
HAL Id: insu-02270104
https://insu.hal.science/insu-02270104

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Factory Testing Tools: an Analysis Framework
Emmanuel Ledinot, Michel Nakhlé, Philippe Robin

To cite this version:
Emmanuel Ledinot, Michel Nakhlé, Philippe Robin. Software Factory Testing Tools: an Analysis
Framework. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, toulouse, France.
�insu-02270104�

https://insu.hal.science/insu-02270104
https://hal.archives-ouvertes.fr

Software Factory Testing Tools: an Analysis Framework
Emmanuel LEDINOT1, Michel NAKHLE2, Philippe ROBIN3

1: Dassault Aviation, 78 Quai Marcel Dassault. 92552 Saint Cloud Cedex
2: CS SI. Utilities & Industry Division Technical Manager. 22, avenue Galilée. 92350 Le Plessis Robinson

3: TRIALOG, 25 Rue du Général Foy. 75008 Paris

Abstract:

Keywords: Software verification and validation, test
generation, test execution, static analysis, constraint
solving, tool comparison.

1. Introduction

This paper compares seven tools devoted to
software verification and validation that are being
developed by several participants of MoDriVal
project1.
These tools are classified according to different
criteria: the kind of data they process, the services
they provide, their underpinning technology and
foundations, and the stages of system or software
testing process they are relevant to.
These tools are:

• Four test generators developed respectively
by CEA, Esterel Technologies and
University of Orsay. Two of them apply to
data-flow programs (MTC Solver,
sALLUSTe). The third one is dedicated to
state-transition systems (AGATHA), and the
fourth one to binary code (OSMOSE).

• A test execution engine (TTS), which is
developed by Trialog.

• Two static analyzers : FLUCTUAT
developed by CEA to estimate rounding
errors, and Penjili developed by EADS-IW to
detect string buffer overflows.

Section 2 presents the classification framework for
testing tools that will be used as a reference to
position the tools with respect to the testing
activities.
Section 3 is a description of the tools from a
technological viewpoint, i.e. by focusing on their
inner parts and foundations.
Section 4 provides additional background on test
case definition and coverage criteria that Section 5
refers to.

1 MoDriVal is a subproject of "Usine Logicielle"
(Software Factory) project carried out within the
French System@tic Cluster, funded by DGE, CG78,
CG91, CG92 and CRIF.

Section 5 is the core part of the paper, presenting
the mapping of the tools on four classification
diagrams based on criteria discussed in sections 2
and 4.
Section 6 summarises lessons learnt from case
studies carried out with the tools by CS, Dassault
Aviation, EDF, Hispano Suiza, MBDA and Thales in
the course of the MoDriVal project.
Then we conclude on the trends for testing tools in
the commercial marketplace and the opportunity for
the MoDriVal tools presented in this paper to go the
market.

2. Classification framework

The state of the art related to model-based testing
tools emphasizes two categories of testing
approach:

• Functional testing or “black box”
• Structural testing or “white box”.

The tools can further be gathered into three families:
• Tools dealing with asynchronous systems,
• Tools dealing with synchronous systems,
• Tools dedicated to data handling.

Eventually testing can be deterministic or statistical
and may use different techniques:

• Systems of labelled transitions (TGV,
STG…)

• Constraints solving (BZ-TT/Leirios,
AGATHA, GATeL…)

• Finite states machines (AsmL Tool Test,
SpecExplorer…).

The specialized site http://www.stickminds.com/
references more than 268 testing tools. These tools
have been investigated [1] and have been classified
[2] into test design tools, graphical user interface test
tools, performance testing tools, test management
tools, test implementation tools, test evaluation tools
and static analysis tools (see Figure 1 below).

 Page 1/9

FIGURE 1: CLASSIFICATION OF TESTING TOOLS

Here is a short description of the main categories:

• Analysis: tools that analyse programs
without running them; metrics tools fall in
this category.

• Design: tools which help you decide which
tests need to be executed. This category
also includes test data and test case
generators.

