François Xavier Dormoy

SCADE 6 A Model Based Solution For Safety Critical Software Development

Keywords: Model-driven-design, formal-methods, SCADE, safety-critical, Synchronous Languages

SCADE Version 6 is both a language and a Safety Critical Development Environment that brings a new Unified Modeling Style that provides a seamless and safe flow from system to software engineering. This flow relies on strong foundations where safety is considered at each step that allows engineers to focus on key issues whilst removing a significant part of the burden of the development process. SCADE6 is a model based tool that has been designed to cope with engineers needs together with safety constraints expressed in several standards such as D0178-B, EN50128 or IEC 61508. This paper presents SCADE version 6 and points out the key factors we have addressed during the language definition, modelling environment and code generation development in order to cope with a safety critical development flow.

Introduction

1.1 Safety Critical Software challenges Avionic, railway and automotive systems have become very complex to develop without the assistance of a design environment tool that eases the engineering process. Complex applications such as cockpit display systems, guidance systems, engine controls, autopilots or interlocking systems require a seamless and safe transition from abstraction to implementation. Model-Based Design delivers those benefits that include:

• Addressing the complexities inherent in control systems designs, • Starting software design before physical systems are available, • Verifying the system prior to the implementation, so that errors in the specification of requirements can be detected and eliminated earlier in the development cycle,

• Creating a structure for software reuse that allows a reliable and cost effective upgrade path for established designs.

Overview of SCADE SCADE (Safety Critical Application Development

Environment) is both a language and a toolset that was specifically developed to describe and implement safety critical applications. SCADE is the result of a collaboration between Verimag, Aérospatiale (now Airbus), Merlin Gerin (now Schneider Electric) and Verilog. It relies on the theory of synchronous languages for real-time applications and, in particular, on the Lustre and Esterel languages as described in [START_REF] Halbwachs | Synchronous Programming of Reactive Systems[END_REF],[9] and [START_REF] Berry | The Foundations of Esterel[END_REF], [START_REF] André | Representation and Analysis of Reactive Behaviors: A Synchronous Approach[END_REF].

The synchronous approach is a cycle-based execution model of SCADE. This is a direct computer implementation of the ubiquitous samplingactuating model of control engineering. It consists of performing a continuous loop of the form illustrated in Figure 1 below. In this loop, there is a strict alternation between environment actions and application actions. Once the input sensors are read, the cyclic function starts computing the cycle outputs. During that time, the cyclic function is blind to environment changes. When the outputs are ready, or at a given time determined by a clock, the output values are fed back to the environment, and the program waits for the start of the next cycle. SCADE addresses the applicative part of hard realtime software, as illustrated in Figure 2. This is usually the most complex and changeable aspect of software, containing complex decision logic, filters, and control laws. It typically represents 60% to 80% of the software embedded in an airborne computer.

Figure 2: SCADE addresses the applicative part of software SCADE represents a bridge between Control Engineering and Software Engineering because it provides a common, rigorous graphical and textual language for both communities that reflect control engineering constructs:

• Its data flow structure fits the block diagram approach.

• Its time operators fit the z operator of control engineering. For instance, z-1, the operator of control engineering (meaning a unit delay), has an equivalent operator called "pre" in SCADE. SCADE is now used for critical control software in aircraft, helicopters, nuclear power plants and railway switching systems. SCADE modelling capabilities cover designing, verifying and optimising complex algorithms, control intensive applications, and graphic interfaces. Furthermore, the SCADE automatic Code Generator has been qualified to produce a portion of the evidence mandated by certification authorities, supporting a safety-critical process in a cost effective manner.

SCADE 6: Unified Modelling Style

SCADE Version 6 is a new version of the SCADE language that keeps the foundation (formal and synchronous execution, strong typing, explicit initialization of data flows, explicit management of time, simple expression of concurrency) and extends the modelling capabilities towards several directions:

• Data flow extensions that improve the control part (reset, activate, merge)

• Control features expressed in terms of statemachines

• Safe loop features implemented using higher order iterators

• Other modelling features that improve the connection to the environment (Sensor) and ease the reusability with a better encapsulation of data (Package) and polymorphism

Data flow extension toward control

Work performed [START_REF] Colaço | A Conservative Extension of Synchronous Data-flow with State Machines[END_REF] started with defining an extension of the data flow part with several constructs that will be the support for state machine extension.

restart is a higher-order operator that allows to retrieve the initial state. This construct is very useful in dataflow model in order to implement reset feature without modelling this with inputs, wires and if/switch constructs.

