
HAL Id: insu-02270108
https://insu.hal.science/insu-02270108

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SCADE 6 A Model Based Solution For Safety Critical
Software Development

François Xavier Dormoy

To cite this version:
François Xavier Dormoy. SCADE 6 A Model Based Solution For Safety Critical Software Development.
Embedded Real Time Software and Systems (ERTS2008), Jan 2008, toulouse, France. �insu-02270108�

https://insu.hal.science/insu-02270108
https://hal.archives-ouvertes.fr

 Page 1/9

SCADE 6 A Model Based Solution For Safety Critical Software
Development

François Xavier Dormoy1

1: Esterel Technologies, Park Avenue, 9 rue Michel Labrousse, 31100 Toulouse, France

Abstract: SCADE Version 6 is both a language and
a Safety Critical Development Environment that
brings a new Unified Modeling Style that provides a
seamless and safe flow from system to software
engineering. This flow relies on strong foundations
where safety is considered at each step that allows
engineers to focus on key issues whilst removing a
significant part of the burden of the development
process.

SCADE6 is a model based tool that has been
designed to cope with engineers needs together with
safety constraints expressed in several standards
such as D0178-B, EN50128 or IEC 61508.

This paper presents SCADE version 6 and points out
the key factors we have addressed during the
language definition, modelling environment and code
generation development in order to cope with a
safety critical development flow.

Keywords: Model-driven-design, formal-methods,
SCADE, safety-critical, Synchronous Languages.

1. Introduction

1.1 Safety Critical Software challenges

Avionic, railway and automotive systems have
become very complex to develop without the
assistance of a design environment tool that eases
the engineering process.
Complex applications such as cockpit display
systems, guidance systems, engine controls,
autopilots or interlocking systems require a seamless
and safe transition from abstraction to
implementation.
Model-Based Design delivers those benefits that
include:

• Addressing the complexities inherent in
control systems designs,

• Starting software design before physical
systems are available,

• Verifying the system prior to the
implementation, so that errors in the
specification of requirements can be
detected and eliminated earlier in the
development cycle,

• Creating a structure for software reuse that
allows a reliable and cost effective upgrade
path for established designs.

1.2 Overview of SCADE

SCADE (Safety Critical Application Development
Environment) is both a language and a toolset that
was specifically developed to describe and
implement safety critical applications. SCADE is the
result of a collaboration between Verimag,
Aérospatiale (now Airbus), Merlin Gerin (now
Schneider Electric) and Verilog.
It relies on the theory of synchronous languages for
real-time applications and, in particular, on the
Lustre and Esterel languages as described in [1],[9]
and [2],[7].
The synchronous approach is a cycle-based
execution model of SCADE. This is a direct
computer implementation of the ubiquitous sampling-
actuating model of control engineering. It consists of
performing a continuous loop of the form illustrated
in Figure 1 below. In this loop, there is a strict
alternation between environment actions and
application actions. Once the input sensors are read,
the cyclic function starts computing the cycle
outputs. During that time, the cyclic function is blind
to environment changes. When the outputs are
ready, or at a given time determined by a clock, the
output values are fed back to the environment, and
the program waits for the start of the next cycle.

Figure 1: The cycle-based execution model of
SCADE Suite

SCADE addresses the applicative part of hard real-
time software, as illustrated in Figure 2.
This is usually the most complex and changeable
aspect of software, containing complex decision

 Page 2/9

logic, filters, and control laws. It typically represents
60% to 80% of the software embedded in an
airborne computer.

Figure 2: SCADE addresses the applicative part of

software

SCADE represents a bridge between Control
Engineering and Software Engineering because it
provides a common, rigorous graphical and textual
language for both communities that reflect control
engineering constructs:
• Its data flow structure fits the block diagram
approach.
• Its time operators fit the z operator of control
engineering. For instance, z-1, the operator of
control engineering (meaning a unit delay), has an
equivalent operator called “pre” in SCADE.
SCADE is now used for critical control software in
aircraft, helicopters, nuclear power plants and
railway switching systems.
SCADE modelling capabilities cover designing,
verifying and optimising complex algorithms, control
intensive applications, and graphic interfaces.
Furthermore, the SCADE automatic Code Generator
has been qualified to produce a portion of the
evidence mandated by certification authorities,
supporting a safety-critical process in a cost effective
manner.

