
HAL Id: insu-02270099
https://insu.hal.science/insu-02270099

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation and Validation Strategy on Real-Time
Autocoded Onboard Software for Formation Flying

In-Orbit Ranging Demonstration
Olivier Bompis, Pierre-Yves Guidotti, Michel Delpech, Bernard Pontet

To cite this version:
Olivier Bompis, Pierre-Yves Guidotti, Michel Delpech, Bernard Pontet. Simulation and Validation
Strategy on Real-Time Autocoded Onboard Software for Formation Flying In-Orbit Ranging Demon-
stration. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, toulouse, France. �insu-
02270099�

https://insu.hal.science/insu-02270099
https://hal.archives-ouvertes.fr

 Page 1/10

Simulation and Validation Strategy on Real-Time Autocoded
Onboard Software for Formation Flying In-Orbit Ranging

Demonstration
Olivier Bompis1, Pierre-Yves Guidotti2, Michel Delpech2, Bernard Pontet2

1: CS-SI, 5 rue Brindejonc des Moulinais – 31506 Toulouse Cedex 5 – France

2: CNES, 18 av. Edouard Belin – 31401 Toulouse Cedex – France

Abstract: This article gives an overview of the
simulation and validation strategy used for a real-
time onboard software (OBSW) module developed
on Matlab/Simulink® environment and autocoded
into C language using the Real-Time Workshop
Embedded Coder® (RTW). This module is the key
point of the Formation Flying In-Orbit Ranging
Demonstration (FFIORD) on PRISMA satellite
mission. To respect requirements on real-time
execution conditions and software reliability for
space missions, the OBSW module is carefully
tested before delivery and integration.
Interesting results are obtained based on an
inconstancies analysis of the C code produced by
RTW, which leads to “good practice” guidelines for
Simulink model implementation. Actions realised
through this experiment aim at providing a
background for the development of adequate
Independent Verification and Validation (IV&V)
procedures. They give more confidence and
experience on the Model-Based Design domain
before applying it to large scaled projects.

Keywords: Embedded Autocoded Software, Model
Based Design, IV&V, Matlab/Simulink®, RTW®,
LEON3, RTEMS.

1. Introduction

1.1 FFIORD Mission Description

PRISMA is a Formation Flying mission proposed by
the Swedish National Space Board (SNSB) for
validation of formation flying concepts and
technologies as early as 2009. Two satellites set the
formation. The Main is a fully manoeuvrable satellite
with a six thrusters’ configuration for attitude and
orbit control. The Target uses magnetorquers for
attitude control only, without orbit control capability.
The CNES participation on PRISMA consists of
embarking the Formation Flying RF Metrology sub-
system (FFRF) on the two PRISMA satellites as
passenger equipment. This radiofrequency-based
sensor developed by Thales Alenia Space is partly

designed on existing GPS technology. It will be used
as a coarse metrology and safety monitoring sensor
for future Formation Flying missions. Thus, FFIORD
will include closed loop operations with the FFRF
sensor, allowing genuine autonomous formation
flying scenarios and associated GNC algorithms to
be tested in real-life conditions.

Figure 1: Main (left) and Target (right) satellites.

1.2 CNES OBSW Module Development

The software development performed by CNES aims
at providing a Simulink model named
“CNES_GNC_lib”. This library defines several
Guidance Navigation & Control (GNC) modules
realised with specific blocs in the Matlab/Simulink®
environment. These algorithms (mainly based on RF
sensor measurements) will run during FFIORD
experiment on PRISMA mission. In addition to these
goals, the “CNES_GNC_lib” library manages
interfaces of the FFRF sensor for open and closed
loop GNC experiments.

Once developed and validated on the
Matlab/Simulink® environment, “CNES_GNC_lib” is
integrated in the main PRISMA OBSW Simulink®
model on the Swedish side. An automatic code
generation process is then performed using the
Real-Time Workshop Embedded Coder®. In order to
be run on the Main satellite onboard computer, the
autocoded C code is cross compiled for the LEON3-
FT (SparcV8 design).

