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Abstract: This article gives an overview of the 
simulation and validation strategy used for a real-
time onboard software (OBSW) module developed 
on Matlab/Simulink® environment and autocoded 
into C language using the Real-Time Workshop 
Embedded Coder® (RTW). This module is the key 
point of the Formation Flying In-Orbit Ranging 
Demonstration (FFIORD) on PRISMA satellite 
mission. To respect requirements on real-time 
execution conditions and software reliability for 
space missions, the OBSW module is carefully 
tested before delivery and integration. 
Interesting results are obtained based on an 
inconstancies analysis of the C code produced by 
RTW, which leads to “good practice” guidelines for 
Simulink model implementation. Actions realised 
through this experiment aim at providing a 
background for the development of adequate 
Independent Verification and Validation (IV&V) 
procedures. They give more confidence and 
experience on the Model-Based Design domain 
before applying it to large scaled projects.     

Keywords: Embedded Autocoded Software, Model 
Based Design, IV&V, Matlab/Simulink®, RTW®, 
LEON3, RTEMS. 

 

1. Introduction 

1.1 FFIORD Mission Description 

PRISMA is a Formation Flying mission proposed by 
the Swedish National Space Board (SNSB) for 
validation of formation flying concepts and 
technologies as early as 2009. Two satellites set the 
formation. The Main is a fully manoeuvrable satellite 
with a six thrusters’ configuration for attitude and 
orbit control. The Target uses magnetorquers for 
attitude control only, without orbit control capability.  
The CNES participation on PRISMA consists of 
embarking the Formation Flying RF Metrology sub-
system (FFRF) on the two PRISMA satellites as 
passenger equipment. This radiofrequency-based 
sensor developed by Thales Alenia Space is partly 

designed on existing GPS technology. It will be used 
as a coarse metrology and safety monitoring sensor 
for future Formation Flying missions. Thus, FFIORD 
will include closed loop operations with the FFRF 
sensor, allowing genuine autonomous formation 
flying scenarios and associated GNC algorithms to 
be tested in real-life conditions.   

 
Figure 1: Main (left) and Target (right) satellites. 

 

1.2 CNES OBSW Module Development 

The software development performed by CNES aims 
at providing a Simulink model named 
“CNES_GNC_lib”. This library defines several 
Guidance Navigation & Control (GNC) modules 
realised with specific blocs in the Matlab/Simulink® 
environment. These algorithms (mainly based on RF 
sensor measurements) will run during FFIORD 
experiment on PRISMA mission. In addition to these 
goals, the “CNES_GNC_lib” library manages 
interfaces of the FFRF sensor for open and closed 
loop GNC experiments.  
 
Once developed and validated on the 
Matlab/Simulink® environment, “CNES_GNC_lib” is 
integrated in the main PRISMA OBSW Simulink® 
model on the Swedish side. An automatic code 
generation process is then performed using the 
Real-Time Workshop Embedded Coder®. In order to 
be run on the Main satellite onboard computer, the 
autocoded C code is cross compiled for the LEON3-
FT (SparcV8 design).  
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Figure 2: CNES GNC Module Development. 
 
The first part of this paper describes the validation 
process realised on the CNES GNC module within 
two consecutive steps. The second part contains an 
evaluation of code generation quality through Code 
reliability and coverage analysis with specific tools. 
The last part provides a validation strategy for any 
autocoded software obtained with the Real-Time 
Workshop Embedded Coder®. Every section 
contains associated results. 
 

2. CNES GNC Module IV&V Process 

A quick and efficient two steps process is performed 
for the CNES GNC Module validation.  

Firstly, a dedicated Matlab/Simulink® test harness is 
developed to run GNC algorithms in their native 
context, using space environment and equipment 
simulation models. A numeric simulator representing 
accurate behaviour of the FFRF sensor is developed 
and used in the further OBSW testing. Thus, this 
simulator is considered as reference for further 
hybrid tests.  

Secondly, a hybrid simulator based on a LEON-3FT 
processor is developed under the real-time operating 
system RTEMS. This allows real-time testing for 
autocoded algorithms obtained from the code 
generator with PRISMA mission representative 
processor board and operating system. This hybrid 
simulator provides realistic estimations of 
computational load, and evaluates final autocoded 
algorithm performances by using a set of reference 
scenarios. Comparisons between these two different 
environments are realised on produced results. 