2. SCADE 6: Unified Modelling Style

SCADE Version 6 is a new version of the SCADE
language that keeps the foundation (formal and
synchronous execution, strong typing, explicit
initialization of data flows, explicit management of
time, simple expression of concurrency) and extends
the modelling capabilities towards several directions:

• Data flow extensions that improve the
control part (reset, activate, merge)

• Control features expressed in terms of state-
machines

• Safe loop features implemented using higher
order iterators

• Other modelling features that improve the
connection to the environment (Sensor) and
ease the reusability with a better
encapsulation of data (Package) and
polymorphism

2.1 Data flow extension toward control

Work performed [5] started with defining an
extension of the data flow part with several
constructs that will be the support for state machine
extension.

restart is a higher-order operator that allows to
retrieve the initial state. This construct is very useful
in dataflow model in order to implement reset feature
without modelling this with inputs, wires and if/switch
constructs.

The syntax of a restart instantiation is:

(restart N every c)(e).

Example:

1

PRE

0

C

c = 0 -> (1 + pre c);

Node : Count

Figure 3: Count Node

1

Count

r

C

C = (restart count every r)();

Node Resettable_Count

Figure 4: Resettable_Count Node

This primitive affects flow initializations in the
instantiated node by making them returning their first
argument as if it were the first cycle. Example in
figure 6,7 and the behaviour shown in figure 8
illustrates this purpose.

 Page 3/9

Examples:

PRE

0

sum

e

sum = 0 -> e + pre sum;

Node Sigma

Figure 6: Sigma Node

0

10

PRE

s
1

Sigma

1

Count

s = (restart sigma every (0 -> pre s >= max))(count ());

Node Sample

Figure 7: Sample Node

Figure 8: Sample node behaviour

The second extension is about introducing a merge
operator that builds a flow on top of complementary
clocked flows. merge takes, as first argument, a
clock identifier h used to select one of its other
inputs.
This operator evaluates first the value of its clock
expression. Depending on this value, the
corresponding expression is defined at the current
cycle and its value is the result of its evaluation as
shown in figure 9.

Figure 9: merge semantics

Examples:

Figure 10 represents an Integrator node that
generates 1 outputs: s, the integator output.

PRE

0

se

s = e + (0 -> pre s);

Node integr

Figure 10: Integr Node

Figure 11 represents a two_instance node that
generates 2 outputs: s, the integator output and t a
merge output.

0

WHEN

h

PRE

e WHEN

h 1

integr
t

h

e

2

integr s

Node two_instances

s = integr (e);
t = merge (h; integr (e when h); (0 -> pre t) when not h);

v 3

v 2v 1

Figure 11: two_instance Node

Figure 12 illustrates the behaviour of the merge.

Figure 12: two_instance node behavior

The third main extension is about improving the
imperative features in Data flow. In SCADE previous
versions, when and mainly condact were the only
way to control computation. In SCADE version 6, the
control feature is extended toward 2 directions:

Control activation of an operator: activate on
operator is a higher order constructs providing 3
usages:

• activate <N> every <clock_expr>: N is activated
when clock expression is true. The result is
clocked in sync with <clock_expr>. This is
equivalent to : N((e1, ... ,en) when c);

 Page 4/9

• activate <N> every <expr1> default <expr2>:
This construct is a variant of the previous one
without memorization of the result of N when
<expr1> is false. N is activated when <expr1> is
true.

• activate <N> every <expr1> initial default
<expr2>: This construct is equivalent to condact
in the previous SCADE versions. N is activated
when expr1 is true. When expr1 is false, the
result is initialized with <expr2> and after one
computation of N, the result sustains the last
result of N.

Example of activate initial default:

0

e

h

2

integr
t

s

1

integre

s = integr (e);
t = (activate integr every h initial default 0) (e);

Node two_instances_2

Figure 13: node two_instance_2

Figure 14: two_instance_2 node behaviour

This node behaves as the two_instance node using
merge.

