
HAL Id: insu-02270102
https://insu.hal.science/insu-02270102

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of Runtime Architectures on Control System
Stability

P Feiler, J Hansson

To cite this version:
P Feiler, J Hansson. Impact of Runtime Architectures on Control System Stability. Embedded Real
Time Software and Systems (ERTS2008), Jan 2008, toulouse, France. �insu-02270102�

https://insu.hal.science/insu-02270102
https://hal.archives-ouvertes.fr

 Page 1/8

Impact of Runtime Architectures on Control System Stability

 P. Feiler, J. Hansson

Software Engineering Institute, Pittsburgh, PA

Abstract: Control systems are sensitive to the end-
to-end latency and age of signal data. Control
engineers develop their control system model under
certain latency and age assumptions and deviation
from these assumptions can lead to controller
instability. In this paper we discuss how choices in
the runtime architecture of the embedded software
system can affect latency and introduce unexpected
latency jitter. We propose the use of AADL as a
basis for a flexible framework that support co-design
of control systems by control engineers and by
embedded software engineers through quantitative
analysis.

Keywords: Embedded system, control system
stability, end-to-end latency, latency jitter

1. Introduction

Control systems are highly time sensitive. They are
developed by control engineers through a process of
model validation. The physical plant and the desired
control algorithm are represented by continuous time
models to capture the physics of the system. They
are then mapped into discrete time models to take
into account digital processing by software. Finally,
they control components are translated into source
code. These models may exist in different levels of
fidelity, and they are validated through simulation
and model checking and source code execution in a
simulated environment and with hardware in the
loop.
During this development process the control
algorithms are calibrated to the physical system
characteristics. Reflected in the calibration are
assumptions regarding the end-to-end latency of the
signal stream from the sensor and to the actuator, as
well as the latency jitter and the age of signal data.
One of these assumptions is that the runtime system
exhibits deterministic execution and communication
behavior.
Control system applications are components of an
embedded software system. These components
interact in the context of specific runtime
architectures utilizing a variety of communication and
scheduling mechanisms and policies. Similarly, the
resulting runtime architecture deployed and
distributed on different hardware platforms. These
choices are often made by software engineers with
limited awareness of their impact on latency, latency
jitter, and age of signal streams are affected.
Without managing the impact by ensuring the

latency assumptions made by control engineers in
the runtime architecture the stability of the controllers
is impacted without recalibration.
This separation of concerns between control and
computation has traditionally been addressed by first
developing the control algorithm, and then
configuring the resulting software components into
an embedded application. This approach was
feasible while control systems were physically
separate components with their dedicated
processors. As embedded systems increasingly use
a common compute hardware platform that is shared
among software implementations of control
components, and embedded systems increasingly
require control components to interact to provide
desired functionality, the work of embedded software
engineers must go hand in hand with that of control
engineers. In this co-design approach embedded
software engineers must be able to quantify latency
and latency jitter contributions by choices in the
runtime system implementation and ensure latency
assumptions of control algorithms where critical.
Similarly, control engineers must be able to quantify
the robustness of their control algorithms with
respect to variation in latency in order to allow for
more flexibility in the runtime architecture and better
utilization of the compute hardware [1].
In this paper we utilize the international industry
standard notation SAE AADL [2] to gain a better
understanding of the impact of runtime architecture
choices on controller stability. AADL has been
designed to characterize embedded software
applications, and deployment of compute hardware,
and their interface with the physical environment. Its
rich semantics with respect to task execution and
communication between components allows us to
model the signal flow processing architecture as a
flow-based architecture. We will use AADL to model
the execution and communication timing
characteristics assumed by control engineers are
they develop their control design. We will also use
the AADL to characterize various aspects of the
runtime architecture of a control system
implementation and identify contributors to end-to-
end latency and to latency jitter. This analysis will
highlight the importance of determinism to manage
latency jitter to maintain the stability of controllers
under jitter assumptions established by control
engineers.
In this paper we will first characterize the latency and
latency jitter assumptions made by control engineers

 Page 2/8

as they develop their design independent of software
implementation considerations. Then we will
examine contributors to latency and latency jitter in
the runtime architecture and identify a systematic
way of determining such impact. Finally, we identify
the need for a flexible analytic framework for
determining end-to-end latency and latency jitter that
embedded software engineers and control engineers
to make informed design choices through model-
based analysis early and throughout the
development process in a co-design design setting.