 

2.1 Simulation of the “CNES_GNC_lib” Model 

The GNC library is entirely developed on Simulink 
environment in order to be integrated inside the main 
OBSW developed as Simulink model. This allows 

experiment capabilities such as simulation tools 
provided by this environment. Furthermore, the 
Model-Based Design approach is well-adapted for 
any non computer software engineer (i.e. GNC 
engineer). Each function can be implemented 
through combination of functional blocks which 
realise unit operations. At this step, each algorithm is 
developed on a functionality sense not on a software 
one. Every requirement and specification comes 
from functionality analysis. 
 

The “All Software” (AS) test facility consists of a 
Simulink® simulation which contains several items: 
• Environment models which simulate realistic In-

Orbit flight conditions. 
• TC Generator model which allow controlling the 

CNES GNC module through specific 
Telecommands. 

• FFRF Sensor model which interacts with the 
CNES GNC module. 

• PRISMA System models which simulate the 
main OBSW of the Swedish side and other 
PRISMA services afforded by the spacecrafts. 

These items are connected as inputs / outputs to the 
“CNES_GNC_lib” library to be tested. 

 
Figure 3: CNES GNC Model Test Facility. 

 

Reference scenarios are run on the Test Facility to 
stimulate corresponding subsystems (S/S) inside the 
GNC Simulink® library. Several outputs are 
analysed such as relative states (three-axis position, 
speed) between Main and Target satellites, or 
absolute state of the Target satellite computed by 
the Navigation function.   
 
A typical simulation output is presented there after to 
illustrate the validation strategy of the GNC 
functions. The simulation scenario begins with 
station keeping of the Main satellite at [50, 190, 0 m] 
in the Target Local Orbital Frame named SLO (Z is 
Earth Oriented, Y is opposite to the orbit kinetic 
momentum, X is almost the velocity vector for near 
circular orbit). Then a forced translation is 
commanded to reach in 2000s the point [30, 0, 0 m]. 
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Figure 4: Evolution of the Main satellite position on X 

axis in SLO frame. 
Comparison between Reference State from the 
Environment Models and Real State from the GNC 
library allows checking the expected functional 
behaviour and the performances.    
 

2.2 Simulation of the autocoded CNES GNC library 

After having performed Verification & functional 
validation of the GNC library inside the “All Software” 
Test Facility, automatic code generation process can 
be run using the Real-Time Workshop Embedded 
Coder®. In order to have runs of the generated C 
code on the mission representative processor 
(LEON3), a specific real-time embedded benchmark 
is developed. This benchmark handles RTW C code 
on a real-time task of the RTEMS operating system 
which is also mission representative. 
 
An Ethernet data link is used between the Simulink 
simulation on Unix Workstation or PC, and the 
LEON3-FT GR-CPCI-AX2000 development board. 
The client is implemented inside a specific S-
Function in Simulink while the server is on the 
LEON3-FT side. This S-Function replaces the 
“CNES_GNC_lib” model in the previous “All 
Software” Test Facility. 

 
Figure 5: CNES GNC Hybrid Test Facility 

 
At each simulation iteration, this connection carries 
current GNC model inputs and benchmark control 
data. These data drive embedded benchmark such 
as initialisation and termination actions. The CNES 
GNC autocoded model on the board returns 

corresponding outputs, and measurement data. 
These data contains different status such as CPU 
execution time and amount of RAM memory spent. 
 
The Hybrid Test Facility contains the Real-Time 
Core task which manages the Server task and the 
CPU measurements library. The autocoded GNC 
model is executed from the Real-Time Core Task as 
a software library through service functions 
(initialization, one step iteration, termination). 

 
Figure 6: Hybrid Test Facility Software Architecture 

 
The following figure shows result obtained during 
Hybrid Tests on the embedded real-time benchmark. 
It gives for each activation step, the CPU time 
required to compute the CNES GNC autocoded 
algorithms considering test scenario with the worst 
time consumption (most consuming functions are 
activated). The graph has to be compared to the 
20ms maximum time allocation given as prerequisite 
for the whole CNES GNC library (considering its 1Hz 
activation period by the main OBSW). 