 Page 2/10

Figure 2: CNES GNC Module Development.

The first part of this paper describes the validation
process realised on the CNES GNC module within
two consecutive steps. The second part contains an
evaluation of code generation quality through Code
reliability and coverage analysis with specific tools.
The last part provides a validation strategy for any
autocoded software obtained with the Real-Time
Workshop Embedded Coder®. Every section
contains associated results.

2. CNES GNC Module IV&V Process

A quick and efficient two steps process is performed
for the CNES GNC Module validation.

Firstly, a dedicated Matlab/Simulink® test harness is
developed to run GNC algorithms in their native
context, using space environment and equipment
simulation models. A numeric simulator representing
accurate behaviour of the FFRF sensor is developed
and used in the further OBSW testing. Thus, this
simulator is considered as reference for further
hybrid tests.

Secondly, a hybrid simulator based on a LEON-3FT
processor is developed under the real-time operating
system RTEMS. This allows real-time testing for
autocoded algorithms obtained from the code
generator with PRISMA mission representative
processor board and operating system. This hybrid
simulator provides realistic estimations of
computational load, and evaluates final autocoded
algorithm performances by using a set of reference
scenarios. Comparisons between these two different
environments are realised on produced results.

2.1 Simulation of the “CNES_GNC_lib” Model

The GNC library is entirely developed on Simulink
environment in order to be integrated inside the main
OBSW developed as Simulink model. This allows

experiment capabilities such as simulation tools
provided by this environment. Furthermore, the
Model-Based Design approach is well-adapted for
any non computer software engineer (i.e. GNC
engineer). Each function can be implemented
through combination of functional blocks which
realise unit operations. At this step, each algorithm is
developed on a functionality sense not on a software
one. Every requirement and specification comes
from functionality analysis.

The “All Software” (AS) test facility consists of a
Simulink® simulation which contains several items:
• Environment models which simulate realistic In-

Orbit flight conditions.
• TC Generator model which allow controlling the

CNES GNC module through specific
Telecommands.

• FFRF Sensor model which interacts with the
CNES GNC module.

• PRISMA System models which simulate the
main OBSW of the Swedish side and other
PRISMA services afforded by the spacecrafts.

These items are connected as inputs / outputs to the
“CNES_GNC_lib” library to be tested.

Figure 3: CNES GNC Model Test Facility.

Reference scenarios are run on the Test Facility to
stimulate corresponding subsystems (S/S) inside the
GNC Simulink® library. Several outputs are
analysed such as relative states (three-axis position,
speed) between Main and Target satellites, or
absolute state of the Target satellite computed by
the Navigation function.

A typical simulation output is presented there after to
illustrate the validation strategy of the GNC
functions. The simulation scenario begins with
station keeping of the Main satellite at [50, 190, 0 m]
in the Target Local Orbital Frame named SLO (Z is
Earth Oriented, Y is opposite to the orbit kinetic
momentum, X is almost the velocity vector for near
circular orbit). Then a forced translation is
commanded to reach in 2000s the point [30, 0, 0 m].

Simulin
k

PRISM
A syste
m model
s

FFR
F

Senso
r mode

l

T
C

generato
r

FFRF
commands

FFRF
messages

delta
V

commands
+ even

t

PRISM
A

signal
s

Environmen
t Model

s state
s

comman
d

state
s

Simulin
k

PRISM
A syste
m model
s

FFR
F

Senso
r mode

l

T
C

generato
r

FFRF
commands

FFRF
messages

delta
V

commands
+ even

t

PRISM
A

signal
s

Environmen
t Model

s CN
ES

_G
N
C_

lib

Si
m
ul
in
k

M
od

el

Simulink (Unix or PC)

PRISM
A

PRISMA
system
models

FFR
F

FFRF
Sensor

TC
generator

FFRF commands

FFRF messages

deltaV
commands + events

PRISMA signals Model
s

Environment
Models states

command

states

CNES
GNC

PRISMA OBSW

RF
Sensor
Driver

FFRF
Sensor

LEON-3FT Processor (RTEMS)

RTW - EC
OBSW

(C Code)

Cross Compilation for
LEON3-FT / RTEMS

PRISMA OBSW
Simulink Model

TM/TC
handler

CNES_GNC_lib
Simulink Model

 Page 3/10

Figure 4: Evolution of the Main satellite position on X

axis in SLO frame.
Comparison between Reference State from the
Environment Models and Real State from the GNC
library allows checking the expected functional
behaviour and the performances.

