
HAL Id: insu-02270098
https://insu.hal.science/insu-02270098

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Technology evolution of aircraft simulator for real
equipments validation

Jean-Marie Calluaud, Jean Casteres, Stéphane Gaudaire

To cite this version:
Jean-Marie Calluaud, Jean Casteres, Stéphane Gaudaire. Technology evolution of aircraft simulator
for real equipments validation. Embedded Real Time Software and Systems (ERTS2008), Jan 2008,
toulouse, France. �insu-02270098�

https://insu.hal.science/insu-02270098
https://hal.archives-ouvertes.fr

Technology evolution of aircraft simulator for real equipments
validation

Jean-Marie CALLUAUD, Jean CASTERES, Stéphane GAUDAIRE
Airbus France 316 Route de Bayonne F-31060 Toulouse Cedex 9

Abstract:
Aircraft systems have increased in number and
complexity since 1985. The integration test rig, often
known as the “iron bird” integration simulator, has
been developed to assemble and test as many as
possible of the various aircraft systems in a
simulated environment.
The integration simulator aims at:

• Simulating the aircraft environment, the
natural flight loop and certain systems

• Stimulating the real aircraft equipment
The evolution, in the last twenty years, of simulators
for aircraft equipment validation is presented in this
article.
From 1995 to 2008, integration simulator
architecture has taken various evolutionary steps
that have affected:

• Simulation complexity
• Simulation architecture
• Technology used

The article shows how mass-market technology
(hardware, communication, bus, operating system)
can fit into the specific and complex architecture of
the integration simulator. The multiple technical and
industrial constraints that must be taken into account
to migrate from specific to generic solution will be
presented.

Keywords: Simulation, real time, operating system

1. Introduction

Simulation, in today’s complex systems, plays an
increasing role. The aircraft industry has been one of
the earliest users of the simulation techniques and is
still paving the way for the adoption of new
technologies.
The complexity of systems has increased the cost of
their development and simulation is often a way to
reduce the costs of testing aircraft complex systems.
We have developed a chain of simulation platforms
ranging from the research simulator to the
integration test rig to support the aircraft program.
The aerospace industry vision is that embedded
systems will be key differentiators in the aircraft
business. But this embedded systems industry is
driven by mass-market products (PDA, Cell phone,

gaming). These products display a different
production pace which creates a difficult
obsolescence problem for the other industries.
Focus must be put on architecture methods and
development tools to adjust to this pace, with each
industry contributing its know-how for cost reduction:
automotive with large scale production cost savings
and aerospace for safety and quality control.
This article will present how the steps to adapt to this
new market conditions have taken place; and how
the integration test rig is now ready to adapt to the
fast pace of change of the mass market.
We will first look at the simulation chain implemented
to answer the aircraft program simulation needs. An
analysis of the evolution of the architecture for the
integration simulator and of its real time performance
profile will be presented in several steps: the initial
specific architecture, the first evolutions to standard
operating system, and finally highlighting the mass
market technology adoption.

2. Simulation Platform Needs

An aircraft is a complex system that involves
different knowledge domains such as:
aerodynamics, engines, electric and hydraulic
systems, flight dynamics. In order to validate new
ideas and new technologies in these various
domains, a series of simulation platform has been
built. This chain covers the prospective research
simulator (EPOPEE), the development simulators
(A/C-1 and desktop simulators) and the integration
simulator A/C-0. These simulators support the
aircraft development from 5 years, 2.5 years and one
year before the first flight respectively.
In this article we will focus on the integration
simulator: aircraft 0 or A/C-0 (or “iron bird”
integration test rig) that enters into service one year
before the program’s first flight.
The iron bird integration concept dates back to the
Concorde program: compatibility checking between
various aircraft systems can be performed at a lower
cost on the ground [1]. The integration test rig tests,
verifies and validates the compatibility between real
aircraft systems, as they will be assembled onto the
aircraft with a pilot in the loop. As a consequence, an
important characteristic of the integration simulator is
that it shall perform simulation in real time since it

 Page 1/8

needs to stimulate real avionics equipments and
interface with a real pilot.
A/C-0 is used to prepare the first flight but also to
participate in aircraft certification, and remains
operational throughout the aircraft program lifecycle.
The integration test rig comprises of two main
components: the simulated world environment and
the real equipment that needs to be integrated.
These are:

• Aircraft equipment such as: flight controls,
flight warning systems and aircraft
communication networks, avionics bays

• Cockpit systems such as: integrated cockpit
panels, cockpit display systems

• Aircraft electrical power generation system
• The “iron bird” which is constructed using

the hydraulic, electrical and flight control
actuators from the aircraft.