 
Figure 7: Worse CPU load obtained during Hybrid 

Tests to check real-time constraint (board oscillator 
is 25 MHz, Data & Instruction Caches deactivated) 

 

This easy-to-use benchmark allows an iterative 
process between Simulink® code production, 
performance measurement on the representative 
board, and then Simulink® code improvement if 
required. 
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Such an iterative approach shall be followed soon in 
the development process to avoid issue when 
testing the full software on the board at the end of 
the development.  
A good illustration comes from the use of Simulink 
state vector block “1/z delay” that shall be used with 
an extreme care. Indeed, even if only a small subset 
of the state vector shall be updated within a given 
time step, the whole vector is copied (full variable 
copy of the previous state) and then updated (copy 
of the incoming subset). 
This can lead to a huge CPU consumption for big 
state vectors. The solution is to design the 
Simulink® model by replacing any inadequate big 
state vector with several distributed state vectors. 
Following this philosophy, CPU load was decreased 
from more than 13ms down to 6ms for the  
“Depack_TC” subsystem. 

 
Figure 8: CPU Execution Time obtained for the first 

version of “Depack_TC” S/S 
 

 
Figure 9: CPU Execution Time obtained for the 

upgraded version of “Depack_TC” S/S 

Amongst other functionalities, this subsystem is in 
charge of unpacking and storing 55 possible 
instances of a single telecommand (characterized by 
an index within the TC) containing 18 doubles. The 
first “Depack_TC” version was based on a global 
state vector of 55*18 doubles. The second version 
upgraded after observation of the poor CPU 
performance was based on 55 different state 
vectors, each one containing 18 doubles and 
activated only if the incoming telecommand index 
was corresponding. 
 
2.3 Results comparison analysis between “All 
Software” and “Hybrid” Test Facilities 

In order to validate the autocoded GNC software 
obtained from the GNC Simulink® library, it 
becomes necessary to compare outputs produced 
from the two Test Facilities (“All Software” 
configuration on Windows PC and Hybrid 
configuration on PC-UNIX/LEON3). Here focus is 
made on the Target satellite absolute states 
estimation (3-axis position in inertial frame) as 
computed by the “CNES_navigation” subsystem of 
the CNES GNC library running a specific reference 
scenario.  
 
Two configurations are considered for the “All 
Software” Test facility, depending on the computer 
used to host together the Simulink® simulator and 
the CNES GNC library model (Sun Sparc Solaris or 
PC Intelx86). Hardware details used for “All 
Software” and Hybrid simulations are summarised in 
the table below. 
 

Test Facility 
Configuration

Hardware 
Design 

Hardware 
Name 

All Software 
(config #1) Intelx86 IBM® Laptop 

All Software 
(config #2) Ultra Sparc III+  

Sun Blade 
1000 UNIX 
Workstation     

Intelx86 IBM® Laptop 
Hybrid 

LEON3-FT 
SparcV8 

GR-CPCI-
AX2000 

Table 1: Hardware details of “All Software” and 
“Hybrid” simulations for the “CNES_GNC_lib” model 

 

Note: Analysed outputs are totally independent of 
the Simulink® simulator part. In fact, no computation 
is made on the simulator side for the Hybrid Test 
Facility. Thus, the simulator is only run on the 
Intelx86 design.     
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Differences are studied between the two Test 
Facilities outputs obtained for the GNC library 
running in open-loop mode (identical inputs for both 
cases) on specific designs (different compilation and 
execution processes). The next figure presents 
evolution of absolute difference on three-axis 
position of the “Main” satellite as computed from the 
“CNES_navigation” S/S of the GNC library. This 
experiment is realised with nominal test scenario 
which remains unchanged all along analysis. Two 
parameters which produce changes are identified: 
rounding direction† for float arithmetic and hardware 
design. 

 
Figure 10: Absolute difference evolution on three-
axis position of the “Target” satellite between “All 

Software” and Hybrid Test Facilities 
 
The maximum absolute difference value on Z axis is 
about 3.25e-4m which shall be compared to the 
order of magnitude of the estimated position 
(7000km). This test is realised by differencing 
position values obtained from “All Software” Test 
Facility in Windows-PC (rounding direction† set to 
“NEAREST”) and the Hybrid Test Facility on 
Windows-PC for the simulator side and on LEON3-
FT for the autocoded CNES GNC library (rounding 
direction† set to “INF”). 
The following table summarises influence of 
rounding direction and hardware design.  