2.2 Simulation of the autocoded CNES GNC library

After having performed Verification & functional
validation of the GNC library inside the “All Software”
Test Facility, automatic code generation process can
be run using the Real-Time Workshop Embedded
Coder®. In order to have runs of the generated C
code on the mission representative processor
(LEON3), a specific real-time embedded benchmark
is developed. This benchmark handles RTW C code
on a real-time task of the RTEMS operating system
which is also mission representative.

An Ethernet data link is used between the Simulink
simulation on Unix Workstation or PC, and the
LEON3-FT GR-CPCI-AX2000 development board.
The client is implemented inside a specific S-
Function in Simulink while the server is on the
LEON3-FT side. This S-Function replaces the
“CNES_GNC_lib” model in the previous “All
Software” Test Facility.

Figure 5: CNES GNC Hybrid Test Facility

At each simulation iteration, this connection carries
current GNC model inputs and benchmark control
data. These data drive embedded benchmark such
as initialisation and termination actions. The CNES
GNC autocoded model on the board returns

corresponding outputs, and measurement data.
These data contains different status such as CPU
execution time and amount of RAM memory spent.

The Hybrid Test Facility contains the Real-Time
Core task which manages the Server task and the
CPU measurements library. The autocoded GNC
model is executed from the Real-Time Core Task as
a software library through service functions
(initialization, one step iteration, termination).

Figure 6: Hybrid Test Facility Software Architecture

The following figure shows result obtained during
Hybrid Tests on the embedded real-time benchmark.
It gives for each activation step, the CPU time
required to compute the CNES GNC autocoded
algorithms considering test scenario with the worst
time consumption (most consuming functions are
activated). The graph has to be compared to the
20ms maximum time allocation given as prerequisite
for the whole CNES GNC library (considering its 1Hz
activation period by the main OBSW).

Figure 7: Worse CPU load obtained during Hybrid

Tests to check real-time constraint (board oscillator
is 25 MHz, Data & Instruction Caches deactivated)

This easy-to-use benchmark allows an iterative
process between Simulink® code production,
performance measurement on the representative
board, and then Simulink® code improvement if
required.

Server
(Ethernet) CNES_GNC_lib

outputs

Benchmark
Meas. data

CNES_GNC_lib
inputs

 Benchmark
Ctrl. data

GNC Hybrid Test Facility on LEON3-FT

Autocoded
CNES_GNC_lib

Model

(CNES GNC
functions)

Benchmark
RT-Core

CPU
measurements

I/
O
 S

-F
un

ct
io
n

H
an

dl
in
g

PRISMA
system
models

FFRF
Sensor

TC
generator

Environment
Models

Autocoded
CNES_GNC_lib

Computation
Module

Receive Inputs

Send Outputs

LEON3-FT board
(RTEMS) Simulink Simulator (Unix or PC)

 Page 4/10

Such an iterative approach shall be followed soon in
the development process to avoid issue when
testing the full software on the board at the end of
the development.
A good illustration comes from the use of Simulink
state vector block “1/z delay” that shall be used with
an extreme care. Indeed, even if only a small subset
of the state vector shall be updated within a given
time step, the whole vector is copied (full variable
copy of the previous state) and then updated (copy
of the incoming subset).
This can lead to a huge CPU consumption for big
state vectors. The solution is to design the
Simulink® model by replacing any inadequate big
state vector with several distributed state vectors.
Following this philosophy, CPU load was decreased
from more than 13ms down to 6ms for the
“Depack_TC” subsystem.

