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Abstract: SCADE Version 6 is both a language and 
a Safety Critical Development Environment that 
brings a new Unified Modeling Style that provides a 
seamless and safe flow from system to software 
engineering. This flow relies on strong foundations 
where safety is considered at each step that allows 
engineers to focus on key issues whilst removing a 
significant part of the burden of the development 
process. 

SCADE6 is a model based tool that has been 
designed to cope with engineers needs together with 
safety constraints expressed in several standards 
such as D0178-B, EN50128 or IEC 61508.  

This paper presents SCADE version 6 and points out 
the key factors we have addressed during the 
language definition, modelling environment and code 
generation development in order to cope with a 
safety critical development flow. 

Keywords: Model-driven-design, formal-methods, 
SCADE, safety-critical, Synchronous Languages. 

1. Introduction 

1.1 Safety Critical Software challenges  

Avionic, railway and automotive systems have 
become very complex to develop without the 
assistance of a design environment tool that eases 
the engineering process. 
Complex applications such as cockpit display 
systems, guidance systems, engine controls, 
autopilots or interlocking systems require a seamless 
and safe transition from abstraction to 
implementation. 
Model-Based Design delivers those benefits that 
include: 

• Addressing the complexities inherent in 
control systems designs, 

• Starting software design before physical 
systems are available, 

• Verifying the system prior to the 
implementation, so that errors in the 
specification of requirements can be 
detected and eliminated earlier in the 
development cycle, 

• Creating a structure for software reuse that 
allows a reliable and cost effective upgrade 
path for established designs. 

 

1.2 Overview of SCADE 

SCADE (Safety Critical Application Development 
Environment) is both a language and a toolset that 
was specifically developed to describe and 
implement safety critical applications. SCADE is the 
result of a collaboration between Verimag, 
Aérospatiale (now Airbus), Merlin Gerin (now 
Schneider Electric) and Verilog.  
It relies on the theory of synchronous languages for 
real-time applications and, in particular, on the 
Lustre and Esterel languages as described in [1],[9] 
and [2],[7].  
The synchronous approach is a cycle-based 
execution model of SCADE. This is a direct 
computer implementation of the ubiquitous sampling-
actuating model of control engineering. It consists of 
performing a continuous loop of the form illustrated 
in Figure 1 below. In this loop, there is a strict 
alternation between environment actions and 
application actions. Once the input sensors are read, 
the cyclic function starts computing the cycle 
outputs. During that time, the cyclic function is blind 
to environment changes. When the outputs are 
ready, or at a given time determined by a clock, the 
output values are fed back to the environment, and 
the program waits for the start of the next cycle. 

 

Figure 1: The cycle-based execution model of 
SCADE Suite 

SCADE addresses the applicative part of hard real-
time software, as illustrated in Figure 2. 
This is usually the most complex and changeable 
aspect of software, containing complex decision 



 Page 2/9 

logic, filters, and control laws. It typically represents 
60% to 80% of the software embedded in an 
airborne computer. 

 
Figure 2: SCADE addresses the applicative part of 

software 
 
SCADE represents a bridge between Control 
Engineering and Software Engineering because it 
provides a common, rigorous graphical and textual 
language for both communities that reflect control 
engineering constructs: 
• Its data flow structure fits the block diagram 
approach. 
• Its time operators fit the z operator of control 
engineering. For instance, z-1, the operator of 
control engineering (meaning a unit delay), has an 
equivalent operator called “pre” in SCADE. 
SCADE is now used for critical control software in 
aircraft, helicopters, nuclear power plants and 
railway switching systems. 
SCADE modelling capabilities cover designing, 
verifying and optimising complex algorithms, control 
intensive applications, and graphic interfaces. 
Furthermore, the SCADE automatic Code Generator 
has been qualified to produce a portion of the 
evidence mandated by certification authorities, 
supporting a safety-critical process in a cost effective 
manner. 

2. SCADE 6: Unified Modelling Style 

SCADE Version 6 is a new version of the SCADE 
language that keeps the foundation (formal and 
synchronous execution, strong typing, explicit 
initialization of data flows, explicit management of 
time, simple expression of concurrency) and extends 
the modelling capabilities towards several directions: 

• Data flow extensions that improve the 
control part (reset, activate, merge) 

• Control features expressed in terms of state-
machines 

• Safe loop features implemented using higher 
order iterators 

• Other modelling features that improve the 
connection to the environment (Sensor) and 
ease the reusability with a better 
encapsulation of data (Package) and 
polymorphism 

 

2.1 Data flow extension toward control  

Work performed [5] started with defining an 
extension of the data flow part with several 
constructs that will be the support for state machine 
extension.  

restart is a higher-order operator that allows to 
retrieve the initial state. This construct is very useful 
in dataflow model in order to implement reset feature 
without modelling this with inputs, wires and if/switch 
constructs. 

The syntax of a restart instantiation is:  

(restart N every c)(e). 