Example of activate default:

0

e

h

3

integr
t

s

1

integre

Node two_instances_3

s = integr (e);
t = (activate integr every h default 0) (e);

Figure 15: node two_instance_3

Figure 16: two_instance_3 node behaviour

Control activation of a set of equations: activate
on a set of equations is now possible in SCADE 6 in
order to make conditional computations. This is
possible through Boolean conditions (activate if) or
through enumerated conditions (activate when
match). These constructs are called clocked_blocks.

• activate [<id>] if <expr> then <equation_set1>
else <equation_set2>: if <expr> is true
<equation_set1> is computed, this set of
equations could contain other clocked block.

• activate [<id>] when <expr> match {{<pattern> :
<equation_set>}}+

Example of activate if:
node two_instances_4(e:int ; h:bool)
returns (s:int ; t:int last = 0)
let
 s = integr (e);
 activate if h
 then t = integr (e);
 else t = last ’t;
 returns t;
tel

Note : last ‘t is the notation to get the last value of t in
the scope of its declaration. pre is the notation to get
the previous value in the scope of the block.

Figure 17: two_instance_4 node behaviour

2.1 State-machine

When the application is data-flow dominated (e.g.,
regulation systems), it will naturally go for block
diagram formalisms as it is provided in SCADE for
years. On the contrary, when the application is more
control dominated (e.g., cockpit displays), imperative
or state-machine based formalisms as the ones
provided by StateCharts [10], the Sync-Chart [7] or
Esterel [2], [8] will certainly be better choices.
Nonetheless, real systems rarely fall into one
category and are often a mix of both styles.

The extension provided in SCADE 6 allows to mix
both styles in a conservative way [5],[6] meaning that
all new state-machine features are translated
(compiled) to basic clocked data flow. In that way the

 Page 5/9

state-machines bring useful syntactical facilities but
do not break the data-flow principles.

Let us explain the main principle through an
example. We choose the same example as in [11]
that illustrates how a data can be computed in
several ways according to modes.

<UD>

B

1

 last 'x x

A

 last 'x

1

x

1

x >= 5

1

x <= -5

In textual :

Figure 18: Node UpDown

Figure 19: UpDown node behaviour

The initial state is A, in this state x is computed
according to x = last’x + 1, last’x is the value
of x in the previous cycle in the complete state-
machine. When x >= 5 then the cycle after (weak
transition) state B is activated. x = last’x-1 is
then computed until x<=-5.

State transitions:

SCADE offers three different kinds of state
transitions: strong, weak and synchronisation
transition. The two first ones correspond to common
ways to fire a transition in control models. The last
one allows synchronizing parallel state-machines.

In SCADE, a State Machine has one and only one
active state per cycle.

This property preserves the unicity of the definition of
a flow during a cycle.

With strong preemption transition, when the
transition is fired, the target state becomes active
within the cycle.

Example:
<ev en_odd_c>

C

3 o

ODD

2 o

EVEN

1 o

1

a

2

b

1

true
1true

Figure 20: Node UpDown

Figure 21: even_odd_c node behaviour

With weak transition, when the transition is fired, the
target state becomes active the cycle after but the
actions on transition are activated within the cycle.

Example:
<ev en_times_delay ed>

ODD

i

-2

o

EVEN

1

i

o

1

c

1

c

node even_times_delayed (c: bool; i : int) returns (o: int)
let
 automaton
 initial state EVEN
 let
 o = i + 1 ;
 tel
 until if c restart ODD ;
 state ODD
 let
 o = -2 * i ;
 tel
 until if c restart EVEN ;
 returns o;
tel

Figure 22: Node even_time_delayed

Figure 23: even_time_delayed node behavior

 Page 6/9

A state can be flagged as final by using the keyword
final before the keyword state. Any state can be final
(even the initial one) and a State Machine is not
limited to only one final state.

Given a state S containing several sub-State
Machines running in parallel, if at the next cycle all
these sub-State Machines are in a state marked as
final, then a synchronization transition can be fired
from state S. The target state becomes active the
cycle after but the actions on the transition are
activated within the cycle (as for weak transitions).

Example:

The example illustrated bellow (Figure 24) shows a
state-machine that detects two events (A and B)
independently of the way it occurs, A before B or B
before A or A and B simultaneously. When both
events are detected, F_A and F_B are active then
the synchronisation transition is fired and OSig
signal is emitted. R is a preemption transition that
resets the state-machine.