Figure 1: Basic elements of integration simulator

In order to perform the integration of these elements
a simulated world environment is developed. The
integration simulator embeds the required simulation
computing capacity to be able to model the natural
flight loop, the engines, the aircraft environment as
well as other missing systems. The simulator also
supports the communication between the simulated
to the real systems worlds via an interface. The
interface samples and synthesizes the various
aircraft signals necessary for the simulation: analog,
digital, ARINC 429, CAN and AFDX signals.

Figure 2: Aircraft 0 simulator

The aircraft 0 integration simulator must support a
fundamental need for the integration step: the ability
to be reconfigured between simulated and real
equipment. We illustrate this feature with the
following representative example of the aircraft
Electrical Flight Command System. When connected
to the Iron bird test bench, the integration simulator
directly drives the aircraft actuators present on the
test bench; when the integration simulation is not
connected to the iron bird, but only to the avionic
bay, a simulation of the actuator loop is required.

Figure 3: Simulator with actuator simulation

 Page 2/8

3. Specific Integration Simulator Architecture

In 1987 the A320 makes its first flight. The program
is very important for Airbus since it introduces fly-by-
wire flight controls to the industry. At the time, the
computing means are far more limited than those we
know today: this limits the ambitions and needs
covered by the simulation. The integration simulation
is based on a real time loop at 40 milliseconds for
the flight loop, and 80 ms for the other models. On
the interfaces, the sampling of the input and output is
performed at 20 milliseconds, while outputs that
require this refresh rate are computed using
extrapolation methods.
Since the integration simulator needs to test as
many as possible of the real aircraft equipments,
these have to be “stimulated” as they arrive on the
test rig. Stimulation of aircraft equipment can be
defined as the art of communicating with the
systems without going to a full range functional
model. For example, aircraft flight command
actuators were simulated using recorded tables.
In the following table, we give a view on the number
of models involved in the simulation: this gives an
idea of the number of simulated models and
stimulated elements, as well as the required
processing power (CPU).
We will use the A320 program integration simulator
as a reference throughout this article for CPU power
and data exchange throughput. Additionally the
number of data signals indicates the volume of
exchanges at the interface level.

Table 1: simulation size

In the early days of the A320 development program,
there were only proprietary solutions for computers,
operating systems and I/O acquisition buses. The
integration simulators were built around these
solutions, before the appearance of Unix
workstation and Ethernet a few years later.
The next aircraft program is the A340 in 1989 and
the program allows bringing new technology to the
integration simulator. The VME bus is available and
enables an easy “on demand” addition of IO boards
to the interface bays. Reflective memory technology
fulfils the new processing power requirements whilst
keeping existing software developments.
The integration simulator architecture at that time
was built on computers connected to each other

using reflective memory. These computers were
running proprietary operating systems driving avionic
signals IO acquisition boards that had been
developed in-house. At this time, the timing
reference for the simulation was the 50 Hz coming
from the power grid.
The real time software principles, that are still valid
today, were already present: simulation models
needed to be scheduled. Simulation models are
therefore controlled within a real time simulator
infrastructure that offers the following services:

• Computer platform abstraction layer
• Operating system abstraction layer
• Model Scheduling services
• Inter-model communications
• IO Data management services
• Simulation recording capability services

Figure 4: Simulator software architecture

With such architectures, the real time performance
profile were:

• Model scheduling at 40 ms +/- 1 ms
• IO sampling/synthesis 20ms +/- 1ms

4. A first step towards the standards

In 1998, the A340-500/600 program brings a new
wave of requirements. These require filling of a new
technology gap for the integration simulator.
The new requirements demand that flight commands
be validated while modelling the aircraft structure
dynamic behaviour. Other models gained in the level
of detail that could be modelled for example: the
transients for slat/flaps and gears, ground reaction
and runway topology, as well as dynamic modelling
of the fuel displacement while the aircraft was in
motion. These needs will all contribute to increase
the accuracy level of the simulation and trigger the
use of new tools and methods: for example code
generation. The program will also be the first one to
test the integration of a functional simulation model

