
HAL Id: insu-02270101
https://insu.hal.science/insu-02270101

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating System-Level and Code-Level Timing
Analysis for Dependable System Development

C Ferdinand, R Heckmann, M Jersak, F. Martin, K Richter

To cite this version:
C Ferdinand, R Heckmann, M Jersak, F. Martin, K Richter. Integrating System-Level and Code-Level
Timing Analysis for Dependable System Development. Embedded Real Time Software and Systems
(ERTS2008), Jan 2008, toulouse, France. �insu-02270101�

https://insu.hal.science/insu-02270101
https://hal.archives-ouvertes.fr


Integrating System-Level and Code-Level Timing Analysis for
Dependable System Development

C. Ferdinand1, R. Heckmann1, M. Jersak2, F. Martin1, K. Richter2

1: AbsInt Angewandte Informatik GmbH, Science Park 1, D-66123 Saarbrücken, Germany
2: Symtavision GmbH, Frankfurter Straße 3b, D-38122 Braunschweig, Germany

Abstract: Developers of safety-critical real-time
systems have to ensure that their systems react
within given time bounds. Sophisticated tools for
timing analysis at the code-level, controller-level
and networked system-level are becoming state-of-
the-art for efficient timing verification in light of
ever increasing system complexity. This trend is
exemplified by two tools: AbsInt’s timing analyzer
aiT, which can determine safe upper bounds for the
execution times (WCETs) of non-interrupted tasks,
and Symtavision’s SymTA/S tool, which computes
the worst-case response times (WCRTs) of an en-
tire system from the task WCETs and information
about possible interrupts and their priorities. The
two tools thus complement each other in an ideal
way. They have recently been coupled to further in-
crease their utility. Starting from a system model,
a designer can now seamlessly perform timing bud-
geting, performance optimization and timing verifi-
cation, considering both the code of individual func-
tions, as well as function and sub-system integra-
tion. The paper explains and exemplifies various
use cases and tool flows.

Keywords: Schedulability analysis, timing analy-
sis, worst-case execution time, worst-case response
time

1. Introduction

Developers of safety-critical real-time systems have
to ensure that their systems react within given
time bounds. Tests and measurements cannot
guarantee that this holds in every possible situa-
tion, but tools for static program analysis can ob-
tain results valid for all possible system runs and
inputs, even before the first real prototypes are
available. Examples for such tools are AbsInt’s
timing analyzer aiT, which can determine safe up-
per bounds for the execution times (WCETs) of
non-interrupted tasks, and Symtavision’s SymTA/S
tool, which computes the worst-case response times
(WCRTs) of an entire system from the task WCETs
and information about possible interrupts and their
priorities.
The focus of aiT on single tasks and the focus of
SymTA/S on the interplay of several tasks com-

plement each other in an ideal way. Coupling
these tools therefore highly increases their utility.
The system developer creates a system model in
SymTA/S, consisting of a task graph, information
on task scheduling (priorities, time slots, etc.), and
information on task activation (time tables, inter-
rupts, etc.). To determine the WCRTs of the tasks
with possible interrupts, the WCETs of the non-
interrupted tasks are required. To obtain these
WCETs, SymTA/S sends requests to aiT. Then
aiT asks the developer for necessary information
on hardware configuration and executables, deter-
mines the requested WCETs, and sends them back
to SymTA/S. To increase the user comfort, the com-
munication is based on cookies in which the config-
uration information is stored so that this informa-
tion need not be input again when further WCET
calculations are performed. These cookies are or-
ganized hierarchically: general information valid
for the entire system, information about all parts
of the system running on a specific CPU, informa-
tion for runnables (i.e., atomic pieces of software),
and modes (specific control-flow paths through a
runnable).
The coupling of SymTA/S with aiT allows SymTA/S
to determine end-to-end timings in an early de-
velopment phase, with automatic identification of
problematic system configurations and automatic
system optimization as a next step. In the EU
project INTEREST (Integrating European Embed-
ded Systems Tools) the tool coupling is extended to-
wards modelling tools such as ASCET and SCADE
to support the entire development process from the
model till the implementation with formally veri-
fied timing behavior.
In the following, we present the tools, the experi-
mental integration, preliminary results and plans
for further tool integration.