• Evaluation: tools which help you evaluate
the quality of your tests; including code
coverage tools.

• GUI: tools which automate test execution for
products with graphical user interfaces. This
category includes client/server test
automation tools and load testers.

• Implementation: miscellaneous tools that
help you implement tests. For example, tools
that automatically generate stub routines, as
well as tools that attempt to make failures
more obvious (such as assertion
generators…).

• Load and Performance: tools that specialize
in putting a heavy load on systems
(especially client-server systems). These
tools are often also GUI test drivers.

• Test Management: tools that automate the
execution of tests for products without any
graphical user interfaces. These tools help
you work with large test suites.

It is worth underlying that the limits between the
categories are out of focus, because many tools, can
belong to several categories.

3. MoDriVal testing tools and technologies

Let us start with the four test generators. In spite of
apparently strong differences, they rely on the same
basic idea and use the same core technology.
3.1 Test generation of binary code
The testing of legacy binary code may be
unavoidable in some circumstances related to
certification or management of hardware
obsolescence when there is no possibility to develop
a new software on the new hardware unit (the old
hardware unit is then virtualized on the new one).
Specified by EDF and developed by CEA, OSMOSE
is designed to handle the binary code of any
microprocessor provided that the processor
instruction set can be translated into OSMOSE
generic instruction set.
OSMOSE provides standard reverse engineering
functions on binary code (control and data flow
analysis, call graph display,…) and generates binary
test sets driven by structural coverage criteria.
Presently, there is only one predefined coverage
criterion (all instruction coverage), but the criteria will
be user-definable via an appropriate GUI in the
future. The test cases generated can be executed
symbolically by OSMOSE to "test the generated
tests".
3.2 Test generation for symbolic transition systems
AGATHA, developed by CEA, is dedicated to
modelling and analysis of networks of
communicating transition systems. Reachability
analysis of the global state space is performed
symbolically, i.e. without a complete instantiation of
state or action variables. By using predicates over
free state variables, AGATHA symbolic states may
represent infinite sets of actual states.
AGATHA is used to model automata-oriented
specifications or requirements, possibly translated
from formal UML activity or sequence diagrams.
Verification of safety properties and generation of
test cases are the two main capabilities of the tool.
3.3 Enhancement of model-level test coverage
Model Test Coverage (MTC) is currently available as
a module of Esterel Technologies SCADE Suite.
While submitting a model to user-defined tests, MTC
is able to log the nodes and the node parts activated
by the test scenarios.
MTC Solver is a prototype add-on to MTC which is
developed by CEA and Esterel Technologies. It aims
at facilitating the way to obtain a 100% model-level
structural coverage. Given a current coverage ratio,
MTC Solver generates additional tests to activate the
remaining non-activated parts that are suspected to
be possible "dead" nodes.
It is also possible to define “observers”, in a manner
similar to what is done for model-checking of safety

 Page 2/9

properties, and to ask the tool to generate test cases
that both increase the model coverage and satisfy
the observers.

3.4 Statistic test generation of data-flow programs
sALLUSTe is a test generator for data-flow programs
developed by CEA and Orsay University/LRI.
sALLUSTe handles also structural coverage criteria,
but oppositely to MTC solver, it explores randomly
the structure of a data-flow model (i.e. a SCADE
model in practice). At present the probability
distribution mapped on the nodes of the model
network of equations is uniform, but in future
versions of the tool it is planned that "weights"
(testing effort objectives) on structural points of a
model (nodes, equations etc.) might be user-defined
in order to adjust, i.e. to bias, the statistical
coverage.