2. A Control Engineering Perspective

Control system components process a signal data
stream from sensors and affect the external
environment, e.g., a physical plant, through
actuators. Processing of such a signal stream is time
sensitive. The degree of time sensitivity depends on
the lag of the physical systems and the
responsiveness of the control algorithm.
The control systems are initially expressed as
continuous time models in differential equations in
order to capture the physical characteristics and
behaviors of the physical systems. These models
are then mapped into discrete time models to reflect
sampled control in a computer-based control system
implementation [3]. Simulink is an example of a
commercial modeling environment for control
engineers that supports both continuous time and
discrete time modeling. Such modeling environments
assume a computational model whose execution
behavior is implemented in their simulation engine.
In the next sections we will examine this assumed
model of computation and communication, model its
essence in AADL, and discuss its sensitivity to
latency variation and jitter.

2.1 A Model of Computation and Communication

The computational model consists of computational
components that execute periodically with an input-
compute-output (ICO) behavior. This model provides
data consistency during computation in that the input
to the computation is determined in the input phase
and is not affected by newly arriving output during
the time of computation. Similarly, output is made
available to successors during the output phase
upon completion of computation. Data consistency of
communication is established through a port-based
communication model with atomic send/receive
(write/read) operations. Such port automata
represent an algebra of concurrent processes [4].
In a modeling environment such as Simulink this
computational model is represented by blocks
representing components, pins representing ports,
and connections representing communication of data
through variables from the output of one component
to the input of another component. Components

execute at a specified rate. Different components
may execute at different rates, resulting in over- and
under-sampling of the predecessor output. The
simulation executes the components sequentially in
discrete time frames at the specified rates. Within a
frame the execution order of the components is fixed
and can be specified by the modeler.
The execution order of the components determines
the send/receive order of the input and output
operations, i.e., determines whether the data is
received by the receiver within the same frame or at
the next frame. If the recipient executes after the
sender the communication is mid-frame, and if the
recipient executes before the sender the
communication is phase-delayed.
When communicating components execute at
different rates, rate transformation blocks,
representing zero-order hold and unit-delay,
effectively perform double buffering of the result in
order to assure data consistency of computation
while performing mid-frame and phase-delayed
communication.
Since the execution order is always the same, data
is always communicated deterministically mid-frame
or phase-delayed between components. The end-to-
end latency of a data stream determined by the initial
sampling of the sensor readings, the processing time
of sequences of components with mid-frame
communication. This cumulative processing latency
is then sampled by phase-delayed communication
with the cumulative processing latency rounded up
to the next frame. This provides an effective way of
managing execution time jitter, i.e., variation in
actual execution time of individual components. For
example, the control system may apply a filter to the
sensor data before computing the output to the
actuator. These two tasks are shown as T11 and
T12 in Figure 1. By passing the output phase-
delayed to task T2, T2 will feed data to the actuator
at the beginning of the next frame independent of
any variation in execution time to perform the filtering
or control computation. Often the task providing
data to the actuator executes at a multiple rate of the
control algorithm and deterministically oversamples
the controller output.