Figure 8: CPU Execution Time obtained for the first

version of “Depack_TC” S/S

Figure 9: CPU Execution Time obtained for the

upgraded version of “Depack_TC” S/S

Amongst other functionalities, this subsystem is in
charge of unpacking and storing 55 possible
instances of a single telecommand (characterized by
an index within the TC) containing 18 doubles. The
first “Depack_TC” version was based on a global
state vector of 55*18 doubles. The second version
upgraded after observation of the poor CPU
performance was based on 55 different state
vectors, each one containing 18 doubles and
activated only if the incoming telecommand index
was corresponding.

2.3 Results comparison analysis between “All
Software” and “Hybrid” Test Facilities

In order to validate the autocoded GNC software
obtained from the GNC Simulink® library, it
becomes necessary to compare outputs produced
from the two Test Facilities (“All Software”
configuration on Windows PC and Hybrid
configuration on PC-UNIX/LEON3). Here focus is
made on the Target satellite absolute states
estimation (3-axis position in inertial frame) as
computed by the “CNES_navigation” subsystem of
the CNES GNC library running a specific reference
scenario.

Two configurations are considered for the “All
Software” Test facility, depending on the computer
used to host together the Simulink® simulator and
the CNES GNC library model (Sun Sparc Solaris or
PC Intelx86). Hardware details used for “All
Software” and Hybrid simulations are summarised in
the table below.

Test Facility
Configuration

Hardware
Design

Hardware
Name

All Software
(config #1) Intelx86 IBM® Laptop

All Software
(config #2) Ultra Sparc III+

Sun Blade
1000 UNIX
Workstation

Intelx86 IBM® Laptop
Hybrid

LEON3-FT
SparcV8

GR-CPCI-
AX2000

Table 1: Hardware details of “All Software” and
“Hybrid” simulations for the “CNES_GNC_lib” model

Note: Analysed outputs are totally independent of
the Simulink® simulator part. In fact, no computation
is made on the simulator side for the Hybrid Test
Facility. Thus, the simulator is only run on the
Intelx86 design.

 Page 5/10

Differences are studied between the two Test
Facilities outputs obtained for the GNC library
running in open-loop mode (identical inputs for both
cases) on specific designs (different compilation and
execution processes). The next figure presents
evolution of absolute difference on three-axis
position of the “Main” satellite as computed from the
“CNES_navigation” S/S of the GNC library. This
experiment is realised with nominal test scenario
which remains unchanged all along analysis. Two
parameters which produce changes are identified:
rounding direction† for float arithmetic and hardware
design.

Figure 10: Absolute difference evolution on three-
axis position of the “Target” satellite between “All

Software” and Hybrid Test Facilities

The maximum absolute difference value on Z axis is
about 3.25e-4m which shall be compared to the
order of magnitude of the estimated position
(7000km). This test is realised by differencing
position values obtained from “All Software” Test
Facility in Windows-PC (rounding direction† set to
“NEAREST”) and the Hybrid Test Facility on
Windows-PC for the simulator side and on LEON3-
FT for the autocoded CNES GNC library (rounding
direction† set to “INF”).
The following table summarises influence of
rounding direction and hardware design.

†: Rounding direction refers to the IEEE Standard
754 Floating Point Numbers.

AS
Hardware

Design

Rounding
direction†

for AS

Rounding
direction†
for Hybrid

Max
difference
(absolute

value)

Intelx86 NEAREST INF 3.25e-4 m

Intelx86 INF INF 3.50e-5 m

Intelx86 NEAREST NEAREST 1.6e-5 m

Ultra
Sparc III+ NEAREST NEAREST 4.0e-6 m

Table 2: influence of rounding direction and
hardware design on maximum absolute difference

value

The previous results show that even with a same
hardware design and rounding direction, exact
reproducibility between “All Software” and Hybrid
Test Facilities is not complete. Regarding GNC
constraints on position accuracy of the “Target”
satellite, the maximum difference position value
measured is acceptable (3.25e-4m towards the
order of magnitude of 7000km on position). In any
case, computation environments have to be as close
as possible to avoid great disparities between
different hardware designs.