2. The WCET Analyzer aiT

aiT is AbsInt’s timing analyzer, which can find
upper bounds for the worst-case execution times
(WCETs) of sequential tasks. For a precise compu-
tation of the WCET, aiT operates on the executable.
The graphical user interface of aiT (see Figure 1)

ERTS 2008 – January 29-31, February 1, 2008 – Toulouse Page 1/8



Figure 1: Graphical user interface of aiT

offers ways to specify the memory architecture of
the target, the location of source files, the name of
the executable, the name of a separate parameter
file called .ais file, the name of the report files to
be written, etc., and the start point of the analy-
sis (a routine name or an address). All this infor-
mation can be stored in a project file (.apf file).
The .ais file may contain the clock rate of the tar-
get processor, upper bounds for the iteration num-
bers of loops, possible targets of computed calls, etc.
The analyses of aiT are mainly based on the exe-
cutable. If available, aiT can also read the source
files for further information. The association be-
tween addresses in the executable and positions in
the source files is obtained from the debug informa-
tion in the executable.
aiT can be started in three ways:
1. When started for interactive usage, the GUI

depicted in Figure 1 is opened. The fields in
the GUI can be filled with appropriate values,
which may be stored in a project file (.apf
file). Alternatively, an existing project file can
be loaded.

2. aiT can also be started in simple batch mode
with a project file. In this case, the project file
is loaded and then aiT behaves as if the “WCET

analysis” button had been clicked.
3. aiT can be started in batch mode with a con-

trol file. A control file contains the name of a
project file and specifies various analysis tasks,
which are performed automatically in this case.
Control files can also be used interactively if
the GUI is switched from Manual to Automatic
mode (see Figure 1).

Figure 2: Phases of WCET computation

aiT determines the WCET of a given task in several
phases [2] (see Figure 2). In the first step a decoder
reads the executable and reconstructs the control
flow [9]. Then, value analysis determines lower and
upper bounds for the values in the processor regis-
ters for every program point and execution context,
which lead to bounds for the addresses of memory
accesses (important for cache analysis and if mem-
ory areas with different access times exist). Value
analysis can also determine that certain conditions
always evaluate to true or always evaluate to false.
As consequence, certain paths controlled by such
conditions are never executed. Thus value analysis
can detect and mark some unreachable code.
WCET analysis requires that upper bounds for the
iteration numbers of all loops be known. aiT tries
to determine the number of loop iterations by loop
bound analysis [4], but succeeds in doing so for sim-
ple loops only. Bounds for the remaining loops must
be provided as specifications in the AIS file or an-
notations in the C source.
If the target processor has caches, an optional
cache analysis follows, which classifies the accesses
to main memory into hits, misses, or accesses of
unknown nature. Pipeline analysis models the
pipeline behavior to determine execution times for
sequential flows (basic blocks) of instructions as
done in [8]. It takes into account the current

ERTS 2008 – January 29-31, February 1, 2008 – Toulouse Page 2/8



pipeline state(s), in particular resource occupan-
cies, contents of prefetch queues, grouping of in-
structions, and classification of memory references
by cache analysis. The result is an execution time
for each basic block in each distinguished execution
context.
Using this information, path analysis determines
a safe estimate of the WCET. The program’s control
flow is modeled by an integer linear program [6, 10]
so that the solution to the objective function is the
predicted worst-case execution time for the input
program.

Figure 3: Call graph with WCET result

After a successful analysis, aiT reports its results
in several ways:
1. aiT can produce a graphical output showing the

call graph of the analyzed part of the applica-
tion, showing the routines and their calling re-
lationships (see Figure 3). The routine boxes
can be opened to show their control-flow graphs
with WCET results for basic blocks. Technically,
aiT writes a description of these graphs in a
GDL file, which can be visualized by AbsInt’s
graph browser aiSee.

2. aiT can write a text report meant to be human
readable, and a more formal XML report. These
reports contain detailed results for all analyzed
routines in all calling contexts, including spe-
cific results for the first few iterations of loops
vs. a result for the remaining iterations.