 

†: Rounding direction refers to the IEEE Standard 
754 Floating Point Numbers. 

AS 
Hardware 

Design 

Rounding 
direction† 

for AS 

Rounding 
direction† 
for Hybrid 

Max 
difference 
(absolute 

value) 

Intelx86 NEAREST  INF 3.25e-4 m 

Intelx86 INF INF 3.50e-5 m 

Intelx86 NEAREST NEAREST 1.6e-5 m 

Ultra 
Sparc III+ NEAREST NEAREST 4.0e-6 m 

Table 2: influence of rounding direction and  
hardware design on maximum absolute difference 

value 
 

The previous results show that even with a same 
hardware design and rounding direction, exact 
reproducibility between “All Software” and Hybrid 
Test Facilities is not complete. Regarding GNC 
constraints on position accuracy of the “Target” 
satellite, the maximum difference position value 
measured is acceptable (3.25e-4m towards the 
order of magnitude of 7000km on position). In any 
case, computation environments have to be as close 
as possible to avoid great disparities between 
different hardware designs. 
 

 Performance validation can’t be achieved in trying 
to retrieve exact results between two simulation run 
on different environments, but in analysing 
macroscopic tendencies (convergence time, …) and 
performance criteria (results accuracy, …).    
 

3. Autocoded Software Quality & Reliability 
Analysis 

After having achieved performance validation on 
autocoded software from functional model, an 
evaluation of code quality and reliability has been 
performed. For the PRISMA project, a static analysis 
is realised using PolySpace®. Interesting results are 
obtained such as logic code coverage and analysis 
of error occurred in the auto-generated code. 
 

3.1 Auto-generated Code Quality Analysis 

Typical code metrics have been measured: 
• STMT: Number of statements in a function’s 

body. 
 

• AVGS: AVeraGe Size of Statements 
corresponds to the average number of operands 
and operators used by each of the function’s 
executable statements. AVGS is calculated as 
follows: 

statlc
NNAVGS

_
)21( +

=                   [1] 

where: N1 is the number of operator occurrences, 
N2 is the number of operand occurrences,            

lc_stat = STMT  
 



 Page 6/10 

• VOCF: VOCabulary Frequency corresponds to 
the average number of times the vocabulary is 
used (sum of distinct operands and operators) in 
a component. VOCF is calculated as follows: 

)21(
)21(

nn
NNVOCF

+
+

=                   [2]      

where: N1 is the number of operator occurrences, 
N2 is the number of operand occurrences,              

n1 is the number of distinct operators,                         
n2 is the number of distinct operands 

 

• LEVL: Maximum nesting level in a function plus 
one. 

 

• PARA: Number of a function parameters. 
• VG: McCabe cyclomatic complexity number of 

the function. This number depends on the 
number of nodes of decision in the control graph 
with the formula: 

∑ −+=
isionNodesOfDec
inVG 11                     [3] 

where: in is the number of edges departing from the 
node i.  

 

• LVAR: Total number of variables declared in a 
function (Local VARiables). 

 

• DRCT_CALLS: number of direct calls in a 
function. Different calls to the same function 
count for one call. 

 

• RETU: Number of Return statements in the 
function (plus one if the function’s last statement 
is not Return statement). 

 

• GOTO: Number of “Goto” statements. 
 

• COMF: COMments Frequency. 
 

The following table presents metrics values obtained 
on the two main autocoded functions of the CNES 
GNC library: CNES_GNC_lib0_initialize() and 
CNES_GNC_lib0_step(). The first one performs 
model initialisation before any outputs computation 
(local variables and states initialisations, S/S 
activations). The second one contains the most 
important part of the autocoded Simulink model. 
Called every time to produce outputs, the 
CNES_GNC_lib0_step() is the core function and 
represents about 13% of the auto-generated code. 
Corresponding metrics values in parenthesis are 
given as reference from the CNES normative 
referential for OBSW. 
 