 Performance validation can’t be achieved in trying
to retrieve exact results between two simulation run
on different environments, but in analysing
macroscopic tendencies (convergence time, …) and
performance criteria (results accuracy, …).

3. Autocoded Software Quality & Reliability
Analysis

After having achieved performance validation on
autocoded software from functional model, an
evaluation of code quality and reliability has been
performed. For the PRISMA project, a static analysis
is realised using PolySpace®. Interesting results are
obtained such as logic code coverage and analysis
of error occurred in the auto-generated code.

3.1 Auto-generated Code Quality Analysis

Typical code metrics have been measured:
• STMT: Number of statements in a function’s

body.

• AVGS: AVeraGe Size of Statements
corresponds to the average number of operands
and operators used by each of the function’s
executable statements. AVGS is calculated as
follows:

statlc
NNAVGS

_
)21(+

= [1]

where: N1 is the number of operator occurrences,
N2 is the number of operand occurrences,

lc_stat = STMT

 Page 6/10

• VOCF: VOCabulary Frequency corresponds to
the average number of times the vocabulary is
used (sum of distinct operands and operators) in
a component. VOCF is calculated as follows:

)21(
)21(

nn
NNVOCF

+
+

= [2]

where: N1 is the number of operator occurrences,
N2 is the number of operand occurrences,

n1 is the number of distinct operators,
n2 is the number of distinct operands

• LEVL: Maximum nesting level in a function plus
one.

• PARA: Number of a function parameters.
• VG: McCabe cyclomatic complexity number of

the function. This number depends on the
number of nodes of decision in the control graph
with the formula:

∑ −+=
isionNodesOfDec
inVG 11 [3]

where: in is the number of edges departing from the
node i.

• LVAR: Total number of variables declared in a
function (Local VARiables).

• DRCT_CALLS: number of direct calls in a
function. Different calls to the same function
count for one call.

• RETU: Number of Return statements in the
function (plus one if the function’s last statement
is not Return statement).

• GOTO: Number of “Goto” statements.

• COMF: COMments Frequency.

The following table presents metrics values obtained
on the two main autocoded functions of the CNES
GNC library: CNES_GNC_lib0_initialize() and
CNES_GNC_lib0_step(). The first one performs
model initialisation before any outputs computation
(local variables and states initialisations, S/S
activations). The second one contains the most
important part of the autocoded Simulink model.
Called every time to produce outputs, the
CNES_GNC_lib0_step() is the core function and
represents about 13% of the auto-generated code.
Corresponding metrics values in parenthesis are
given as reference from the CNES normative
referential for OBSW.

Function
Name
Metric
Name

CNES_GNC_lib0_
step

CNES_GNC_lib0
_initialize

STMT 3004 (< 40) 247 (< 40)

AVGS 7,82 (< 9) 7,64 (< 9)

VOCF 26,69 (< 5) 8,69 (< 5)

LEVL 6 (< 4) 3 (< 4)

PARA 0 (< 5) 1 (< 5)

VG 565 (< 10) 64 (< 10)

LVAR 497 (< 7) 64 (< 7)

DRCT
CALLS 19 (< 7) 1 (< 7)

RETU 0 (< 1) 0 (< 1)

GOTO 0 (0) 0 (0)

COMF 0,31 (> 0,2) 0,29 (> 0,2)

Table 3: RTW generated Code Quality Analysis
Bold metrics values point out some disadvantages of
the code generator. Indeed, autocoded functions
often contain very important amount of executable
statements which increase code length and
introduce poor vocabulary frequency. McCabe
cyclomatic complexity number and total number of
local variables declared per function are directly
linked to these previous metrics.