3. Scheduling Analysis with SymTA/S

SymTA/S [5] is Symtavision’s tool for timing
and scheduling analysis and optimization for con-
trollers, networks and entire systems. SymTA/S
computes
• worst-case response times (WCRTs) of tasks

• worst-case end-to-end communication delays
taking into account all relevant WCETs and in-
formation about RTOS scheduling, bus arbitration,
possible interrupts and their priorities.
Scheduling analysis is a systematic approach that
automatically finds and evaluates critical timing
situations resulting from function and system inte-
gration. Such corner case identification is the op-
posite of traditional test-based methods: instead
of massive testing to try to find all corner cases,
scheduling analysis systematically constructs sce-
narios leading to worst-case timing.
SymTA/S combines decades of research (started
with Liu’s and Layland’s 1973 paper on Rate-
Monotonic scheduling [7]) into an industry-
strength tool. SymTA/S provides detailed analy-
sis results that are comprehensively visualized and
thus easy to understand.

Figure 4: Graphical user interface of SymTA/S (ap-
plication view)

The graphical user interface of SymTA/S (see Fig-
ure 4) offers ways to specify a system architecture,
select scheduling on controllers and arbitration on
buses, map functions to controllers and commu-
nication to busses, and to describe dataflow, acti-
vation conditions, deadlines and other timing con-
straints.
The analysis results are displayed in a variety of
ways. The most powerful and easy to understand
are Gantt-Charts that visualize to the designer why
and under which conditions deadlines can be vio-
lated (see Figure 5).
There are two main use cases for SymTA/S:
1. timing design / budgeting during early design

stages and
2. timing verification during later design stages.
The added value for verification is exemplified in
Figure 6: the upper part of the diagram displays
a typical timing trace, showing a response time of

ERTS 2008 – January 29-31, February 1, 2008 – Toulouse Page 3/8



Figure 5: Graphical display of worst-case timing
along a datapath (end-to-end Gantt chart)

Figure 6: Safeguarding timing using scheduling
analysis (as compared to measurement)

6.9 ms for a task executed every 10 ms – well below
the 10 ms deadline. In the lower part, SymTA/S
scheduling analysis has constructed a worst-case
schedule leading to a WCRT of 9 ms for the 10 ms
task – still below the deadline, but much closer.
The key message is that no other schedule will
produce a longer WCRT. SymTA/S thus safeguards
against deadline violations resulting from worst-
case schedules. Furthermore, the Gantt-display
enables the designer to check the reasoning of
SymTA/S and thus to see if some important infor-
mation has been omitted in the model.

At the same time, SymTA/S allows to perform
what-if scheduling analysis during system design.
It is easily possible to estimate how additional
functions and their scheduling will influence over-

all system timing, and whether deadlines can be
safely met for a specific design alternative. As a
result, timing budgets for individual functions of
sub-systems can be derived early on, and given to a
designer as part of a requirements specification.
SymTA/S supports timing design through produc-
tivity plugins, which can be integrated with the
scheduling analysis engine.
1. Design-space exploration allows designers to au-

tomatically evaluate the strengths and weak-
nesses of alternative designs with respect to
timing and performance.

2. Sensitivity analysis allows users to automat-
ically determine the amount of extra load
(e.g., caused by additional functions) permissi-
ble without violating deadlines.

4. XML Timing Cookies (XTC)

Timing analysis is a novel domain, and the require-
ments for coupling code-level and system-level tools
were not suitably covered by any existing exchange
format. Therefore, the concept of “Timing Cookies”
has been developed in the INTEREST project, and
an “XML Timing Cookies” exchange format (XTC)
has been defined.
The main idea behind “Timing Cookies” stems from
two observations:
1. The envisioned flow between SymTA/S and

aiT is essentially cyclic, suggesting a request-
response mechanism.

2. Each tool requires a (potentially large) set of
data about the system under design, but the in-
tersection of these two sets is small.

“Timing Cookies” have been introduced to avoid
the duplication of the sophisticated user-interfaces
available in each tool. The concept of “Timing Cook-
ies” allows to keep entering the required informa-
tion in the appropriate place, and to store the in-
formation for the next round of communication be-
tween the tools. This is similar to repeatedly vis-
iting a web site that requires certain user infor-
mation. Such information is typically stored in a
cookie and retrieved when the user visits the site
again, hence the name “Timing Cookie”.
An XML Timing Cookie consists of two main parts:
1. One common section that describes the analysis

request when the cookie is sent from SymTA/S
to aiT, and additionally holds the response to
that request when the cookie is returned from
aiT to SymTA/S.