Function 
Name 
Metric 
Name 

CNES_GNC_lib0_
step 

CNES_GNC_lib0
_initialize 

STMT 3004 (< 40) 247 (< 40) 

AVGS 7,82 (< 9) 7,64 (< 9) 

VOCF 26,69 (< 5)  8,69 (< 5) 

LEVL 6 (< 4) 3 (< 4) 

PARA 0 (< 5) 1 (< 5) 

VG 565 (< 10) 64 (< 10) 

LVAR 497 (< 7) 64 (< 7) 

DRCT 
CALLS 19 (< 7) 1 (< 7) 

RETU 0 (< 1) 0 (< 1) 

GOTO 0 (0) 0 (0) 

COMF 0,31 (> 0,2) 0,29 (> 0,2) 

Table 3: RTW generated Code Quality Analysis 
Bold metrics values point out some disadvantages of 
the code generator. Indeed, autocoded functions 
often contain very important amount of executable 
statements which increase code length and 
introduce poor vocabulary frequency. McCabe 
cyclomatic complexity number and total number of 
local variables declared per function are directly 
linked to these previous metrics. 
 

 Through this analysis, auto-generated code on 
RTW from a complex functional model can quickly 
become difficult to read by human despite of 
comments frequency. The last section of this paper 
describes some tools which may improve auto-
generated code quality and readability.  
 
3.2 Auto-generated Code Reliability Analysis 

The PolySpace Verifier® tool allows to check 
software errors such as unreachable code or 
uncalled procedure or any possible cause of 
execution exception (underflow / overflow, arithmetic 
exception, division by zero …). From a logic call 
functions tree, every function of autocoded software 
is executed following a normal call sequence. Global 
variables are initialised with representative definition 
intervals.  
Four diagnostic levels are provided at the end of the 
reliability analysis:     
• Statement with non proved reliability (R). 
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• Statement non reachable (dead line) (Gy). 
• Statement with reliability proved (Gr). 
• Statement with indeterminate reliability (O).   
Indeterminate reliability may indicate potential error 
or simple warning on specific statement. These 
points should be analysed manually.    
 

Some results on the GNC library are summarised in 
the following table. Occurrences of possible cause of 
software exception are classified with respect to the 
four diagnostic levels previously presented.  
 

Check Detail R O Gy Gr % 
Proved

Underflow or 
Overflow 0 1158 2 193 14,41%

Unreachable 
Code 0 0 5 0 100% 

Arithmetic 
Exceptions 0 0 0 0 N/A 

Division / Zero 0 80 0 143 64,13%

Total:  0 3286 8 18260 84,75%

Table 4: RTW generated Code Reliability Analysis 
Total distribution of occurrences on the four 
diagnostic levels for the autocoded GNC library is 
depicted below.  

O
15%

Gr
85%

Gy

R

 
Figure 11: Diagnostic levels repartition during RTW 

generated code reliability analysis 
 

Auto-generated code can’t be directly declared 
unreliable since there is no presence of red level 
occurrences. However, orange level cases need to 
be resolved to ensure code safety. These 
indeterminate cases should be removed by 
analysing inputs intervals which are implied to the 
corresponding statement. For example, an 
indeterminate reliability case for the “Overflow / 
Underflow” issue on particular variable must be 
resolved in analysing definition interval.  

Grey (Gr) level occurrences which correspond to 
unreachable code may appear in the generated 
RTW code when specific blocks are badly used. 
Typical example is given below for blocks which 
protect arithmetic operations in autocoded software. 
The following figure presents an unreachable code 
case due to a bad usage of the “Saturation” block. 

 

 
Figure 12: Use of “Saturation” block in simulation 
model and corresponding auto-generated code 

 
In that case, the “mask_in” signal is never greater 
than 65535 during analysis, so the saturation 
condition in bold never occurs. This design could be 
maintained to increase model robustness (no 
prerequisite is made on the “mask_in” input signal). 
It shall be removed if functional analysis proves that 
the “mask_in” variable never reaches 65535.        
 
3.3 Auto-generated Code Coverage Analysis 

RTW Code coverage analysis can be realised 
through specific Code Coverage Tool (CCT) [1]. This 
tool provides coverage information for every 
statement of autocoded software running as a RTW 
S-Function. Reference scenarios from Model 
Validation are re-used here to obtain corresponding 
code coverage information. These three reference 
scenarios provides specific CNES GNC S/S 
activation such as guidance modes according 
nominal functional cases. These modes are 
triggered from dedicated telecommands defined in 
reference scenarios. Concatenating coverage results 
from each scenario allows obtaining global RTW 
code coverage information. 
 