OSig O

<ABRO>

ABO

<SM2>

O

AB

F_B

B

<A>

F_A

A

1
A

1
B

1

R

1

emit 'OSig;

Figure 24: Node ABRO

The state-machine is translated by the code
generator to clocked blocks as shown in the example
below.

<SM1>

ST1

-2

i

o

ST0

1

i o

1

c0

1

c1

In textual :

node N (c0 : bool; c1 : bool; i : int)
returns (o : int)
 let
 automaton SM1
 initial state ST0
 unless if c0 restart ST1;
 o = i + 1;
 state ST1
 o = -2 * i;
 until if c1 restart ST0 ;
 returns o;
 tel

Figure 20: Node N

The flow state_sel carries the notion of selected
state, state_act, the notion of activated state, and
state_next, the notion of the next cycle’s selected
state. The equation defining state_act uses state_sel
and the strong transition part of the automaton’s
states. The equation defining state_next uses
state_act and the body and the weak part of the
automaton. These variables belong to an
enumerated type that represents the states of the
automaton (one enumerator per state). Since only
one transition must be fired during a cycle, the
knowledge of already fired strong transition in the
selected state must be used before firing a weak
transition in the active one. A type enumerating all
possible transitions is used therefore.
type
A_states = {ST0 , ST1 };
A_trans = {no_trans,ST0_strong_1,
ST1_weak_1 };
Node N_Bis2(c0 : bool; c1 : bool; i :
int)
returns (o : int)
var
 state_sel : A_states;
 state_act : A_states;
 state_next : A_states;
 fired_strong : A_trans;
let
 state_sel=ST0 -> pre state_next;
 activate A1 when state_sel match
 |ST0 :
 let
 state_act =if c0 then ST1 else ST0;
 fired_strong =if c0 then S0_strong
 else no_trans ;
 tel
 |ST1 :
 let
 state_act = ST1;
 fired_strong = no_trans ;
 tel
 returns state_act , fired_strong;
 activate A2 when state_act match

 Page 7/9

 |ST0 :
 let
 o = i + 1;
 state_next = ST0;
 tel
 |ST1 :
 let
 o = -2 * i;
 activate if fired_strong <>
 no_trans
 then state_next = ST1;
 else state_next=if c1 then
 ST0 else ST1 ;
 returns ..;
 tel
 returns o, state_next ;
tel

2.3 Safe loop (iterators)

Repeating a computation for large array data or
computing vectors or matrices is very common in
embedded systems. The challenge for a modeling
language addressing safety critical systems is to
provide safe loop constructs. The principle in
SCADE version 6 is to provide several predefined
iterators scheme. We present in this paper the main
ones.

Iterators are again higher order operators with the
following general syntactic form:

X = (iterator Node <<dimension >>) (arguments) ;

Map:

Given a node N, that requires k arguments, and k
arrays of size d. Let suppose now that the expected
result is a new array of size d built out of the
application of node N to the successive elements of
these arrays, as follows:

X = [N(x[0] ,... ,z [0]) , N(x[1] ,... ,z [1]) , ... , N(x[d -1]
,... ,z[d -1])] ;

This expanded form can be summarized using the
map iterator applied on node N:

X = (map N <<d > >)(x ,... ,z) ;

Example:

Pointwise sum of two arrays can be expressed in the
following way:

b

a
c

Node Sum_scalar

c = a + b

Figure 21: Node Sum_Scalar

v

u

t
1

Sum_scalar

map<<3>>

Node sum_array

Figure 21: Node Sum_array

Fold:

The fold operator also allows applying a node
successively to array arguments. But contrary to
map operator, it does not build an array of the same
size as its arguments: it provides an element
belonging to the basic type of the arrays (called
accumulator) which is initialized in the called
parameter then passed from one array element to
the next one. The result is the accumulator provided
by the N applyed to the last element.

Example Sum of the elements of an array:

s
0

1

Sum_scalar

fold<<3>>

a
t

Node Array_sum

Figure 22: Node Array_sum

s = Sum_scalar (Sum_scalar (sum_scalar (0, t[0]) ,
t[1]) , t [2]) ;

Other iterators exist such as mapfold which is a
combination of map and fold, others iterators allow to
get access to the index of the computation (mapi,
foldi, …).