2. A cookie section per communicating tool to hold
each tool’s local information required for servic-
ing a request and for putting the response in its
appropriate context.

ERTS 2008 – January 29-31, February 1, 2008 – Toulouse Page 4/8



This partitioning has the following advantages:
• Key information is stored in one place, the com-

mon section.
• Tool-specific information is stored in a private

cookie section. It is only modified by the respec-
tive tool; other tools leave this information un-
touched.

XTC is defined as an XML schema. It is orga-
nized hierarchically since some information can be
reused for different analyses. For instance, a CPU
configuration can be reused for different runnables
sharing the same CPU. The information in the com-
mon section is structured in four blocks:
1. general
2. CPU
3. runnable (i.e., an atomic piece of software1)
4. mode (a specific control-flow path through the

runnable).
Structuring of the cookie section has to follow the
top-level structuring of the common section. XML
name spaces are used to avoid ambiguities during
parsing. The schema definitions are available upon
request.

5. The Interaction between SymTA/S and aiT

Figure 7: Flow of requests and responses

SymTA/S and aiT communicate by exchanging
XML Timing Cookies (XTC, see section 4). From
a system model, SymTA/S launches a request for
WCET information for specific pieces of code (see
Figure 7). This request is tagged with a unique ID
and sent to aiT in an XTC. If necessary, aiT queries
the user for all missing information required to ser-
vice the request. For the first request issued for
a system model, this typically includes the type of
processor, the location of the executable code, the
starting point of the analysis etc. When aiT an-
swers the request by sending an XTC with a re-
sponse back to SymTA/S, it stores this informa-
tion in the private aiT-part of the cookie. This aiT-

1AUTOSAR [1] terminology has been adopted

specific information will be included in subsequent
requests so that aiT can use the information al-
ready gathered without the need to ask the user
again.

6. Application Example

The example in this section has been adapted from
an aeroplane controller. It illustrates the applica-
tion of the described methodology and tools using a
real-world example.

Figure 8: System example illustrating WCET anal-
ysis and WCRT analysis

The system is initially modelled in SymTA/S (see
Figure 8). It consists of 3 main tasks2 T0, T1, and
T2, one background task, and several interrupt ser-
vice routines (ISRs), most notably three ISRs per-
forming deadline monitoring. A deadline overrun
indicates a serious problem and must not occur un-
der normal conditions. Therefore, WCET analysis
and WCRT analysis are used during system design
to validate the timeliness under all relevant condi-
tions.

The three main tasks are triggered periodically
with different periods and offsets. Such activation
can be modelled using a time-table. We shall as-
sume the following values:

task period offset deadline priority
T0 1000 us 50 us 200 us high
T1 2000 us 270 us 1400 us mid
T2 4000 us 1000 us 2800 us low

A deadline is measured from the time of activation
of the corresponding task.

Task T1 executes one major function T1F1. The de-
signer would like to add a second function T1F2.
However, this is only possible if T1 does not vio-
late its deadline even if both T1F1 and T1F2 are ex-
ecuted. The other tasks must also not violate their
deadlines.

2Note that tasks are sometimes referred to as processes.

ERTS 2008 – January 29-31, February 1, 2008 – Toulouse Page 5/8



In the first step, WCETs are obtained for T0, T2,
T1F1 and T1F2. For this purpose, aiT is polled us-
ing an XTC request file. A simple example looks as
follows:

<requestResponseCommunication>
<common>

<CPU unit="MHz" speed="10.0"
name="Controller" id="ID_0">

<runnable name="T0" id="ID_1">
<mode id="ID_2">
<description>T0</description>
<request type="WCET-Analysis"/>
</mode>

</runnable>
</CPU>

</common>
</requestResponseCommunication>

Since there are different instances of aiT for dif-
ferent target architectures, the cookie is not sent
directly to aiT, but to an aiT driver program that
asks for the target architecture unless this infor-
mation is already contained in the cookie, and then
calls the appropriate aiT instance. The aiT driver
also translates the information in the cookie into
the formats readable by aiT (project file, AIS pa-
rameter file, and control file).

If sufficient information for WCET analysis is al-
ready available, aiT can be run in batch mode. If
not, it can be used interactively for entering the
missing information, e.g., cache and memory con-
figuration of the target processor, the path name
of the executable, targets of computed calls and
branches (unless found by static program analysis),
loop bounds and recursion bounds (unless found by
static program analysis), and declaration of volatile
memory areas.