Figure 1: Processing Time and Sampling Latency

2.2 An AADL Model of the Control System

AADL supports modeling of periodic and event or
data-driven tasks (AADL threads). These threads

Processing

time

Task T11

Task T2

Phase delay
Task T12

Latency

 Page 3/8

can have data ports, i.e., unqueued ports that
communicate state data, as well as ports for
communicating events and messages. Data ports
make the most recently recent data value available
to a thread at thread dispatch time. During the
execution of the thread this data value is not affected
by any newly received data. The output of data
ports is made available to other threads at execution
completion. In other words, the AADL thread model
supports the ICO behavior desirable for control
systems.
For periodic threads with data ports users can
specify immediate and delayed port connections.
The timing semantics correspond to mid-frame and
phase-delayed communication. In the case of an
immediate connection the execution of the recipient
thread is suspended until the sending thread
completes its execution and makes its output
available to the recipient. In the case of a delayed
connection the output of the sending thread is not
transferred until the sending thread’s deadline,
typically the end of the period. In other words, its
output is not available to the recipient until the next
frame. These communication timing semantic assure
deterministic over- and under-sampling when a data
stream is processed. The timing characteristics of
immediate and delayed connections are shown in
Figure 2.

Figure 2 Immediate and Delayed Connections

This allows us to describe the expected execution
and communication timing behavior of a control
system simply as a sensor device that samples the
physical environment at a given period. Its output is
fed to a filter thread via immediate connection. This
filter thread and the control computation thread,
which is connected via immediate connection,
execute at twice the period of the sensor device. The
output of the control computation is fed to an
actuator device via delayed connection. The

actuator device is specified to execute at half the
period of the control computation.
AADL also allows us to specify an end-to-end flow.
This is done by first specifying a flow source for the
sensor, flow paths for the filter and control thread,
and a flow sink for the actuator. These flow
specifications provide an external specification of
information flow path through an AADL component
from an incoming port to an outgoing port (in case of
a flow source starting from within a component, and
a flow sink ending within a component). If a
component consists of subcomponents, this flow is
elaborated within the component implementation as
a flow through these subcomponents. An end-to-end
flow is specified by starting with the flow source of a
component, in our case the sensor device, to follow
the connection to the filter thread, following its flow
path and the connection to the control thread, the
control thread flow path and the connection to the
actuator device flow sink. The end-to-end flow and
the flow specifications can have AADL properties, in
our case the specification of the desired end-to-end
flow latency attached to the end-to-end flow
specification. The latency within a sensor or actuator
can be attached to its flow source or flow sink
specification. The latency contributed by a thread
can be determined from its period, deadline, and
worst-case execution time and the type of data port
connection [5].
AADL also supports specification of sampling port
connections as well as data driven processing with
arrival of data triggering the execution of threads. In
addition, AADL supports modeling of shared access
to data components by threads with write and read
access determining the information flow.

2.3 Non-determinism in Computation and
Communication

Control algorithms are sensitive to latency and
sampling jitter as well as variation in age of the data.
The end-to-end latency and the age of data in a
signal stream may differ. End-to-end latency is the
amount of time it takes for a new data value from a
sensor to get processed and output at the actuator. If
data elements are missing or the data stream is
oversampled, the same data element may be
processed multiple times. In that case, the age of the
data value being processed may be larger than the
end-to-end latency.
Cervin et.al. [1] illustrate how sampling jitter and
latency jitter affect the stability of controllers. They
also show that jitter varies according to the
scheduling algorithm used for executing a task set.
The standard task model with a single assigned
priority and input and output performed as part of
this task performs worse than a task model in which
input and output is managed separately at higher
priority, thus, making task interaction more

 Page 4/8

deterministic. Sampling and latency jitter as well as
variation in data age is perceived by the control
algorithm as increased noise in the data causing the
control algorithm to become less stable.

In the next section we examine how latency and age
of data streams are affected by choices made by
software engineers as they integrate control
components into a set of communicating software
tasks that share processors, execute concurrently on
different processors, and communicate over high-
speed or slow communication channels. Those
choices may introduce unintended non-determinism,
thus, increase latency jitter [6].