2.3 Other modelling features

Assume and guarantee:

Design-by-contract is a clean and safe software
engineering principle. A contract is a specification of
the condition of use and the expectations of a
function (or a node).

This contract is made of a pair of observers.

• one corresponding to condition of use: assume,

• one corresponding to ensured properties:
guarantee.

Assume and guarantee do not impact the semantic
of the model, they are part of the model for proof
purpose.

 Page 8/9

Sensor:

A sensor defines a global flow that can be read
anywhere by the model, and is a model input. A
sensor is semantically very close to a constant but
with the ability to be updated between each cycle. A
sensor should remain stable during all the cycle
computation.

Package:
The package (or module or namespace) mechanism
is a software engineering feature provided by many
program languages. It makes the design and the
usage of libraries easier.
A package definition is a block of declarations
starting with the keyword package and the name of
the package and ended with the keyword end
followed by a semicolon.
package Integer
type T = int ;
const ZERO : T = 0 ;
function plus (x,y: T) returns (z: T)
 z = x+y;
end;

Polymorphism:
SCADE provides a way to define generic nodes, also
called polymorphic nodes. Genericity is expressed
by using type variables written as quoted ident.
node sample_generic (a,b: ’T)
returns (c: ’T)
var
flag : bool ;
 let
 flag = true -> not (pre flag) ;
 c = if flag then a else b ;
 tel
The quoted ident ’T represents a type variable: a, b
and c can be of any type. The only constraint they
have to fulfil is that they belong to the same type. If
more than one type variable is required in a node
profile, one has to use a different quoted ident.

3. Safety apply to SCADE 6 itself

3.1 Framework safety principles

SCADE 6 is a model based framework made of
several tool addressing Safety critical systems. In
this section, we address some of the key points that
contribute to the safety of the complete tool chain.
The question we want to answer here is: “what are
the characteristics that can make a tool chain
suitable in safety-critical context?”
First, the language (or the formalism) is one major
point. In the first part of the paper we have presented
it and let’s recall the main characteristics:
• formal, deterministic and documented
• graphical and textual (with a mapping between

both)

• simple and powerful (the tradeoff is very difficult
to tune)

• precise and concise
Derived from these principles:
• Only one assignment per variable shall be

possible per cycle
• Only one state shall be active per state-machine

and cycle
• Only one transition shall be fired per state-

machine and cycle
• Semantic errors shall be detected at compile

time in order to prevent most of the runtime
errors (except overflow, underflow, div0):

o Type check
o Clock check
o Initialization check
o Causality check

Then, once the language is formally defined, the
main goal of the approach is to generate code out of
the description (model) of the system.
Currently the most appropriate approach is the
certification approach according to standards like
DO-178B and IEC 61508 and EN 50128.
In the future, the proof of the correctness of the code
generator should be very suitable and for the time
being, this approach is only experimented in
academics [13].
The code generator takes as input files containing
the description of the model according to language
concrete syntax.
The graphical editor has to generate these files
(storage file) with a clear separation between the
graphical data and the semantical data. The
graphical data should only contain drawing data
(positions, size, etc) and shall not impact the
semantics.
The editing feature is generally out of the scope of
the certification but the tool should be intuitive and
should avoid source of errors. The constraint to
address is to be able during edition to save the
model in a correct syntactic form (wrt to language) in
order to be able to load it afterward to continue the
modeling work. This has a huge impact on all editing
principles

3.2 Standards

It’s important that the same standard requested by
the application is fulfilled by the tool. For that reason,
the Code generator has been developed according
to standards such as DO178-B, EN 50128, IEC
61508. Several other tools like MTC (Model Test
Coverage), CVK (Compiler verification Kit) and the
Reporter has been qualified according to DO178-B
as verification tool.