 Through this analysis, auto-generated code on
RTW from a complex functional model can quickly
become difficult to read by human despite of
comments frequency. The last section of this paper
describes some tools which may improve auto-
generated code quality and readability.

3.2 Auto-generated Code Reliability Analysis

The PolySpace Verifier® tool allows to check
software errors such as unreachable code or
uncalled procedure or any possible cause of
execution exception (underflow / overflow, arithmetic
exception, division by zero …). From a logic call
functions tree, every function of autocoded software
is executed following a normal call sequence. Global
variables are initialised with representative definition
intervals.
Four diagnostic levels are provided at the end of the
reliability analysis:
• Statement with non proved reliability (R).

 Page 7/10

• Statement non reachable (dead line) (Gy).
• Statement with reliability proved (Gr).
• Statement with indeterminate reliability (O).
Indeterminate reliability may indicate potential error
or simple warning on specific statement. These
points should be analysed manually.

Some results on the GNC library are summarised in
the following table. Occurrences of possible cause of
software exception are classified with respect to the
four diagnostic levels previously presented.

Check Detail R O Gy Gr %
Proved

Underflow or
Overflow 0 1158 2 193 14,41%

Unreachable
Code 0 0 5 0 100%

Arithmetic
Exceptions 0 0 0 0 N/A

Division / Zero 0 80 0 143 64,13%

Total: 0 3286 8 18260 84,75%

Table 4: RTW generated Code Reliability Analysis
Total distribution of occurrences on the four
diagnostic levels for the autocoded GNC library is
depicted below.

O
15%

Gr
85%

Gy

R

Figure 11: Diagnostic levels repartition during RTW

generated code reliability analysis

Auto-generated code can’t be directly declared
unreliable since there is no presence of red level
occurrences. However, orange level cases need to
be resolved to ensure code safety. These
indeterminate cases should be removed by
analysing inputs intervals which are implied to the
corresponding statement. For example, an
indeterminate reliability case for the “Overflow /
Underflow” issue on particular variable must be
resolved in analysing definition interval.

Grey (Gr) level occurrences which correspond to
unreachable code may appear in the generated
RTW code when specific blocks are badly used.
Typical example is given below for blocks which
protect arithmetic operations in autocoded software.
The following figure presents an unreachable code
case due to a bad usage of the “Saturation” block.

Figure 12: Use of “Saturation” block in simulation
model and corresponding auto-generated code

In that case, the “mask_in” signal is never greater
than 65535 during analysis, so the saturation
condition in bold never occurs. This design could be
maintained to increase model robustness (no
prerequisite is made on the “mask_in” input signal).
It shall be removed if functional analysis proves that
the “mask_in” variable never reaches 65535.

3.3 Auto-generated Code Coverage Analysis

RTW Code coverage analysis can be realised
through specific Code Coverage Tool (CCT) [1]. This
tool provides coverage information for every
statement of autocoded software running as a RTW
S-Function. Reference scenarios from Model
Validation are re-used here to obtain corresponding
code coverage information. These three reference
scenarios provides specific CNES GNC S/S
activation such as guidance modes according
nominal functional cases. These modes are
triggered from dedicated telecommands defined in
reference scenarios. Concatenating coverage results
from each scenario allows obtaining global RTW
code coverage information.

Figure 13: Autocoded GNC model code coverage

analysis

CN
ES

_G
N
C_

lib

RT
W

 S
-F

un
ct

io
n

Simulink (Unix or PC)

PRISM
A

PRISMA
system
models

FFR
F

FFRF
Sensor

TC
generator

FFRF commands

FFRF messages

commands + events

PRISMA signals
Environment
Models states

commands

states

rtb_Saturation = (uint16_T)(((mask_in) <=
(((uint16_T)(65535))) ? (mask_in) : (

((uint16_T)(65535))))

 Page 8/10

The CCT uses the automatic code generation
process to insert instrumentation code which allows
determining whether specific statements are
executed or not. At the end of simulation, an
automatic code coverage report is provided. This
report contains coverage information for each line of
auto-generated code.