3. Embedded Software Engineering Perspective

When implementing an embedded software system
software engineers make a number of decisions
regarding the runtime system of the application.
Algorithms may vary in execution time, tasks may be
scheduled on a static time line or may execute pre-
emptively to improve processor utilization. Tasks
may communicate through shared data variables or
use a send/receive communication paradigm.
Multiple tasks executing at the same rate may be
executed in the same operating system thread in
order to reduce the number of context switches. The
embedded system may be ported to a partitioned
architecture in order to improve configurability and
deployment options of the embedded system.
Different communication protocols can be used for
communication across processors. Different
processor in a distributed system operate
asynchronously on different clocks. All of these
considerations can have an impact on the end-to-
end latency and its jitter. In the next sections we
discuss the impact of these latency contributors.

3.1 Execution Time Variation

Latency jitter is due to variation in actual execution
time. Different data values may require different
amounts of computation. Latency jitter is also due to
the use of preemptive scheduling techniques in order
to increase the utilization of processors. Preemptive
scheduling causes one task to be preempted to
allow a higher priority task to complete, delaying its
completion by varying amounts of time. As pointed
out earlier, such execution time variation of a data
stream with can be masked by a sampling task ass
long as the jitter does not exceed the sampling rate.
Variation in execution time is recorded in AADL
models as a time range. Similarly, AADL processors
have a property that indicates the type of scheduling
protocol, i.e., it can identify whether preemptive
scheduling is being performed.

3.2 Non-Deterministic Communication

Preemptive scheduling of tasks as well as
concurrent execution of tasks on different
processors, e.g., different cores one a multi-core
processor, can have a greater effect on jitter. The
execution of send/receive (e.g., write/read to
variables) to accomplish the communication, when
executed as part of the application code, can lead to
a non-deterministic send/receive order [7]. This
leads to frame-level latency jitter. Let us illustrate
with an example shown in Figure 3.

Figure 3 Frame-level Latency Jitter

Mid-frame and phase-delayed communication
semantics guarantee that a task deterministically
samples a data stream. For example, if the rates of
two communicating tasks are harmonic, i.e., the
sending task rate is twice the rate of the receiver,
then the receiver reads every second element in the
data stream written by the sending task.
However, if the write and read order is not
guaranteed to be deterministic, then the receiving
tasks may read two successive elements in the data
stream and then skip two elements to read the third.
The effect is that sampling of the data stream may
vary by as much as two frames.
In AADL, deterministic data port communication can
be explicitly modeled through immediate and
delayed connections. In addition, AADL supports
modeling of sampled port connection as well as
explicit modeling of communication through shared
data components.

3.3 Rate Group Optimization

Rate group optimization is the process of mapping
tasks that have the same execution rate on a
specific processor into a single operating system
(OS) thread of that rate. The benefit of rate group
optimization is that context switch time between
tasks of the same rate is greatly reduced because
the operating system thread executes these tasks on
a static time by calling them as subprograms.
Rate group optimization affects the task execution
order within a frame as it places tasks of the same
rate into groups and executes them in order within
each group.

 Page 5/8

A task sequence with mid-frame communication with
tasks of different rates has an expected execution
order of these tasks. The rate group optimization
may result in a task execution order that is in conflict
with the desired order for the task sequence.