The syntax of a restart instantiation is:

(restart N every c)(e). The second extension is about introducing a merge operator that builds a flow on top of complementary clocked flows. merge takes, as first argument, a clock identifier h used to select one of its other inputs. This operator evaluates first the value of its clock expression. Depending on this value, the corresponding expression is defined at the current cycle and its value is the result of its evaluation as shown in figure 9. The third main extension is about improving the imperative features in Data flow. In SCADE previous versions, when and mainly condact were the only way to control computation. In SCADE version 6, the control feature is extended toward 2 directions: Control activation of an operator: activate on operator is a higher order constructs providing 3 usages:

• activate <N> every <clock_expr>: N is activated when clock expression is true. The result is clocked in sync with <clock_expr>. This is equivalent to : N((e1, ... ,en) when c);

• activate <N> every <expr1> default <expr2>: This construct is a variant of the previous one without memorization of the result of N when <expr1> is false. N is activated when <expr1> is true.

• activate <N> every <expr1> initial default <expr2>: This construct is equivalent to condact in the previous SCADE versions. N is activated when expr1 is true. When expr1 is false, the result is initialized with <expr2> and after one computation of N, the result sustains the last result of N. Control activation of a set of equations: activate on a set of equations is now possible in SCADE 6 in order to make conditional computations. This is possible through Boolean conditions (activate if) or through enumerated conditions (activate when match). These constructs are called clocked_blocks.

Example of activate initial default:

• activate [<id>] if <expr> then <equation_set1> else <equation_set2>: if <expr> is true <equation_set1> is computed, this set of equations could contain other clocked block.

• When the application is data-flow dominated (e.g., regulation systems), it will naturally go for block diagram formalisms as it is provided in SCADE for years. On the contrary, when the application is more control dominated (e.g., cockpit displays), imperative or state-machine based formalisms as the ones provided by StateCharts [10], the Sync-Chart [START_REF] André | Representation and Analysis of Reactive Behaviors: A Synchronous Approach[END_REF] or Esterel [START_REF] Berry | The Foundations of Esterel[END_REF], [START_REF] Berry | The Esterel synchronous[END_REF] will certainly be better choices. Nonetheless, real systems rarely fall into one category and are often a mix of both styles.

The extension provided in SCADE 6 allows to mix both styles in a conservative way [START_REF] Colaço | A Conservative Extension of Synchronous Data-flow with State Machines[END_REF], [START_REF] Colaço | Mixing Signals and Modes in Synchronous Data-flow Systems[END_REF] meaning that all new state-machine features are translated (compiled) to basic clocked data flow. In that way the state-machines bring useful syntactical facilities but do not break the data-flow principles.

Let us explain the main principle through an example. We choose the same example as in [11] that illustrates how a data can be computed in several ways according to modes. In textual : A state can be flagged as final by using the keyword final before the keyword state. Any state can be final (even the initial one) and a State Machine is not limited to only one final state.

Given a state S containing several sub-State Machines running in parallel, if at the next cycle all these sub-State Machines are in a state marked as final, then a synchronization transition can be fired from state S. The target state becomes active the cycle after but the actions on the transition are activated within the cycle (as for weak transitions).

Example:

The example illustrated bellow (Figure 24) shows a state-machine that detects two events (A and B) independently of the way it occurs, A before B or B before A or A and B simultaneously. When both events are detected, F_A and F_B are active then the synchronisation transition is fired and OSig signal is emitted. R is a preemption transition that resets the state-machine. In textual :

node The flow state_sel carries the notion of selected state, state_act, the notion of activated state, and state_next, the notion of the next cycle's selected state. The equation defining state_act uses state_sel and the strong transition part of the automaton's states. The equation defining state_next uses state_act and the body and the weak part of the automaton. These variables belong to an enumerated type that represents the states of the automaton (one enumerator per state). Since only one transition must be fired during a cycle, the knowledge of already fired strong transition in the selected state must be used before firing a weak transition in the active one. A type enumerating all possible transitions is used therefore. Repeating a computation for large array data or computing vectors or matrices is very common in embedded systems. The challenge for a modeling language addressing safety critical systems is to provide safe loop constructs. The principle in SCADE version 6 is to provide several predefined iterators scheme. We present in this paper the main ones.

Iterators are again higher order operators with the following general syntactic form: The fold operator also allows applying a node successively to array arguments. But contrary to map operator, it does not build an array of the same size as its arguments: it provides an element belonging to the basic type of the arrays (called accumulator) which is initialized in the called parameter then passed from one array element to the next one. The result is the accumulator provided by the N applyed to the last element.

Example Sum of the elements of an array: Other iterators exist such as mapfold which is a combination of map and fold, others iterators allow to get access to the index of the computation (mapi, foldi, …).

