributed system 

 
 The execution service is used to create and 
manage threads on a local node. This service is 
quite different from the one in PolyORB : threads do 
not execute requests on an object, they execute an 
infinite loop with the code provided by the user. The 
execution service handles periodic and sporadic 
tasks as defined in the Ravenscar profile. It provides 
all the functions to be compliant with the strong 
timing requirements of HI systems. The task 
dispatching policy by the middleware is 
FIFO_Within_Priorities. This policy helps us analyze 
schedulability. 
 The representation service configures the 
middleware to choose the types on the target 
platform (set data representation according to the 
types available on the target such as 8, 16 or 32 bits 
integer, float, etc…) and provides functionalities to 
marshal/unmarshal data into a message. This 
service is the same as the one defined in PolyORB, 
we just add some functionalities such as type 
configuration and data protection. This service is 
partly generated (the code to marshal requests is 
automatically generated), whereas another part is 
statically written. 
 Transport service enables communication 
channels between the nodes of the distributed 
system. This service is equivalent to the one in 
PolyORB. Several transport layers can be 
implemented in the middleware so the user can 
choose it. At this time, only BSD sockets are 
implemented. Most of the code of the transport 
service is statically written. 
 Protocol service provides functionalities to 
structure the messages exchanged in the distributed 
system. The service is equivalent to the one of 
PolyORB. As for transport service, several protocols 
can be implemented. At this time, we implement two 
protocols: IIOP (Internet Inter-ORB Protocol, the 
protocol of CORBA [13]) and another protocol that 
directly serialize the data. The resources used by 
this service are automatically generated whereas the 
code remains statically written. 
 Figure 2 shows the architecture of the 
middleware and the organisation of the source files 
of each service. The execution service uses the 
representation service to express a representation of 
the time. The representation service is used by the 
transport and protocol services to get the types 
available on the platform. Finally, the transport 
service uses the execution service to create a thread 
that listen for incoming messages from other nodes.  

 All the resources of the system are statically 
allocated at compile time, as is the deployment 
information. If the resources cannot be allocated at 
compile time (creation of threads, mutexes, etc...), 
we do it at initialization time. In each program, a 
function initializes all resources before the system 
starts. This ensures that we don’t make any dynamic 
allocation or configuration at runtime. 
 
 

 
Figure 2: Architecture of the minimal middleware 

 
 
4.3 Portability 
 
 All portability aspects are included in the 
middleware as well. This problem is solved in two 
steps. At configuration time, the middleware detects 
the endianness of the architecture and available 
types. It chooses its functions and the type 
management method according to the information it 
has on the platform. The second aspect is about 
compilation: choosing the right cross-compilation 
tools, using specific command-line options when 
compiling, etc... To solve this problem, we use the 
information about the execution platform provided in 
the generated Makefile for each node. The 
middleware then has a configuration of each 
compilation step for all execution platforms and 
adapts its behavior according to all these 
parameters. Moreover, we pay attention to the 
functions used in the middleware to get portable 
code. Most of the code uses POSIX standard, in 
order to be easily ported to other systems that 
support it. Also, we add an abstraction layer to the 
POSIX one in order to remain Ravenscar-compliant.  
 The code of the middleware must respect all 
constraints of the HI domain. The execution time of 
the algorithms used can be easily bounded and all 
resources are statically allocated at compile time or 
at initialization time. The size of each resource is 
defined with the information provided by the 
generated code. This ensures that we have a 
minimal footprint (no more memory is allocated), and 
no non-deterministic service is used at runtime 
(dynamic memory allocation, etc...).  
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5. Tests and benchmarks 

This section gives an overview of the platforms we 
used and their specifications. Moreover, we present 
some benchmarks we carried out. They detail the 
memory footprint on each platform.  
 
5.1 Platforms 

We tested our examples on the following platforms:  
1. Nokia N770: ARM architecture, 64 MB of RAM 

with a Linux-based operating system.  
2. Nintendo DS: ARM architecture, 4 MB of RAM 

(2Mb for the operating system, 2MB for userland 
applications) with a port of Linux: DSLinux [14].  