Figure 4 Phase Delay due to Rate Group
Optimization

Let us illustrate with an example shown in Figure 4.
Let us assume a sequence of three tasks with mid-
frame communication. Task Ts and Ta are higher
rate tasks (50 ms), while Tc is a lower rate task
(100ms). Rate group optimization will place Ts and
Ta in a high rate group G1, and Tc in a low rate
group G2. If G1 is executed before G2, e.g., if rate
group priority is assigned based on rates, the
constraint Tc->Ta is violated, and if G2 is executed
before G1 the constraint Ts->Tc is violated. In other
words, the rate group optimization forces one of the
mid-frame communication steps to become a phase-
delayed communication step.
The general rule to be checked is whether there is
an immediate connection between threads in
different rate groups and the execution order of
those rate groups cannot be guaranteed to be the
same as that implied by the immediate connection.
A corollary to this rule is that if there exists an
immediate connection from a thread in one rate
group to a thread in a second rate group, and there
exists a second immediate connection from a thread
in the second rate group to a thread in the first rate
group the immediate connection timing semantics
cannot be guaranteed.
When the immediate connection semantics cannot
be guaranteed one of two things happens to the
end-to-end latency: the end-to-end latency will
increase if the execution order of the rate groups
deterministic; or latency jitter will occur due to
preemption or concurrent execution of rate group
threads.
AADL supports modeling of rate group optimization
at several levels of abstraction. For example, logical
tasks can be modeled by AADL threads. An AADL
property can be introduced to define the mapping
into a rate group for each AADL thread. The actual
implementation of the rate group as an operating
system thread is then derived (generation) from this
model. Other modeling options to more explicitly

represent the rate group include the use of virtual
processors of AADL V2 [9].

3.4 Partitioned Architectures

Partitioning is used to support integrated modular
avionics (IMA). A partition provides a virtual
processor that ensures space partitioning through
address space protection and time partitioning by
ensuring its processor allocation is not exceeded.
Within partitions multiple threads may execute and
each partition may implement its own policy for
scheduling its threads. All interactions between
partitions is accomplished through port-based
communication. This allows embedded applications
to be modularized and configured in different ways to
run on a common computing platform.
The ARINC 653 standard for embedded avionics
systems [8] specifies that all inter-partition
communication must be phase-delayed if
deterministic communication behavior is desired
(see Figure 5). This makes the behavior of the
application insensitive of the partition execution
order or partitions executing concurrently. However,
this may require double buffering in order to assure
the correct data to be available to the recipient. As
we place an embedded application into a partitioned
architecture and the end-to-end flow spans multiple
partitions, then the end-to-end latency is increased
by the phase-delayed communication across
partition boundaries.

Figure 5 Phase Delayed Inter-partition
Communication

The phase-delayed inter-partition communication
model can have unexpected side-effects on existing
legacy applications that implement an ICO model. A
common way of implementing this model is to have a
high priority task (Periodic I/O) take the output from a
shared data area and send it to other control
subsystems, as well as place the input from other
subsystems into the shared data area (see Figure
6). Note that this has the effect of phase-delayed
communication. When ported into a partitioned
architecture, the partition communication mechanism
will phase delay the cross-partition data traffic, but

 Page 6/8

the data it receives from the application, i.e., its
Periodic I/O task, is already delayed. This will result
in doubling of the latency contributed by
communication across partitions.

Figure 6 Legacy Cyclic Executive Implementation

If the partitioned architecture does not ensure phase
delayed communication, e.g., by application
send/receive calls without the communication
protocol performing double-buffering to delay the
receipt, we get two effects on the end-to-end latency.
Let us first examine partitions on the same
processor. In this case communication from the first
partition to the second partition is mid-frame, while
communication from the second partition to the first
partition is phase-delayed. If we change the statically
determined execution order of partitions, then the
immediate connection becomes delayed and the
delayed connection becomes immediate – resulting
in a change in the flow latency through either
connection.
If the partitions execute on different processors, then
the send/receive order may be non-deterministic
resulting in frame-level jitter due to concurrent
execution. If the execution order of partitions is
changed on one of the processors and the
processors clocks are synchronized, one partition
may always be executing before the other, i.e., the
execution order may become predictable with
communication in one direction immediate and the
other delayed.
In summary, in a partitioned architecture we can
isolated the embedded application from non-
determinism, or we can determine whether a control
application needs to accommodate latency jitter or
be recalibrated for a change in latency.
Partitions can be modelled in AADL through AADL
processes. They represent space partitions in their
default semantics. Partition-specific properties can
be introduced to characterize the partition execution
rate and the scheduling protocol supported by the
partition for executing its threads. In AADL V2 [9] we
can use the virtual processor concept to more

explicitly represent the partition as an entity that
provides time partitioning and scheduling of threads.