The information collected in this way is stored by
aiT in its proprietary formats (project file, AIS pa-
rameter file, and control file) and returned to the
aiT driver together with the results of the WCET
analysis. The driver puts all this information into
an XTC response file that is returned to SymTA/S.
The WCETs are contained in the common part of
the cookie for use by SymTA/S. The aiT-specific in-
formation is stored in the aiT-specific part of the
cookie. This part can be copied by SymTA/S into the
next XTC request file so that the information pro-
vided during the previous interactive aiT session
need not be entered by the user again.

A simple example for the common part of an XTC
response file looks as follows:

<requestResponseCommunication>
<common>

<CPU unit="MHz" speed="10.0"
name="Controller" id="ID_0">

<runnable name="T0" id="ID_1">
<mode id="ID_2">
<description>T0</description>
<request type="WCET-Analysis"/>
<response type="WCET-Analysis">
<WCET unit="us" value="180.0"/>

</response>
</mode>

</runnable>
</CPU>

</common>
</requestResponseCommunication>

Let us assume that aiT returned the following val-
ues:

task WCET
T0 180 us
T1F1 1100 us
T1F2 100 us
T2 300 us

Scheduling analysis can now be performed. Consid-
ering also the execution time of ISRs (not further
discussed here but obtained using the same pro-
cess), the resulting worst-case schedule and WCRT
for T1 as obtained by SymTA/S is displayed in Fig-
ure 9.

Figure 9: Bad schedule of example system missing
the deadline for task T1 if both T1F1 and T1F2 are
executed (2nd execution of T1)

As can be seen in Figure 9, the first execution of T1
where only T1F1 is executed meets its deadline (left
tall vertical bar). However, when also executing
T1F2 (second execution of T1), the deadline (right
vertical bar) is missed.
The designer can now perform targeted timing opti-
mization to resolve this problem. There are several
options:
1. optimize the code of T1F2 to reduce its WCET

such that the deadline will be met;
2. optimize the assignment of offsets;
3. delay the deadline (if this is possible);
4. optimize the code of some other function to re-

duce its WCET;
5. some combination of these remedies.
Of the remedies, the first three are probably
the most cost efficient, since they do not re-

ERTS 2008 – January 29-31, February 1, 2008 – Toulouse Page 6/8



quire re-certification of already certified functions.
SymTA/S sensitivity analysis can be used to calcu-
late by which amount each parameter would have
to be changed.
Let us assume that code improvement of T1F2 re-
duces its WCET to 50 us (verified by aiT). Sensitiv-
ity analysis tells us that this is not good enough,
but there is an opportunity to start T1 earlier by
up to 5 us. Combined, these two remedies mean
that the deadline can be safely satisfied, with T0
maintaining a reserve of 15 us, and T1 maintaining
a reserve of 5 us until its deadline (see Figure 10).

Figure 10: Fixed schedule of example system lead-
ing to all deadlines satisfied, even if both T1F1 and
T1F2 are executed

7. Planned Extensions

Two extensions are planned for the near future:
1. Extending the XTC mechanism to also calculate

stack usage. For many target architectures, the
aiT tool can already determine the maximum
stack usage of a task.

2. Integrating aiT and SymTA/S in larger tool
flows.

For the latter, integration with ESTEREL’s SCADE
tool is well under way [3]. A second integration
is being developed with ETAS’s ASCET and INTE-
CRIO. The goal is to provide seamless integration of
timing analysis on all levels with established flows
– from modelling/simulation to code-generation and
code-optimization.

8. Conclusion

The code-level timing analysis tool aiT and the
system-level timing analysis tool SymTA/S have
been coupled to provide software and system de-
signers with an efficient way to verify timing prop-
erties of ECU software.
The tool coupling allows you to
• determine upper bounds for the execution times

(WCETs) of tasks using AbsInt’s aiT;
• compute worst-case response times (WCRTs) of

functions and tasks considering integration and
scheduling using Symtavision’s SymTA/S;

• trigger AbsInt’s timing analyses at the code
level from the SymTA/S GUI;

• import safe analysis results from aiT into
SymTA/S in a fully automatic way.