The four test generators presented here process
three different kinds of objects:

• Control flow graphs labelled by binary
instructions,

• Parallel compositions of symbolic state-
transition systems,

• Networks of conditioned equations,
Three of them are deterministic test generators while
the last one is stochastic.
However, in spite of significant differences, the tools
are based on similar principles and they use similar
ways to compute the tests they generate. They
proceed as follows :

1. First an execution path is computed on a
structure that depends on the structural
criterion selected (graph-based coverage,
loop unfolding bounds, etc.) and the Boolean
conditions met along this path are collected.
In AGATHA, MTC Solver and sALLUSTe the
"paths" are traces or multi-cycle sequences
of synchronous steps. An user-bounded and
user-focused unfolding of cycles (SCADE) or
interleaved transitions (AGATHA) is
performed. In OSMOSE, a path is a branch
of the control flow tree.

2. Second the set of Boolean conditions
(predicates over free variables that are the
path local reachability conditions) is
submitted to a constraint solver that tests if
this set of constraints might be satisfied.
When the constraints are satisfied, the
constraint solver produces a set of solution
intervals for the constrained variables. Any
value chosen in these intervals ensures the
accessibility of the path.

3. Eventually every input variable of the model
(AGATHA, MTC Solver, sALLUSTe) or the
binary program (OSMOSE) is given an

actual value which is randomly chosen in the
solution intervals.

Constraint solving is the key technology used in step
2 above [3], [4]. GATeL, which includes the Eclipse
constraint solver, or Eclipse per se, is the common
core component used by the four test generation
tools presented in this paper.

3.5 TTCN-3 test generation and execution
TTS is a test execution engine that performs tests on
programs hosted in a workstation or in embedded
devices. TTS complies with a standard test
methodology used by the telecom domain (ISO
9646, TTCN) and uses a black-box testing approach.
The latest version of the standard known as TTCN-3
shall be used by the automotive industry in the future
to specify the conformance tests of basic software
components.
Within the MoDriVal project, a new version of TTS
compliant to TTCN-3 was developed and integrated
with AGATHA test generator described above in
order to provide and experiment a model-to-test
workflow covering test generation and test
execution.

The last two tools (FLUCTUAT and Penjili)
considered in this paper are static analysers. These
tools provide exhaustiveness of analysis (proofs) to
the expense of over-approximation (false negatives)
and computational complexity (analysis time and
space footprint). Thus they can be considered as
verification tools. It is interesting to note that
constraint solving (in case of sound and complete
constraint solvers) also provides exhaustiveness in
satisfiability analysis. There the test generators
based on constraint solving such as those described
above may be considered as reachability verification
tools as well.

3.6 Static analysis of rounding errors
FLUCTUAT developed by CEA propagates through
ANSI C source code error terms which (over)-
approximate the rounding errors made by floating
point computation. Floating point computation is
supposed to conform to IEEE 754 specification.
The C source codes may be annotated at some
critical control points to provide application-specific
information on the value range of given key
variables. Because of decidability and computational
complexity issues, the accuracy .vs. efficiency trade-
off is currently such that FLUCTUAT may fail to infer
precise enough bounds or intervals. Annotations are
taken into account by FLUCTUAT and are
instrumental in controlling over-approximations. A
graphical user interface displays interval or error
bars on the source code.

 Page 3/9

3.7 Static analysis of string buffer overflows
Penjili is a static analyser whose development
started at EADS Innovation Work within MoDriVal
project. It is dedicated to the detection of potential
security attacks through string buffer overflows.
Penjili processes ANSI C source code files of
programs that make extensive calls to string
handling libraries. The tool relies on the definition of
an abstract domain specially designed for the
purpose of tracking efficiently dangerous memory
read/write operations in character array
manipulation.

4. Mapping testing tools w.r.t. testing process

4.1 Testing Processes
In software engineering processes, inspection and
testing activities can be organized in stages
according to the V-model (see Figure 2).