Other modelling features

Assume and guarantee:

Design-by-contract is a clean and safe software engineering principle. A contract is a specification of the condition of use and the expectations of a function (or a node).

This contract is made of a pair of observers.

• one corresponding to condition of use: assume,

• one corresponding to ensured properties: guarantee.

Assume and guarantee do not impact the semantic of the model, they are part of the model for proof purpose.

Sensor:

A sensor defines a global flow that can be read anywhere by the model, and is a model input. A sensor is semantically very close to a constant but with the ability to be updated between each cycle. A sensor should remain stable during all the cycle computation.

Package:

The package (or module or namespace) mechanism is a software engineering feature provided by many program languages. It makes the design and the usage of libraries easier.

A package definition is a block of declarations starting with the keyword package and the name of the package and ended with the keyword end followed by a semicolon. package Integer type T = int ; const ZERO : T = 0 ; function plus (x,y: T) returns (z: T) z = x+y; end; Polymorphism: SCADE provides a way to define generic nodes, also called polymorphic nodes. Genericity is expressed by using type variables written as quoted ident. The quoted ident 'T represents a type variable: a, b and c can be of any type. The only constraint they have to fulfil is that they belong to the same type. If more than one type variable is required in a node profile, one has to use a different quoted ident.

Safety apply to SCADE 6 itself

3.1 Framework safety principles SCADE 6 is a model based framework made of several tool addressing Safety critical systems. In this section, we address some of the key points that contribute to the safety of the complete tool chain. The question we want to answer here is: "what are the characteristics that can make a tool chain suitable in safety-critical context?" First, the language (or the formalism) is one major point. In the first part of the paper we have presented it and let's recall the main characteristics:

• formal, deterministic and documented • graphical and textual (with a mapping between both)

• simple and powerful (the tradeoff is very difficult to tune) • precise and concise Derived from these principles: o Causality check Then, once the language is formally defined, the main goal of the approach is to generate code out of the description (model) of the system. Currently the most appropriate approach is the certification approach according to standards like DO-178B and IEC 61508 and EN 50128. In the future, the proof of the correctness of the code generator should be very suitable and for the time being, this approach is only experimented in academics [13]. The code generator takes as input files containing the description of the model according to language concrete syntax. The graphical editor has to generate these files (storage file) with a clear separation between the graphical data and the semantical data. The graphical data should only contain drawing data (positions, size, etc) and shall not impact the semantics. The editing feature is generally out of the scope of the certification but the tool should be intuitive and should avoid source of errors. The constraint to address is to be able during edition to save the model in a correct syntactic form (wrt to language) in order to be able to load it afterward to continue the modeling work. This has a huge impact on all editing principles

Standards

It's important that the same standard requested by the application is fulfilled by the tool. For that reason, the Code generator has been developed according to standards such as DO178-B, EN 50128, IEC 61508. Several other tools like MTC (Model Test Coverage), CVK (Compiler verification Kit) and the Reporter has been qualified according to DO178-B as verification tool.

3.3 Design and developments SCADE 6 has been used to model and code some complex part of the SCADE 6 simulator. The simulator needs to handle several modes with a complex logic containing pre-emption. Figure 23

Acknowledgement

My sincere thanks to following people:

• Jean Louis Colaço and Bruno Pagano: Authors of SCADE 6 language

• G. Berry, N. Halbwachs P. Caspi : SCADE 6 Synchronous foundations with Lustre and Esterel

• SCADE 6 team: The people that make it real!

Figure 1 :

 1 Figure 1: The cycle-based execution model of SCADE Suite

Figure 3 Figure 4 :

 34 Figure 3: Count Node

Figure 7 :Figure 8 :

 78 Figure 7: Sample Node

FigureFigure 11

 11 Figure 9: merge semantics

Figure 12 :

 12 Figure 12: two_instance node behavior

 Figure 13: node two_instance_2

 Figure 15: node two_instance_3

Figure 16 :

 16 Figure 16: two_instance_3 node behaviour

Figure 17 :

 17 Figure 17: two_instance_4 node behaviour

Figure 18 :

 18 Figure 18: Node UpDown

 Figure 24: Node ABRO

Figure

 Figure 20: Node N

 Figure 21: Node Sum_Scalar

 Figure 22: Node Array_sum s = Sum_scalar (Sum_scalar (sum_scalar (0, t[0]) , t[1]) , t [2]) ;

 node sample_generic (a,b: 'T) returns (c: 'T) var flag : bool ; let flag = true -> not (pre flag) ; c = if flag then a else b ; tel

3 (

 3 Figure 23: SCADE 6 simulator mode state-machine <SimulatorStateMachine>