XML Timing Cookies (XTC) provide for a user-
friendly, open, and efficient tool integration.
SymTA/S communicates with aiT via XTC, sending
analysis requests and receiving responses.

9. Acknowledgement

Collaboration between AbsInt GmbH and Symtavi-
sion GmbH has been supported by the FP6 STREP
project INTEREST (INTEgrating euRopean Em-
bedded Systems Tools).

10. References

[1] The AUTOSAR Development Partnership. Automo-
tive Open System Architecture (AUTOSAR). URL:
http://www.autosar.org, 2003.

[2] Christian Ferdinand, Reinhold Heckmann, Marc
Langenbach, Florian Martin, Michael Schmidt,
Henrik Theiling, Stephan Thesing, and Reinhard
Wilhelm. Reliable and precise WCET determina-
tion for a real-life processor. In Proceedings of
EMSOFT 2001, First Workshop on Embedded Soft-
ware, volume 2211 of Lecture Notes in Computer
Science, pages 469–485. Springer-Verlag, 2001.

[3] Christian Ferdinand, Reinhold Heckmann, Thierry
Le Sergent, Daniel Lopes, Bruno Martin, Xavier
Fornari, and Florian Martin. Combining a high-
level design tool for safety-critical systems with a
tool for WCET analysis on executables. In 4th Eu-
ropean Congress ERTS Embedded Real Time Soft-
ware, Toulouse, France, January 2008.

[4] Christian Ferdinand, Florian Martin, Christoph
Cullmann, Marc Schlickling, Ingmar Stein,
Stephan Thesing, and Reinhold Heckmann. New
developments in WCET analysis. In Thomas Reps,
Mooly Sagiv, and Jörg Bauer, editors, Program
Analysis and Compilation, Theory and Practice,
volume 4444 of Lecture Notes in Computer Science,
pages 12–52. Springer-Verlag, 2007.

[5] R. Henia, A. Hamann, M. Jersak, R. Racu,
K. Richter, and R. Ernst. System level performance
analysis – the SymTA/S approach. IEEE Proceed-
ings on Computers and Digital Techniques, 152(2),
March 2005.

[6] Yau-Tsun Steven Li and Sharad Malik. Perfor-
mance Analysis of Embedded Software Using Im-
plicit Path Enumeration. In Proceedings of the 32nd
ACM/IEEE Design Automation Conference, 1995.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment. Journal of the ACM, 20(1):46–61, 1973.

[8] Jörn Schneider and Christian Ferdinand. Pipeline
Behavior Prediction for Superscalar Processors by
Abstract Interpretation. In Proceedings of the ACM

ERTS 2008 – January 29-31, February 1, 2008 – Toulouse Page 7/8

http://www.autosar.org


SIGPLAN Workshop on Languages, Compilers and
Tools for Embedded Systems, volume 34, pages 35–
44, May 1999.

[9] Henrik Theiling. Extracting Safe and Precise Con-
trol Flow from Binaries. In Proceedings of the 7th
Conference on Real-Time Computing Systems and
Applications, Cheju Island, South Korea, 2000.

[10] Henrik Theiling and Christian Ferdinand. Combin-
ing abstract interpretation and ILP for microarchi-
tecture modelling and program path analysis. In
Proceedings of the 19th IEEE Real-Time Systems
Symposium, pages 144–153, Madrid, Spain, De-
cember 1998.

11. Glossary

AIS: AbsInt’s Specification language for user an-
notations

aiT: AbsInt’s Timing (and stack) analyzer

CPU: Central Processing Unit

GDL: Graph Description Language

GUI: Graphical User Interface

ISR: Interrupt Service Routine

RTOS: Real-Time Operating System

SymTA/S: Symbolic Timing Analysis for Systems

WCET: Worst-Case Execution Time

WCRT: Worst-Case Response Time

XML: Extensible Markup Language

XTC: XML Timing Cookie

ERTS 2008 – January 29-31, February 1, 2008 – Toulouse Page 8/8


	Title
	Abstract
	Keywords
	Introduction
	The WCET Analyzer aiT
	Scheduling Analysis with SymTA/S
	XML Timing Cookies (XTC)
	The Interaction between SymTA/S and aiT
	Application Example
	Planned Extensions
	Conclusion
	Acknowledgement
	References
	Glossary