Figure 2: V-Model of software testing
The V-model integrates together testing and design
activities by showing, how the testing activities on
the right-hand side verify the outcome of design
activities on the left-hand side. A test plan
corresponds to each stage of the software
construction. Requirement analysis is the stage
where the software engineer thinks about the
information obtained during the initial stage of
requirement elicitation. Requirement specification
documents and design documents are inspected
carefully before the coding stage begins. Checklists
are the basic tools used for the inspection of
requirements. Requirements give guidelines for the
subsequent construction stages as well as the
criteria to be used for the software acceptance. The
acceptance test plan is produced at the requirement
elicitation stage. The acceptance test plan helps
users testing the system and checking with
acceptance criteria whether their requirements are
fulfilled.
Then the design stage of the software architecture
can be divided into the following activities:

• Functionality-based architecture design,
which decomposes the architecture into

needed components and the relationships
between them,

• Evaluation of quality attributes of the
architecture,

• Transformation of the software architecture
in order to improve its quality, and

• Component design.
Component design means that the structure of each
individual component is designed. The components
have to collaborate with each other and cannot be
considered as standalone items. The dependencies
between components must be designed too.
Components are often designed in an object-
oriented way in terms of classes and their
relationships. The functional logic is split between
interfaces and dependency implementation. The
execution environment of the components and the
test plan for the components needs to be defined
too. The whole testing process depends on who
performs the tests, i.e. a component provider, an
integrator or a component customer. A provider
needs black and white box testing techniques. An
integrator needs only black box testing techniques to
perform interface testing, A customer uses black box
techniques for acceptance testing.
The testing process should be assisted with
specialized testing tools. The categories of testing
tools presented in Section 1 may be mapped onto
the V-model of testing as shown below (see Figure
3).

Figure 3: Mapping of testing tool categories on the

V-model of testing

4.2 Test case creation
Test cases can be created using white box or black
box testing techniques. White box and black box
methods can be used together in order to maximise
the test coverage.
4.2.1 Black box testing techniques
Black box testing techniques are used if the source
code is not available. In black box testing, test cases
are derived from requirement specification, use
cases or contracts. A contract defines the interfaces
of the component, its dependencies with respect to

 Page 4/9

other components and the component execution
environment. Contracts are normally used for testing
distributed components. Black box testing is used in
integration, system and acceptance testing stages.
Commonly used black box testing methods are
boundary value and equivalence partitioning (which
can also be improved by boundary value analysis).
These methods are detailed below.
Boundary value analysis: This method addresses
array bound violation, detection of potential stack
overflows, buffer overruns, freeing of unallocated
memory… Several studies have shown that
programmers make errors especially when coding
loops. Boolean expressions, such as <, >, =, ≠, ≤
and ≥ are often erroneously coded and this results in
the loop being traversed one time too much or one
time too less. That is why it is necessary to select
test cases close to the boundaries. The guidelines
for the boundary value analysis are:

• If an input specifies a range of valid values,
write test cases for the limits of the range
and invalid input test cases for conditions
just beyond the limits

• If an input specifies a number of valid
values, write test cases for the minimum and
maximum number of values and one
beneath and beyond these values.

Equivalence partitioning: In most cases, the system
cannot be exhaustively tested, so the input space
must be somehow partitioned. Equivalence
partitioning is a test case selection technique in
which the test designer examines the entire input
space defined for the system under test and looks
for sets of input that are processed "identically".
Identical behaviour means that test inputs belonging
to one equivalence class traverse the same path of
execution through the system. Equivalence
partitioning is based on the following assumptions:

• If the system works correctly with one test
input in an equivalence class, the system
works correctly with every input in that
equivalence class

• Oppositely, if a test input in an equivalence
class detects an error, all other test inputs in
the equivalence class will find the same
error.

Equivalence classes are defined from an analysis of
the requirement specification document. It is
important to note that equivalence partitioning is
always based on the test designer's intuition and
thus may be imperfect. The guidelines for the
equivalence partitioning analysis are:

• If the input specifies a range of values, one
valid (within the range) and two invalid (one
outside each end of the range) equivalence
classes are defined

• If the input specifies a specific value within a
range, one valid and two invalid equivalence
classes are defined

• If the input specifies a set of valid values,
one valid (within the set) and one invalid
(outside the set) equivalence class are
defined

• If there is reason to believe that the system
handles each valid input value differently,
then define one valid equivalence class per
valid input

• If there is reason to believe that elements in
an equivalence class are not handled
identically, subdivide the equivalence class
into smaller equivalence classes

• One or several equivalence classes are
always defined for the illegal values. Illegal
value is incompatible with the type of the
input parameter.