Figure 14: Code coverage report produced by CCT

On the contrary to the static analysis where
unreachable code is found from logic combination
drawings, the CCT provides coverage percentage
which reflects executed statements when autocoded
model runs on specific test scenarios. These results
can be compared to the Model Coverage realised
through the Simulink Verification and Validation
toolbox. The same test scenarios ran previously can
be reused for Model Coverage which improve code
validation process reliability.

4. Autocoded Software Validation Strategy

This last section proposes a validation strategy
which may be applied for auto-generated code
produced by the Real-Time Workshop® code
generator. Each validation step which belongs to the
Model-Based Design software development process
is described.
Advantages gained from automatic code generation
are obtained despite of code quality and readability
(unitary module, generic and arbitrary variables
names, low comments frequency). Time saving
during code production may be lost through
validation activities. An efficient validation strategy
needs to be defined in order to evaluate code quality
and reliability.

4.1 Model Based Software Design Rules

Automatic code production is based on use and
organization of functional blocks inside simulation.
Good usage and configuration of these blocks can
avoid code error generation and increase code
quality of final software.

Through the Model-Based On Board Software
PRISMA project (MBOBSW), an interesting
knowledge on functional blocks configuration has
been developed. These rules define coding standard
for functional blocks to prepare auto generation

process. This standard definition can improve model
& code robustness, and associated documentation
readability. It becomes an essential step in the
software development cycle to obtain reliable auto-
generated software. As presented above, these
rules can introduce code redundancy and dead code
lines. Despite of these, they need to be applied by
any model designer as soon as possible in the auto-
coded software development process. For further
projects, a specific blocks library which implements
directly these design rules may be defined

The following table gives an example of one design
rule on usual functional block.

« Divide »
block

RTW doesn’t check block inputs.
Arithmetic exception can occurs.

 Insert the “Saturation” block in
front of the input and set specific
definition interval to avoid null input
values.

Motivation: code reliability (avoid
arithmetic exception).

Table 5: Examples of Design Rules for MBOBSW.

4.2 Model-Based Software Functional Validation

In order to realise validation operation before code
generation operation, the simulation environment
proposes a specific toolbox which allows functional
verification of functional models.

With this toolbox, user can specify requirements
from preliminary design studies on any targeted S/S
in the simulation model. These requirements can be
checked through unit tests during simulation and are
automatically reported as comments into the auto-
generated code.

After checking requirements, model designer can
handle functional coverage which points out every
non executed blocks and S/S. Several metrics are
provided such as design complexity estimation
(cyclomatic complexity), condition / decision
coverage (decision tree from logic combinatory of
specific blocks), and MC/DC tests (from the RTCA
DO-178B standard). Coverage report which
corresponds to specific test scenario is produced
after simulation. Metrics values are provided for
each block and S/S of simulated model. Different
runs can be compiled to obtain global coverage
results.

 Page 9/10

The next figure presents a coverage metric (MC/DC)
for a particular logic block.

Metric Coverage

Cyclomatic Complexity 0
Condition (C1) 50% (2/4) condition outcomes

MCDC (C1) 0% (0/2) conditions reversed the
outcome

MC/DC analysis (combinations in parentheses did not occur)

Decision/Condition: True Out False Out

expression for output

 input port 1 (TT) (FT)

 input port 2 (TT) TF

Figure 15: Model coverage report

Every functional cases need to be tested through
dedicated scenario to obtain complete model
functional coverage. The fine granularity of this tool
allows easy validation of each model’s component in
relation of corresponding specifications.

To conclude, functional model validation is an
essential step before any validation operation on the
auto-generated code. This “Model In the Loop” (MIL)
phase ensures specification verification for every
block and S/S. Test scenarios are validated by
corresponding functional model coverage.

4.3 Auto-generated Code Functional Validation

Three main validation phases can be distinguished
depending on different configurations:

• The “Software In the Loop” (SIL) phase is the
first step for code functional validation. It
describes auto-generated code implementation
into Simulink®. The code generator provides
capability to produce an “RTW S-Function” to
use auto-generated code into a test harness on
Simulink®. Thus, previous integration tests of
the “MIL” test phase can be replayed here.