3. Native system: x86 architecture with Linux 
operating system. 
 
 The Nokia N770 platform proves that our 
approach could be used for personal systems such 
as smartphone, PDA and other personal embedded 
systems. Such devices have a limited capacity of 
computation, but do not have hard memory 
constraints. On the contrary, the Nintendo DS has 
strong memory constraints. Only 2 MB of RAM are 
available for the execution of third-party programs, 
so it shows that our generated applications have a 
small memory footprint. The last architecture, called 
native may not seem to be as interesting as the 
others. On the contrary, this platform shows that the 
generated code works on a standard personal 
computer and helps us for debugging purposes. 
 

5.2 Tests 

During the design of the middleware, we designed 
some tests that use the code generator and the 
minimal middleware. We focus on three of them: 
RMA, Sunseeker and Flight Management [17]. All 
these use-cases are available on our website 
dedicated to AADL [10]. 
 The RMA test creates two periodic tasks (T1 
and T2) in one process with the following properties: 
2 x Period(T1) = Period(T2). Each task prints a 
message to show when it is being run. This test 
shows the correctness of the scheduling. 
 The Sunseeker test was written by the 
Software Engineering Institute (SEI) of the Carnegie 
Mellon University (CMU) in order to test some AADL 
features and code generation patterns. It models a 
missile guidance example. It defines two periodic 
tasks. Each task receives data from the other, 
computes a value and sends it to the other task. 
This test introduces data exchange between 
distributed nodes so that the code related to 
distributed application is added in each program of 
the system.  
 The last test (Flight Management [17]) creates 
five tasks: three periodic tasks and two sporadic 
tasks. The communication graph between tasks is 
quite complex. All kinds of ports are used (event 

port, data port and event data port). This test shows 
the correct mapping of each port type to C and that 
communications with several ports works well.  
 
5.3 Metrics 

From these tests, we carried out some metrics on 
memory footprints. Table 2 shows the memory 
footprint of each test on each platform. All the 
binaries are compiled with GCC and are statically 
linked. In all cases, the size of the binary is less than 
one megabyte. The Nintendo DS uses a port of 
Linux (DSLinux [14]), but uses a C-library designed 
for embedded system: µClibC. The binary created 
with this embedded-profiled C-library is smaller than 
the ones that use traditional C-library (such as the 
binaries compiled for the native platform).  
 
 
 

RMA  Sunseeker  Flight management

Nokia N770 589 KB 645 KB 638 KB 
Nintendo DS 144 KB 204 KB 209 KB 
Native 471 KB 527 KB 532 KB 

Table 2: Memory footprint for each test  
 
 

6. Conclusions and Future Work 
 
Using architectural models to automatically generate 
code is a good way to create code for high-integrity 
systems. Such a method avoids all errors 
traditionally introduced by manually produced code, 
it can also create code that provides safety 
properties. In our approach, the code generator 
implements the Ravenscar profile for C.  
 The minimal middleware limits the memory 
overhead and is compiled only with the needed 
functions. A large part of the middleware (functions 
and resources) is automatically generated whereas 
a static part uses the resources and calls the 
services specific to the underling operating systems. 
The architecture of the middleware eases its port to 
other platforms. 
 If our code generator produces code that 
provides all the requirements of the Ravenscar 
profile, we can’t ensure that the user-code does not 
break our safety rules. Besides, if the Ada compiler 
checks the compliance of the Ravenscar profile on 
the whole system, the C compiler doesn’t perform 
any check. Consequently, even if the generated 
code is well formed, the user can break all the safety 
rules introduced in the system with his functions.  
 We can extend the current work in many 
ways. First, we can create other language 
generators in order to automatically produce a 
distributed system with several nodes that use 
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different languages. At this time, our code generator, 
Ocarina, only supports Ada and C languages. 
Another way consists of adding some security and 
safety information to the model. Such information is 
used to automatically generate a safe and secure 
distributed system (data-flow analysis between 
nodes, encryption in data transfer, etc...). Research 
on architecture models will probably remain very 
intense in the next years, due to the needs to check 
and validate the system before its implementation. 
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