 Page 3/8

delivered by another partner, in the case of the
FUEL model.
The validation of flight controls in the context of
aircraft dynamic structure behaviour requires:

• A new aircraft dynamic structure modelling
and a IO sampling rate at 10ms

• New aircraft flight control actuator simulation
control loop at 5ms

At this time two new technologies were used for the
development simulators as well as the integration
simulators:

• Symmetric Multi-Processor SMP
• Versatile Module European Bus or VME

Both technologies will bring benefits to the
integration simulator and introduce two main path to
real-time solutions.

Figure 5: A340-600 simulator architecture

The SMP server architecture uses a general purpose
UNIX operating system (GPOS). This operating
systems brings two fundamental capabilities:

• Pre-emptive process scheduling
• Deterministic timer driven events

The VMEbus utilization introduces the controlling
CPU board. This CPU, closer to the acquisition
interface, runs its own smaller Real Time Operating
System, RTOS (Lynx OS), often called hard real
time capable OS, yielding deterministic response
time on the CPU board.
The GPOS brings a wide software base, while the
RTOS focuses on strict deterministic real-time.
The integration architecture for the program will
finally be a mix of both technologies: an SMP host
will handle the models for all the simulations and a
VME bus rack will drive the IO cards. The link
between the SMP host and the VME rack CPU head
is a proprietary solution.

A dedicated CPU card and its RTOS perform the
inner control loop, in charge of the flight command
actuator simulation.
With this architecture the real-time performance
profiles are:

• SMP Host scheduling: 10 ms +/- 200µs
• Interface scheduling: 5ms +/- 50µs

Looking back at this technology step, one of the
main benefits was to be able to migrate the
simulation infrastructure to a standard host
equipment, and benefit from the international
standardization efforts conducted on UNIX, that
would soon become POSIX. The VMEbus was also
a step in that direction but with still a relatively small
RTOS audience at the time.
Additionally, another lesson still true today was the
trend and need for more accurate and high fidelity
simulations, that would require more computing
power.

5. Evolution to standard maturity

The A380 program brought the simulation world to
the forefront. The breakthroughs achieved on the
aircraft systems side as well as the structural size of
the airplane required simulations on every step of
the way from the design to the first flight.
Integration of models coming from partners was
extensively used. These models were required to run
at 40 ms, and, as a consequence the simulation
flight loop had to be executed in 10ms.
Last but not least were the new aircraft onboard
communication needs. The program introduced two
new buses and associated protocols: CAN and
AFDX. The avionic data communication network
ADCN, standardized in ARINC 664, defines the
avionic full duplex switched Ethernet as the
communication protocol, which adds a simulation
requirement on the integration simulator. The 50
registered end systems represent 570 frames (30
frames per 8 milliseconds) and 50000 digital numeric
values to be handled by the simulation.
These technology introductions onboard the aircraft
increase the CPU power and inter-model
communication needed by the simulation:

 Page 4/8

Table 2: A380 simulation sizing

The integration simulator architecture had to take
into account these new requirements and investigate
new techniques to bring additional benefits. PC
based distributed architecture was envisaged, but
abandoned since the performance at the time did not
meet the requirements.
One can insist on a key point that helped the SMP
quad CPU staying at the heart of the integration
simulator architecture. These UNIX based
architectures took benefit of the microprocessor war
involving major manufacturers such as Intel,
Motorola, Mips or SUN. These architectures
improved dramatically over the years from the CPU
clock speed point of view but also from the inter
processor communication standpoint. This allowed
the SMP platform to cope with the increased level of
accuracy required for the models. The SPEC
benchmarks (Standard Performance Evaluation
Benchmark), one of the most successful attempts to
create a standardized benchmark application suite
[2], helps represent the integration simulator
application to predict if a platform would be
appropriate for a given simulation.