• The “Processor In the Loop” phase occurs after
the “SIL” phase to insert representative
processor in the previous test harness. This
phase is required when CPU load of real-time
auto-coded software needs to be monitored on
the mission representative processor. The “PIL”
phase is compliant to the European Coordination
for Space Standardisation (ECSS) E-40 and Q-
80 standards regarding requirements to test
OBSW on the mission representative processor.

• Finally, the “Hardware In the Loop” (HIL) phase
ends code functional validation in performing
tests on benchmark with hardware
representative equipments (i.e. hardware
sensors, processor, and actuators for GNC
module). The same test scenarios of the “MIL”
phase can be adapted for the “PIL” and “HIL”
phases considering that no exact outputs can be
retrieved due to different test environments.

4.4 Model-Based Software Development Life-cycle

To conclude on this validation strategy, proposal on
a possible Model-Based Software Development
cycle can be made. This V life-cycle contains every
validation phases describes here. Comparison
between model-based and traditional software
development plans is provided with explanations on
what benefits can be get in term of time.

Figure 16: Model-Based Development Cycle

Only actions enclosed by dashed lines require
development software engineer to be achieved.
Others are done through automated processes On
Matlab / Simulink®. Red lightning represents time
saving action compared to corresponding ones in
traditional development cycle. If automatic code
generation can easily save time than the traditional
one, the “Software In the Loop” and “Processor In
the Loop” phases have low time consumptions as
well due to reuse of previous test harnesses.
In fact, the “Model Design” phase in association to
MIL and requirements validation phases need
greater amount of time than the traditional
development plan where System and Modules
design and specification phases happened. The
“Model Design” phase is particularly important on
Model-Based Development cycle since code
reliability depends of the initial functional model.
This new development cycle is interesting in term of
time saving despite of its dependence of private and
expensive development environment.

Functional
Specifications &
Requirements

Model
Design

Code Auto
Generation

MIL

SIL

PIL

Check
Requirements HIL

Static Analysis +
Code Coverage

 Page 10/10

5. Conclusion

Embedded Autocoded Software generation are
growing up better and better in aerospace industry
which leads to a new development and validation
approach for OBSW. Thus, an important knowledge
on validation of autocoded embedded software for
critical application is required. Actions realised
through the SMART1, PROBA, and soon PRISMA
space missions give more confidence and
experience on the Model-Based Design domain
before applying it to future large scaled projects.

6. Acknowledgement

The authors would like to thank the whole PRISMA
project team at CNES and CS-SI for produced
results and positive cooperation on this paper.

7. References

[1] Mark Walker: "Code Coverage Tool", Matlab
Central, The Mathworks Ltd
www.mathworks.com/matlabcentral/fileexchange/lo
adFile.do?objectId=14284

8. Glossary

AS: “All Software” Test Facility..
CCT: Code Coverage Tool.
CNES: Centre National d’Etudes Spatiales.
ECSS: European Coordination for Space

Standardisation.
ESA: European Space Agency.
FFIORD: Formation Flying In-Orbit Ranging

Demonstration.
FFRF: Formation Flying Radio Frequency.
GNC: Guidance, Navigation, & Control.
HIL: Hardware In the Loop.
IV&V: Independent Verification & Validation.
MIL Model In the Loop.
MBOBSW: Model Based On Board Software.
OBSW: On-Board Software.
PIL: Processor In the Loop.
PRISMA: Prototype Research Instruments and

Space Mission Technology
Advancement.

RTEMS: Real-Time Executive for Multiprocessor
Systems.

RTW-EC: Real-Time Workshop Embedded Coder.
SIL: Software In the Loop.
SLO: Satellite Local Orbit.
SNSB: Swedish National Space Board.

S/S: Subsystem.
TM/TC: Telemetry / Telecommand.