 
Figure 13: Autocoded GNC model code coverage 

analysis 
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The CCT uses the automatic code generation 
process to insert instrumentation code which allows 
determining whether specific statements are 
executed or not. At the end of simulation, an 
automatic code coverage report is provided. This 
report contains coverage information for each line of 
auto-generated code.  
 

   

Figure 14: Code coverage report produced by CCT 
 
On the contrary to the static analysis where 
unreachable code is found from logic combination 
drawings, the CCT provides coverage percentage 
which reflects executed statements when autocoded 
model runs on specific test scenarios. These results 
can be compared to the Model Coverage realised 
through the Simulink Verification and Validation 
toolbox. The same test scenarios ran previously can 
be reused for Model Coverage which improve code 
validation process reliability. 
 

4. Autocoded Software Validation Strategy 

This last section proposes a validation strategy 
which may be applied for auto-generated code 
produced by the Real-Time Workshop® code 
generator. Each validation step which belongs to the 
Model-Based Design software development process 
is described. 
Advantages gained from automatic code generation 
are obtained despite of code quality and readability 
(unitary module, generic and arbitrary variables 
names, low comments frequency). Time saving 
during code production may be lost through 
validation activities. An efficient validation strategy 
needs to be defined in order to evaluate code quality 
and reliability.   
 
4.1 Model Based Software Design Rules 

Automatic code production is based on use and 
organization of functional blocks inside simulation. 
Good usage and configuration of these blocks can 
avoid code error generation and increase code 
quality of final software. 

Through the Model-Based On Board Software 
PRISMA project (MBOBSW), an interesting 
knowledge on functional blocks configuration has 
been developed. These rules define coding standard 
for functional blocks to prepare auto generation 

process. This standard definition can improve model 
& code robustness, and associated documentation 
readability. It becomes an essential step in the 
software development cycle to obtain reliable auto-
generated software. As presented above, these 
rules can introduce code redundancy and dead code 
lines. Despite of these, they need to be applied by 
any model designer as soon as possible in the auto-
coded software development process. For further 
projects, a specific blocks library which implements 
directly these design rules may be defined    

The following table gives an example of one design 
rule on usual functional block. 

« Divide » 
block 

 

RTW doesn’t check block inputs. 
Arithmetic exception can occurs. 

 Insert the “Saturation” block in 
front of the input and set specific 
definition interval to avoid null input 
values. 

 
Motivation: code reliability (avoid 
arithmetic exception). 

Table 5: Examples of Design Rules for MBOBSW. 
 

4.2 Model-Based Software Functional Validation 

In order to realise validation operation before code 
generation operation, the simulation environment 
proposes a specific toolbox which allows functional 
verification of functional models.  

With this toolbox, user can specify requirements 
from preliminary design studies on any targeted S/S 
in the simulation model. These requirements can be 
checked through unit tests during simulation and are 
automatically reported as comments into the auto-
generated code. 

After checking requirements, model designer can 
handle functional coverage which points out every 
non executed blocks and S/S. Several metrics are 
provided such as design complexity estimation 
(cyclomatic complexity), condition / decision 
coverage (decision tree from logic combinatory of 
specific blocks), and MC/DC tests (from the RTCA 
DO-178B standard). Coverage report which 
corresponds to specific test scenario is produced 
after simulation. Metrics values are provided for 
each block and S/S of simulated model. Different 
runs can be compiled to obtain global coverage 
results. 
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The next figure presents a coverage metric (MC/DC) 
for a particular logic block. 

  
Metric Coverage 

Cyclomatic Complexity 0  
Condition (C1) 50% (2/4) condition outcomes  

MCDC (C1) 0% (0/2) conditions reversed the 
outcome  

 
MC/DC analysis (combinations in parentheses did not occur) 

Decision/Condition:  True Out  False Out  

expression for output   

      input port 1  (TT)  (FT)  

      input port 2  (TT)  TF  

Figure 15: Model coverage report 
 

Every functional cases need to be tested through 
dedicated scenario to obtain complete model 
functional coverage. The fine granularity of this tool 
allows easy validation of each model’s component in 
relation of corresponding specifications.  