Figure 6: A380 simulator architecture

As for the required performance for the flight
command control loop, the A380 program required
an increase of 10 times the performance, but there
too the CPU power increase available on the board
was enough.
The Ethernet had made it into the aircraft with AFDX
and since the host was easily capable of managing
Ethernet connections, it was very natural to connect
directly connected to the ADCN aircraft switches. At
the same time, one of the interfaces dedicated to
cockpit digital input acquisition had become obsolete
and a solution was developed in Airbus that also
used Ethernet connections from the host to the
interface.

Figure 7: A400M simulator architecture

With this architecture the real-time performance
profiles are:

• SMP Host scheduling: 10 ms +/- 200µs
• Interface scheduling: 2,5ms +/- 50µs

6. Linux Mass Market Technology

For the first time in this small history, the next step
came from the computer industry and not from an
aircraft program. It pushed us to go for the next
technology gap. The servers we were relying on,
were announced to be obsolete by 2008. At the time,
the micro-processor gap was so big that from the
SPECfp_rate on SPECint_rate analysis the PC
generation could outperform the machine we were
using by two orders of magnitude or more.
In parallel, the Linux operating system had matured
in the UNIX industry. It was no longer a pet project
and was supported by major distribution companies
(such as Red Hat or SUSE). The operating system
was following the POSIX international
standardization effort, and would be a more natural
migration for our teams.

 Page 5/8

Another major advantage in the modern open source
operating system was the multi-media capabilities
that were making their way into the mainstream PC
world. Modern Internet connections had raised the
need for audio and video capabilities at home. Voice
over IP was shaking the plain old telephone system
business model, and the Linux operating system was
pioneering ways to support these features thanks to
its very active community.
Multi media codex used for the recent Internet
applications turned out to have real time
requirements that triggered an effort in the Internet
community to put new improved real time handling
capabilities in the kernel. This initiative was known
as the Linux PreemptRT kernel [3]. At the same time
chip manufacturers were converging on the
hardware modules at the periphery of the
microprocessor cores that would handle the
management of time and interrupts on the chip
(Local Advanced Programmable Interrupt Controller
[4]). Time management for the simulation application
would rely on the newly adopted microprocessor
chip standards. Little by little, fundamental patches
dealing with the way the interrupts are managed and
the way the priorities are handled made it to the
mainline kernel source code trunk. Because of this
evolution Linux PreempRT was selected for the
simulation host.
The process is the executing instance of a program
[5] (the word “task” is used as a synonym). A
process has a unique identification number and a
priority is associated to that number. The operation
of suspending a process and inserting it into the
ready queue is called pre-emption [6]. The
scheduling policy of the kernel selects the next
process to run based on the priority number. This
allows a high priority process to take the CPU if its
priority number allows it. The scheduling policy
algorithm computes process priority as explained in
[6].
This mechanism was introduced in the Linux kernel,
in the recent versions of the kernel, in a
homogenous manner for all processes. Together
with the architecture of timers on the new processor
chips it allowed Linux developers to implement a
pre-emptive version of the operating system.

Figure 8: Monta Vista Fostem 2006

In parallel, Linux co-kernel simulation became
available on the market more widely, with the ability
to run an RTOS. For a tighter real time application
this solution was selected as a good candidate for
the control loops.
The main selection for the simulation host Pre-empt
RT Linux solution raised a fundamental product life
cycle dilemma. In order to ensure the long term
support for a Linux based solution through the long
life of the integration simulator three options were
envisaged:

• Internal development: we are in charge of
the operating system and hardware, we
experiment the integration choices. We
assume responsibility for the entire
operating system package integration.

• Market expert: we select a complete real-
time packaged solution from the catalogue
of a manufacturer.

• Integrated service: we select an architect
consulting company that architects with us,
on our recommendations, a real-time
solution and is responsible for the package.