This may lead to an explosion in the number of
equivalence classes.

4.2.2 White box testing techniques
If the source code is available, white box testing
techniques can be used. White box techniques
ensure that the internal logic of the system is
adequately tested. In white box testing, test cases
are derived through a careful examination of the
source code of the component. White box testing
can find errors that are deeply hidden in the source
code details. White box testing is used at the
component testing stage (see Figure 2). When
testing the component at source code level, both the
control-flow and the data-flow of the component can
be tested.
Control-flow testing: Control-flow testing means that
different paths according to the control-flow of the
component are followed. A standard representation
for the control-flow of a component is a flow graph,
which abstracts the execution of the component into
a graph-like structure. The nodes of a flow graph
stand for the statements of the component and the
edges stand for the control transfer between the
statements. Statements where the control diverges
such as conditional statements or loops are the most
important items from the control-flow testing point of
view. The adequacy of control-flow testing is
measured in terms of coverage. The coverage
indicates how extensively the system is executed
with a given set of test cases. The basic types of
coverage are:

• Statement coverage, where each statement
is executed at least once. This is the
weakest criterion and does not normally
ensure a faultless code. 100% statement
coverage is usually too expensive and hard

 Page 5/9

to achieve, especially if the source code
includes "dead code".

• Path coverage, where every possible
execution path is traversed. Exhaustive path
coverage is generally impractical and
impossible because loops increase the
amount of execution paths

• Branch coverage, where each statement is
executed at least once and each decision in
the program takes all possible outcomes at
least once. Branch coverage criterion is
stronger than statement coverage because if
all the edges in a flow graph are traversed,
then all the nodes are traversed as well.
Branch coverage is also known as decision
coverage.

• Condition coverage, where each statement
is executed at least once and every
condition in a decision in the program takes
all possible outcomes at least once.
Complete condition coverage does not
necessarily imply complete branch coverage
so they do not compensate each other

• Multiple condition coverage, where each
statement is executed at least once and all
possible combinations of condition outcomes
in each decision occur at least once. This is
the strongest criterion that requires to test
the component with more test cases and in a
more detail manner than the other criteria.

Composite types of coverage may also be
introduced such as Modified Condition Decision
Coverage (MC/DC) which is recommended as a
complement to functional tests by the DO-178B
standard used in the aircraft industry. The idea
behind MC/DC is as follows. For each condition
occurring in a program, a test suite is required that
ensures that for each atom in the condition there
exist two test cases that yield different results when
independently toggling the atom under
consideration. Such test suites may not always exist.
If a MC/DC test suite exists, then there are n + 1 test
cases for each condition that consists of n literals.
Data-flow testing: Data-flow testing methods explore
the events related to the status of variables during
the component execution. The key event related to a
variable is the assignment of value to the variable.

5. Classification of MoDriVal tools

Figures 4a and 4b present a mapping of MoDriVal
tools on aforementioned categories. Along the Y axis
of figure 4a, we distinguish between tools dedicated
to sequential code or synchronous models and tools
handling asynchrony. Along the X axis, we
distinguish between tools supporting functional

testing and tools supporting structural testing. The
name of the tools are post-fixed with (s), (m) or (c)
when the tests they generate or execute are
performed respectively at system-level, model-level
or code-level.

Figure 4a: First classification

TTS performs system-level functional testing of
embedded devices (for instance through their
network and protocol interfaces). It can be used also
to perform code-level functional testing of a software
component on a workstation.

AGATHA operates only at model level, on symbolic
transition systems communicating asynchronously
through message queues.

The other tools presented deal with sequential code
(FLUCTUAT, Penjili, OSMOSE) or synchronous
concurrent models of sequential code (sALLUSTe,
MTC Solver).