To conclude, functional model validation is an 
essential step before any validation operation on the 
auto-generated code. This “Model In the Loop” (MIL) 
phase ensures specification verification for every 
block and S/S. Test scenarios are validated by 
corresponding functional model coverage.  

 

4.3 Auto-generated Code Functional Validation 

Three main validation phases can be distinguished 
depending on different configurations: 

• The “Software In the Loop” (SIL) phase is the 
first step for code functional validation. It 
describes auto-generated code implementation 
into Simulink®. The code generator provides 
capability to produce an “RTW S-Function” to 
use auto-generated code into a test harness on 
Simulink®. Thus, previous integration tests of 
the “MIL” test phase can be replayed here.   

 

• The “Processor In the Loop” phase occurs after 
the “SIL” phase to insert representative 
processor in the previous test harness. This 
phase is required when CPU load of real-time 
auto-coded software needs to be monitored on 
the mission representative processor. The “PIL” 
phase is compliant to the European Coordination 
for Space Standardisation (ECSS) E-40 and Q-
80 standards regarding requirements to test 
OBSW on the mission representative processor.  

• Finally, the “Hardware In the Loop” (HIL) phase 
ends code functional validation in performing 
tests on benchmark with hardware 
representative equipments (i.e. hardware 
sensors, processor, and actuators for GNC 
module). The same test scenarios of the “MIL” 
phase can be adapted for the “PIL” and “HIL” 
phases considering that no exact outputs can be 
retrieved due to different test environments.   

 

4.4 Model-Based Software Development Life-cycle 

To conclude on this validation strategy, proposal on 
a possible Model-Based Software Development 
cycle can be made. This V life-cycle contains every 
validation phases describes here. Comparison 
between model-based and traditional software 
development plans is provided with explanations on 
what benefits can be get in term of time. 

 
Figure 16: Model-Based Development Cycle 

 

Only actions enclosed by dashed lines require 
development software engineer to be achieved. 
Others are done through automated processes On 
Matlab / Simulink®.  Red lightning represents time 
saving action compared to corresponding ones in 
traditional development cycle. If automatic code 
generation can easily save time than the traditional 
one, the “Software In the Loop”  and “Processor In 
the Loop” phases have low time consumptions as 
well due to reuse of previous test harnesses.     
In fact, the “Model Design” phase in association to 
MIL and requirements validation phases need 
greater amount of time than the traditional 
development plan where System and Modules 
design and specification phases happened. The 
“Model Design” phase is particularly important on 
Model-Based Development cycle since code 
reliability depends of the initial functional model.  
This new development cycle is interesting in term of 
time saving despite of its dependence of private and 
expensive development environment. 

Functional 
Specifications & 
Requirements 

Model 
Design 
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Generation 
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PIL

Check 
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5. Conclusion 

Embedded Autocoded Software generation are 
growing up better and better in aerospace industry 
which leads to a new development and validation 
approach for OBSW. Thus, an important knowledge 
on validation of autocoded embedded software for 
critical application is required. Actions realised 
through the SMART1, PROBA, and soon PRISMA 
space missions give more confidence and 
experience on the Model-Based Design domain 
before applying it to future large scaled projects.             
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8. Glossary 

AS:   “All Software” Test Facility.. 
CCT:   Code Coverage Tool.  
CNES:   Centre National d’Etudes Spatiales.  
ECSS:  European Coordination for Space 

Standardisation. 
ESA:   European Space Agency.  
FFIORD:   Formation Flying In-Orbit Ranging 

Demonstration.  
FFRF:   Formation Flying Radio Frequency.  
GNC:   Guidance, Navigation, & Control. 
HIL:   Hardware In the Loop. 
IV&V:   Independent Verification & Validation. 
MIL   Model In  the Loop. 
MBOBSW:   Model Based On Board Software. 
OBSW:   On-Board Software.  
PIL:   Processor In the Loop. 
PRISMA: Prototype Research Instruments and 

Space Mission Technology 
Advancement. 

RTEMS: Real-Time Executive for Multiprocessor 
Systems. 

RTW-EC: Real-Time Workshop Embedded Coder. 
SIL:   Software In the Loop. 
SLO:   Satellite Local Orbit. 
SNSB:   Swedish National Space Board. 

S/S:   Subsystem. 
TM/TC:  Telemetry / Telecommand. 
 
 
 
 