The third path was agreed on and the integrated
service defined. This choice proved to be the correct
one: since then, major commercial companies
involved in the distribution of Linux have decided to
look into this technology. Recent announcements
confirm their interest [7]
The integration simulator architecture selected was
based on multi-core mainstream PC architectures.
Ethernet link, with an adequate network topology
were selected to connect to the VME equipment
performing the interface functions for traditional and
AFDX IO. This architecture is being retrofitted to the
in_service aircraft simulator of the department.
The paradigms and formalism used for the
specifications of complex aircraft systems have
witnessed significant progress in the recent years,
and benefit today from recent improvements in
automated code generation. This fact together with
the increase in the model precision and broader use

 Page 6/8

of simulation in every aircraft’s system will constitute
the main driver for our future investigations.

Figure 9:new simulator architecture.
These new tools and environments require more
computing infrastructure performance, while
modelling precision will require tighter real time
control loops. Distributed simulation, pre-emptive
kernel performance and co-kernel simulations are
the lines on which we should be able to draw a
solution for our future needs.

Figure 10: architecture forecast

Another constraint that Linux helped us withstand
was to share binary compatible models for all our
simulation platforms.

7. Conclusion

Architecture choice for an industrial product such as
the integration simulator is constrained by the
technology solutions available on the market.
In the past 20 years we have moved, with some
difficulties, from a proprietary technology to a
standard set of technologies. And today, we have
been able to architect industrial solutions around
available mass-market technology.
The transition from a Unix based solution to a Linux
mass market PC architecture did not trigger an
expensive software migration, and this step is
economically sound.
Mass-market solutions are moving fast, but this
continuous move guaranties the flexibility and
versatility of our solutions. Monitoring this continuous
move represents a manageable effort, and allows
the freedom to select the pace at which new
technology is introduced in the product.
Simulation is more and more used as a validation
tool. Representative and precise models will set the
rule for the requirements requested of the integration
simulator architecture and computing infrastructures
associated.
Architecture for aircraft simulators is a fantastic
domain to explore: there are always new ways to
investigate and new questions to ask. VME
architecture, for example, will need to be revisited
and it is our challenge to look at the emerging
technology that will fulfil our needs.
Virtual machines today, may not offer real time
performance that our integration simulator is aiming
at. But product life cycle management schemes that
the virtualization enables, as well as ease of
migration and third party partner hosting are certainly
advantages and we shall periodically revisit the
performance of this technology.
Lastly, modelling the simulator and abstracting the
simulation application from the hardware and the
software it runs would allow us to define the
architecture of the simulator based on the application
it is simulating. The emergence of a formalism in this
domain would open the possibility of simulation as a
whole.
The completeness and functional possibilities of the
recent models developed for simulation are set to
demonstrate the tremendous help that simulation
already brings today to the industry. Technology
available in the industry allows following the ever-
increasing level of precision required in the
simulation environment.
Our objective will be to look at these new
technologies and see how they can serve our goal of
providing high fidelity real time simulation for aircraft
systems.

 Page 7/8

8. Acknowledgement

The work described in this paper is a team effort of
the simulation team in our company and partners. All
the individuals of the team as well as additional
experts contributed to the success. Thanks to you
all.

9. References

[1] C. Coureau, D. Liot, B. Mattos, « Airbus
Engineering Simulation Methods – Past and Future
Trends », p5, §5, 2004

[2] John L. Hennessy, David A. Patterson, “Computing
Architecture: A quantitative Approach”, Third
Edition, Morgan Kaufmann, p28, 2003

[3] http://rt.wiki.kernel.org/index.php/Main_Page
[4] Intel, « Intel 64 and IA-32 Architectures Software

Developer's Manuals”
http://developer.intel.com/products/processor/manu
als/index.htm:

[5] W. Richard Stevens, “Advanced Programming in
The Unix Environment”, Addison-Wesley, 1993

[6] Giorgio, C. Buttazzo, “Hard Real-Time Computing
Sysyems: Predictable Scheduling Algorithms and
Applications”, Kluwer Academic Publisher, 1997

[7] http://linuxfr.org/2007/12/13/23447.html “la guerre
du temps réel”

10. Glossary

AFDX: Aircraft Full DupleX
CAN: Controller Area Network
GPOS: General Purpose Operating System
RTOS: Real Time Operating System
SMP: Symmetric MultiProcessing
VME: Versa Module Eurocard

 Page 8/8

http://rt.wiki.kernel.org/index.php/Main_Page
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://linuxfr.org/2007/12/13/23447.html