Regarding the structural .vs. functional partitioning,
let us add a few comments:

• MTC solver is positioned “across the vertical
frontier” on the figure above because
depending on whether observers are used
or not, the tests generated are purely
structural or not. When used in a DO178
context for instance, the tests generated to
improve model coverage have to be back
traceable to some software requirements. In
order to do so, these requirements have to
be formalized as observers linked to the
tested model so that they enforce
constraints (i.e. "functional meaning") on the
generated I/O sequences.

• The discussion on MTC Solver is also
relevant for sALLUSTe.

• AGATHA lies also across the vertical frontier
because the tests generated using
reachability conditions may be structural or
functional, depending on the "flavour" of the
reachability predicate.

 Page 6/9

• FLUCTUAT might have also been positioned
near the vertical frontier because some
functional properties may be demonstrated
by proving (through abstract interpretation)
that the range of some variables are within
given bounds. For example, equality
between two floating-point expressions
exp1 and exp2 may be proved by showing
that variable epsilon is bounded to [-10-6 ,
+10-6] where epsilon is assigned in the
code to (exp1 - exp2). However,
numerical precision is most of the time
handled as a non-functional property.
Moreover, current over-approximation issues
on loops and conditionals may make
functional properties hard to prove with
FLUCTUAT. This is why it is eventually
positioned on the structural side.

The second classification map below (Figure 4b) is
self-explanatory. Most of the tools developed and
evaluated in the project are deterministic white box
testing tools.

Figure 4b: Second classification

We now discuss the figure 5a below that presents
the positioning of the tools with respect to the system
and software development stages of the V-model of
testing.
AGATHA is positioned at the system or software
requirement capture stage. Using UML class and
activity diagrams to formalize the captured
requirements, or possibly to perform software
analysis, AGATHA can import the UML models and
generate requirement test cases from these models.

Figure 5a: Mapping of MoDriVal tools on the V-

model of testing
Then we positioned MTC Solver along both
branches of the V-process. In principle, Model Test
Coverage does not apply to implementation and
code verification. However when the software code
is generated by the qualified version of SCADE
(known as KCG), certification credits may be
obtained so that the unitary tests performed at
model-level need not be replayed at code-level.
Thus MTC Solver may also apply (indirectly) to code
testing since model coverage may supersede
generated-code coverage in these particular
circumstances.
sALLUSTe was positioned on the left-hand side of
the process for the sake of clarity. However since
MTC Solver and sALLUSTe rely on the same
constraint solver and may process the same SCADE
models, sALLUSTe might be added on the right-
hand side as well.
FLUCTUAT, OSMOSE and Penjili are dedicated to
software verification at the coding stage and are
positioned accordingly in figure 5a.
The experiments made with the current version of
FLUCTUAT by Dassault Aviation, Hispano Suiza
and MBDA showed that the C code programs need
very often to be modified to get the best out of the
analyzer. Such modifications are unacceptable by
DO-178 compliant software verification process and
this the reason why for the time being we consider
FLUCTUAT as a tool to be used only when it is still
possible to choose how to write the code. When
FLUCTUAT maturity level increases, this tool will
become suitable for unit and integration testing
stages as well.
OSMOSE and Penjili are also regarded as tools
supporting the coding stage since none of them
execute tests.
OSMOSE provides facilities to "check" the binary
tests it generates, in the sense that these tests are
evaluated through symbolic interpretation of the
binary code, as if it was executed by the intended
hardware.

 Page 7/9

However, whether static analyzers such as
FLUCTUAT, OSMOSE and Penjili may supersede
part of the testing activities in the future or not is
currently a matter of debate in the working groups
preparing revision C of DO-178.
As TTS is devoted to system-level integration and
acceptance tests, it is positioned accordingly on the
upper right part of the verification branch.