3.5 Communication Protocols

Communication protocols contribute to end-to-end
latency as well. There is the transmission latency,
i.e., the amount of time it takes to transmit the data
from the source to the destination. This figure is
dependent on the speed of the underlying
transmission medium, and on the amount of data to
be transmitted. It is the equivalent to processing
latency contributed by tasks. In addition,
communication protocols contribute transmission
delay due to queuing or due to waiting for the
transmission time slot. Examples of the latter are
signal data transfer over CANBus or a time-triggered
protocol. Such time-division protocols can be viewed
as sampling the data stream to be transmitted, thus,
contributing sampling latency.
Communication protocols are modeled as part of the
AADL bus abstraction. The AADL bus has a number
of properties that allow modelers to specify data
transmission costs. Additional properties can be
introduced to specify protocol characteristics such as
guaranteed delivery, and slot assignment in a time-
division protocol. In order to better support modeling
of protocols independent of physical connections,
AADL V2 [9] has introduced the virtual bus concept.

3.6 Globally Asynchronous Systems

In a synchronous system, task dispatches are
aligned. As a result, the sampling latency can be
determined by rounding the processing latency to
the next multiple of the sampling rate (see also
Section 2.1).
In a globally asynchronous system, the sampling
latency has to be added to the processing latency to
accommodate worst-case assumptions of
misalignment of clocks. Furthermore, clock drift
becomes evident as small changes in latency jitter.
Resynchronization of clocks has the effect of a jump
in latency, whose size is dependent on the degree of
drift and resynchronization frequency.
The base semantics of AADL [1] are defined in terms
of synchronous systems. However, the standard
allows AADL properties to be used to introduce clock
asynchronicity. For example, AADL processor can
have properties that indicate the clock used as its
time reference point. The AADL device concept can
be used to represent clocks explicitly and associate
clock specific properties, such as drift with respect to
some universal time. The AADL V2 standard [9] will
provide additional guidance and support for
modeling multiple time spaces, i.e., support for
modeling various forms of asynchronicity such as
globally asynchronous locally synchronous (GALS)
systems or physically asynchronous logically
synchronous (PALS) systems.

 Page 7/8

4. A Flexible Framework for Latency Analysis

There is a need for control engineers and embedded
software engineers to cooperate in a co-design
setting when developing software-intensive control
systems. In support of such a co-design
environment there is a need for flexible framework
for end-to-end latency analysis. This framework
must be flexible in several dimensions. First, it must
usable early and throughout the development life
cycle, i.e., it must accommodate multi-fidelity
modeling and analysis. This means it must support
partial models of systems with few runtime
architecture decisions that can produce initial
insights, and that can later be refined into more
complete models for further analysis. Second, the
framework must be extensible to accommodate new
contributors to latency and latency jitter as new
runtime architectures and communication
mechanisms are developed and deployed.
This analysis framework must accommodate a few
principal concepts of time-sensitive data stream
processing and their realization in software [6].
These include synchronous and asynchronous
processing and communication, sampled and data-
driven processing and communication,
characterization of determinism, resource sharing
delay, and predictable worst-case and best-case
performance. By centering the framework around
data stream characteristics we can express
assumed timing characteristics from a control
engineering perspective, and contributors to these
characteristics due to processing tasks and
communication mechanisms in the runtime
architecture of the software implementation.
We suggest that AADL can be a good platform for
such an analytical framework. AADL allows
modelers to capture expected data stream
characteristics, and its allows users to represent the
runtime architecture of the embedded software
system at different levels of abstraction. We have
developed an initial realization of such a framework
around AADL [5]. In this framework we have
demonstrated how a lower bound of worst-case end-
to-end latency can be quantified for models of the
control system at various levels of fidelity. For
example, end-to-end latency may be calculated
based decisions regarding partitioning of major
subsystems without any details about the tasks, and
later revisited when processing tasks are known in
terms of sampling, period, and communication
timing, when binding decisions are made with
respect to deployment on compute hardware. This
framework can be extended to accommodate
contributions of protocols used in the
communication, effects of data stream miss rates,
and choices in fault tolerance mechanisms.
This framework can accommodate worst-case and
best-case latency, as well as determination of age.