 Page 9/9

3.3 Design and developments

SCADE 6 has been used to model and code some
complex part of the SCADE 6 simulator. The
simulator needs to handle several modes with a
complex logic containing pre-emption. Figure 23 and
24 represent the state-machine used for modelling
the logic of simulator. Then, about 1000 lines have
been then generated out of SCADE 6 code
generator and are now part of the product

<ModeStateMachine>

StepMode
DirectMode

ContinuousMode

IdleMode

1

ContinuousAction

2

DirectAction

3

StepAction or
ResetAction

1

 'suspended_signal or
'exception_signal

1

 'suspended_signal or
'exception_signal

1

 'suspended_signal or
'exception_signal

Figure 23: SCADE 6 simulator mode state-machine

<SimulatorStateMachine>

Exit

SimuLoaded

<StateMachine2>

Exception

Running

<PauseMgt>

Pause

Run

<StateMachineRunning>

End

InputSet

OuputReady

InSubNode

Suspended

1

StepAction or
ContinuousAction or

DirectAction

1StepDoneInjection

1OutputGetInjection

1InputSetInjection

2

AbortTickInjection

1
PauseAction

1

ExceptionInjection

2

('end_of _tick and 'pause_asked) or (
'end_of_tick and BreakInjection)

3

('end_of_tick and 'continuous_signal)
or ('end_of _tick and 'direct_signal)

4

 'end_of_tick

1

ResetAction

2

ExitAction

Figure 24: SCADE 6 simulator state-machine

4. Conclusion

SCADE 6 is a major step that addresses safety
critical systems. It has been designed to address
such systems, reducing the gap between the system
engineers and the control engineers. It has been
designed with the same standard as embedded
systems (DO-178B, EN 50128, IEC 61508) and
sometimes with the same tools (SCADE 6 itself).

6. Acknowledgement

My sincere thanks to following people:

• Jean Louis Colaço and Bruno Pagano:
Authors of SCADE 6 language

• G. Berry, N. Halbwachs P. Caspi : SCADE 6
Synchronous foundations with Lustre and
Esterel

• SCADE 6 team: The people that make it
real!

7. References

[1] N. Halbwachs: “Synchronous Programming of
Reactive Systems“, Kluwer, 1993.

[2] G. Berry: “The Foundations of Esterel“, In Proofs,
Languages, Essays in Honour of Robin Milner”,
MIT Press, 2000.

[3] Jean-Louis Colaço and Marc Pouzet: . Clocks as
First Class Abstract Types. In Third International
Conference on Embedded Software (EMSOFT’03),
Philadelphia, Pennsylvania, USA, october 2003.

[4] Jean-Louis Colaço, Alain Girault, Grégoire Hamon,
and Marc Pouzet: Towards a Higher-order
Synchronous Data-flow Language. In ACM Fourth
International Conference on Embedded Software
(EMSOFT’04), Pisa, Italy, september 2004.

 [5] Jean-Louis Colaço, Bruno Pagano, and Marc
Pouzet: A Conservative Extension of Synchronous
Data-flow with State Machines . In ACM
International Conference on Embedded Software
(EMSOFT'05), Jersey city, New Jersey, USA,
September 2005.

[6] Jean-Louis Colaço, Grégoire Hamon, and Marc
Pouzet: Mixing Signals and Modes in Synchronous
Data-flow Systems . In ACM International
Conference on Embedded Software (EMSOFT'06),
Seoul, South Korea, October 2006.

[7] Charles André: Representation and Analysis of
Reactive Behaviors: A Synchronous Approach. In
CESA, Lille, july 1996. IEEE-SMC. Available at:
www-mips.unice.fr/»andre/synccharts.html.

[8] G. Berry and G. Gonthier: The Esterel synchronous
programming language, design, semantics,
implementation. Science of Computer
Programming, 19(2):87–152, 1992

[9] N. Halbwachs, P. Caspi, P. Raymond, and D.
Pilaud: The synchronous dataflow programming
language lustre. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[10] D. Harel: StateCharts: a Visual Approach to
Complex Systems. Science of Computer
Programming, 8-3:231–275, 1987.

[11] F. Maraninchi and Y. Rémond: Mode-automata:
About modes and states for reactive systems. In
European Symposium On Programming, Lisbon
(Portugal), March 1998. Springer verlag.

[12] F. Maraninchi and Y. Rémond: Mode-automata: a
new domain-specific construct for the development
of safe critical systems. Science of Computer
Programming,(46):219–254, 2003.

[13] Marc Pouzet: Towards the Development of a
Certified Compiler for Lustre. Workshop
SYNCHRON Bamberg, nov. 27th, 2007.

8. Glossary

SCADE: Safety Critical Application Development
Environment