6. Overview of MoDriVal tool experimentations

Let us give a quick overview of the MoDriVal project
case studies that put the tools at work. Case studies
were relevant to avionics software, critical control
software for nuclear power plants and automotive
embedded software.
AGATHA was experimented in two different ways by
EDF and Thales Research & Technologies.
EDF aimed at analyzing system requirements
through UML modeling and test case generation
while Thales R&T attempted to set up a process
where software design tests were derived in a semi-
automatic way from AGATHA-generated
requirement tests.
OSMOSE was evaluated by EDF and Hispano-
Suiza. EDF expects OSMOSE to help facing
hardware obsolescence and binary porting issues
while Hispano-Suiza is concerned with DO-178
mandatory tests of optimized binary codes when
source traceability is broken by compiler
optimization.
Dassault Aviation, Hispano Suiza and MBDA used
FLUCTUAT on many different mathematical
algorithms to assess the functional impact of
rounding errors, to prove stability, robustness or
convergence properties. Understanding the
foundational background of the tool and defining a
methodology to tune the numerous parameters of
the abstract interpreter were unanimously
recognized as critical issues.
CS experienced sALLUSTe on automotive
embedded software. Dassault Aviation, Hispano
Suiza and MBDA are currently assessing sALLUSTe
on avionics SCADE models.

7. Commercial tool landscape

The landscape of commercial test environments has
experienced some significant changes recently.
There is a major trend towards integrated
environment that span over the various categories of
test activities presented in Figure 1 at the beginning
of the paper. These environment provide numerous
tools that allow designers to perform a whole-
program inter-procedural analysis on C/C++/Java

code and to identify complex programming bugs that
can result in system crashes, memory corruption,
and other serious problems. As examples of such
integrated test environment, we have selected the
following tools:

• Klocwork, a set of leading static analysis
tools to “cure” defects and security
vulnerabilities in C/C++/Java code. Klocwork
includes Metrics and Trending, Project
Central, Architectural Analysis, Integration
with Eclipse IDE…

• Cantata++ which performs code coverage
plus unit and integration testing at a
reasonable cost

• LDRA, a range of cutting edge, sophisticated
software analysis tools such as static
analysis and code coverage tools for C,
C++, C#, Ada83/Ada95 and assembler.
Static analysis features include code
visualisation, programming standards
checking and complexity metrics. Code
coverage is available for different coverage
levels including MC/DC level A for the D0-
178B standard.

• Mercury’s TestDirector 7i which incorporates
all aspects of the testing: requirements
management, planning, scheduling, running
tests, defect tracking... into a single browser-
based application.

The Figure 5b below presents how these commercial
tools are positioned on the V-model of testing.

Figure 5b: Mapping of commercial tools on the V-
model of testing

The well-known software editor The Mathworks
follows also the trend towards tool integration by
providing static analysis capabilities (based on
Polyspace) for the software code generated from the
Matlab/Simulink models. Several test management
environments are now available : OptimalTest, TSSI,
TAU Tester, TT-Workbench, OpenTTCN Tester (the
last three ones being specialized for TTCN-3 test
language). Compiler / debugger vendors provide
also integrated test environment that include run-

 Page 8/9

time error analysis, stack analysis, code coverage
analysis and of course in-circuit debugging or
emulation (Greenhills, iSystem, Lauterbach, etc.).

8. Conclusion

How could the MoDriVal tools fit in the landscape of
commercial tools ? This is both a question of
functionality and technical maturity.
TTS is a tool whose maturity is currently high
enough to allow Trialog to integrate it into industrial
testbenches. The TTCN-3 version of TTS developed
during the MoDriVal project provide functionalities
similar to OpenTTCN and TT-Workbench tools. A
way for TTS/TTCN-3 to reach the market would be
to integrate it as a plug-in to existing integrated test
environment in order to support the future
conformance testing of AUTOSAR software
components. Since TTS/TTCN-3 was developed as
an Eclipse plug-in, the integration would be
facilitated for Eclipse-based environment.
All other MoDriVal tools presented in this paper are
still research prototypes. The integration of these
tools as plug-in to Eclipse-based environment is also
a possible way to the market. These tools however
still need to maturate.
Penjili and FLUCTUAT may be compared to
equivalent static analysis tools provided by
Klockwork and LDRA environment. No commercial
tools mentioned above match the capabilities of
MTC Solver and sALLUSTe yet. Similarly
commercial products providing binary code reverse
engineering capabilities exist, but to our best
knowledge coverage-driven test case generation at
binary code level is a distinctive feature of OSMOSE.