The impact of such timing measures of data streams
on control system behaviour can also be determined
analytically [3]. Commercial tools are starting to
address this need for specific application domains,
e.g., the automotive domain [10].

5. Conclusion

In this paper we have examined the sensitivity of
control systems to implementation choices in runtime
architectures for embedded software systems. For a
control engineering perspective we have identified
commonly assumed timing characteristics for
processing a data stream in a control loop. We have
identified non-determinism in sampling a data stream
as a key contributor to latency jitter, which in turn
causes instability in control behavior. We have then
examined several runtime architecture concepts for
their contributions to latency and latency jitter. We
have shown that AADL can be used to characterize
the control application and the runtime system that
implements this control application and that the
semantics associated with AADL concepts are well
suited to capture the essence of the timing problem
space to be the basis for an adaptable analytical
framework that allows control engineers and
embedded software engineers to evolve the design
of a system in a co-design setting through repeated
analysis of models of different fidelity.

7. References

[1] Cervin, A.; Årzén, K.-E.; & Henriksson, D.
“Control Loop Timing Analysis Using
TrueTime and Jitterbug,” 1194−1199.
Proceedings of the 2006 IEEE Conference on
Computer Aided Control Systems Design
(CACSD). Munich, Germany, October 4−6,
2006.

[2] Society of Automotive Engineers.
“Architecture Analysis & Design Language
(AADL)”, SAE Standards: AS5506, P. Feiler
(ed.), November 2004.

[3] Åström, K.J.; Wittenmark, B. “Computer
Controlled Systems – Theory and Design”
Prentice-Hall, 1996.

[4] Steenstrup, M., Arbib, M.A., and Manes, E.G.,
“Port Automata and the Algebra of Concurrent
Processes" Journal of Computer and System
Sciences, Vol. 27, No. 1, Aug. 1983, pp.29-50.

[5] Feiler, P.; Hansson, J. “Flow Latency Analysis
with the Architecture Analysis and Design
Language (AADL),” Technical Note CMU/SEI-
2007-TN-010, Software Engineering Institute,
Dec 2007.

[6] Caspi, P.; Maler, O. “On the Implementation of
Control Loops by Software,” 1574−1581.
Proceedings of the 2006 IEEE Conference on

 Page 8/8

Computer Aided Control Systems Design
(CACSD). Munich, Germany, October 4−6,
2006.

[7] Feiler, P. “Efficient Embedded Runtime
Systems Through Port Communication
Optimization” Proceedings of the 13th IEEE
International Conference on Engineering of
Complex Computer Systems (ICECCS 2008).
UML&AADL 2008 Workshop. Belfast,
Northern Ireland, April, 2008.

[8] ARINC. ARINC Specification 653P1-2. 653P1-
2 Avionics Application Software Standard
Interface, Part 1 - Required Services (2003).

[9] Society of Automotive Engineers.
“Architecture Analysis & Design Language
(AADL) Version 2”, SAE Standards: AS5506-
2, P. Feiler (ed.), expected in Fall 2008.

[10] Symta Vision. End-to-end timing analysis for
gated networks. www.symtavision.com.

8. Glossary

AADL: Architecture Analysis & Design Language

ARINC: Aeronautical Radio Inc.

CAN Bus: Controller Area Network Bus

GALS: Globally asynchronous Locally Synchronous
Systems

ICO: Input-Compute-Output

IMA: Integrated Modular Avionics

PALS: Physically asynchronous Logically Synchronous
Systems

SAE: Society of Automotive Engineers