9. References

[1] M. Nakhlé: "Document de Travail CS, Projet Usine
Logicielle/SP MoDrival, Tâche 2.1/MOD-CS-1 (Le
besoin, l’état de l’art en compression /
décompression de vecteurs de tests, tests et
réduction de modèles)". 25 juin 2007, pp. 35-83.

[2] S. Xanthakis, P. Régnier, C. Karapoulios: “Le test
des logiciels”. Hermès – Lavoisier, Novembre 1999.

[3] S. -D. Gouraud, A. Denise, B. Marre: "A new way of
automating statistical testing methods", Sixteenth
IEEE Int. Conf. on Automated Software
Engineering (ASE 2001), Coronado Island,
Californie, pages 5--12. IEEE Computer Society
Press, novembre 2001.

[4] B. Marre and A. Arnould: "Test sequences
generation from lustre descriptions: Gatel",
Fifteenth IEEE Int. Conf. on Automated Software
Engineering (ASE 2000), Grenoble , pages 229--
237. IEEE Computer Society Press, septembre
2000.

[5] Céline Bigot, Alain Faivre, Jean-Pierre Gallois,
Arnault Lapitre, David Lugato, Jean-Yves Pierron,
Nicolas Rapin: "Automatic Test Generation with
AGATHA". TACAS 2003: 591-596

10. Main Links

10.1 MoDriVal
• Usine Logicielle: http://www.usine-logicielle.org/
• AGATHA, FLUCTUAT, OSMOSE:
http://www-list.cea.fr/
• MTC Solver: http://www.esterel-technologies.com/
• Penjili: http://www.eads.com/
• sALLUSTe: http://www.lri.fr/asspro/
• TTS: http://www.trialog.com/

10.2 TTCN standard
• TTCN-3 standard: http://www.ttcn-3.org/

10.3 Commercial test environments
The links in this section do not imply the endorsement of
any of these tools by the authors. Neither does the order
of the presentation reflect any preferences.

• Cantata++: http://www.ipl.com/
• Klocwork: http://www.klocwork.com/
• LDRA: http://www.ldra.com/
• OpenTTCN: http://www.openttcn.com/
• OptimalTest: http://www.optimaltest.com/
• Polyspace:

http://www.mathworks.com/products/polyspace/
• TAU Tester: http://www.telelogic.com/
• TestDirector:

https://h10078.www1.hp.com/cda/hpms/display/m
ain/hpms_home.jsp?zn=bto&cp=1_4011_100__

• TSSI: http://www.tessi.com/Products.aspx?id=19
• TTWorkbench: http://www.testingtech.de/

 Page 9/9

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Bigot:C=eacute=line.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/f/Faivre:Alain.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gallois:Jean=Pierre.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Lapitre:Arnault.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Lugato:David.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/r/Rapin:Nicolas.html
http://www.informatik.uni-trier.de/~ley/db/conf/tacas/tacas2003.html#BigotFGLLPR03
http://www.usine-logicielle.org/
http://www-list.cea.fr/
http://www.esterel-technologies.com/
http://www.eads.com/
http://www.lri.fr/asspro/
http://www.trialog.com/
http://www.ttcn-3.org/
http://www.ipl.com/
http://www.klocwork.com/
http://www.ldra.com/
http://www.openttcn.com/
http://www.optimaltest.com/
http://www.mathworks.com/products/polyspace/
http://www.telelogic.com/
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_home.jsp?zn=bto&cp=1_4011_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_home.jsp?zn=bto&cp=1_4011_100__
http://www.tessi.com/Products.aspx?id=19
http://www.testingtech.de/