Example: 

1

PRE

0

C

c = 0 -> (1 + pre c);

Node : Count

 

Figure 3: Count Node 

1

Count

r

C

C = (restart count every r )();

Node Resettable_Count

 

Figure 4: Resettable_Count Node 

This primitive affects flow initializations in the 
instantiated node by making them returning their first 
argument as if it were the first cycle. Example in 
figure 6,7 and the behaviour shown in figure 8 
illustrates this purpose. 
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Examples: 

PRE

0

sum

e

sum = 0 -> e + pre sum;

Node Sigma

 

Figure 6: Sigma Node 

0

10

PRE

s
1

Sigma

1

Count

s = (restart sigma every (0 -> pre s >= max ))(count ());

Node Sample

 

Figure 7: Sample Node 

 

Figure 8: Sample node behaviour 

 
The second extension is about introducing a merge 
operator that builds a flow on top of complementary 
clocked flows. merge takes, as first argument, a 
clock identifier h used to select one of its other 
inputs.  
This operator evaluates first the value of its clock 
expression. Depending on this value, the 
corresponding expression is defined at the current 
cycle and its value is the result of its evaluation as 
shown in figure 9. 

 
Figure 9: merge semantics 

 

 

 

 

 

Examples: 

Figure 10 represents an Integrator node that 
generates 1 outputs: s, the integator output.  

PRE

0

se

s = e + (0 -> pre s);

Node integr

 
Figure 10: Integr Node 

Figure 11 represents a two_instance node that 
generates 2 outputs: s, the integator output and t a 
merge output. 

0

WHEN

h

PRE

e WHEN

h 1

integr
t

h

e

2

integr s

Node two_instances

s = integr (e);
t = merge (h; integr (e when h); (0 -> pre t) when not h);

v 3

v 2v 1

 
Figure 11: two_instance Node 

Figure 12 illustrates the behaviour of the merge. 

 

Figure 12: two_instance node behavior 

The third main extension is about improving the 
imperative features in Data flow. In SCADE previous 
versions, when and mainly condact were the only 
way to control computation. In SCADE version 6, the 
control feature is extended toward 2 directions: 

Control activation of an operator: activate on 
operator is a higher order constructs providing 3 
usages: 

• activate <N> every <clock_expr>: N is activated 
when clock expression is true. The result is 
clocked in sync with <clock_expr>. This is 
equivalent to : N((e1, ... ,en) when c);  
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• activate <N> every <expr1> default <expr2>: 
This construct is a variant of the previous one 
without memorization of the result of N when 
<expr1> is false. N is activated when <expr1> is 
true. 

• activate <N> every <expr1> initial default 
<expr2>: This construct is equivalent to condact 
in the previous SCADE versions. N is activated 
when expr1 is true. When expr1 is false, the 
result is initialized with <expr2> and after one 
computation of N, the result sustains the last 
result of N.  

Example of activate initial default: 

0

e

h

2

integr
t

s

1

integre

s = integr (e);
t = ( activate integr every h initial default 0) (e);

Node two_instances_2

 

Figure 13: node two_instance_2 

 

Figure 14: two_instance_2 node behaviour 

This node behaves as the two_instance node using 
merge. 

Example of activate default: 

0

e

h

3

integr
t

s

1

integre

Node two_instances_3

s = integr (e);
t = ( activate integr every h default 0) (e); 

Figure 15: node two_instance_3 

 

Figure 16: two_instance_3 node behaviour 

Control activation of a set of equations: activate 
on a set of equations is now possible in SCADE 6 in 
order to make conditional computations. This is 
possible through Boolean conditions (activate if) or 
through enumerated conditions (activate when 
match). These constructs are called clocked_blocks. 

• activate [<id>] if <expr> then <equation_set1> 
else <equation_set2>: if <expr> is true 
<equation_set1> is computed, this set of 
equations could contain other clocked block.  

• activate [<id>] when <expr> match {{<pattern> : 
<equation_set>}}+ 

Example of activate if: 
node two_instances_4(e:int ; h:bool) 
returns (s:int ; t:int last = 0) 
let 
  s = integr (e); 
  activate if h  
    then t = integr (e); 
    else t = last ’t; 
  returns t; 
tel 

Note : last ‘t is the notation to get the last value of t in 
the scope of its declaration. pre is the notation to get 
the previous value in the scope of the block. 

 

Figure 17: two_instance_4 node behaviour 

 

2.1 State-machine  

When the application is data-flow dominated (e.g., 
regulation systems), it will naturally go for block 
diagram formalisms as it is provided in SCADE for 
years. On the contrary, when the application is more 
control dominated (e.g., cockpit displays), imperative 
or state-machine based formalisms as the ones 
provided by StateCharts [10], the Sync-Chart [7] or 
Esterel [2], [8] will certainly be better choices. 
Nonetheless, real systems rarely fall into one 
category and are often a mix of both styles. 

The extension provided in SCADE 6 allows to mix 
both styles in a conservative way [5],[6] meaning that 
all new state-machine features are translated 
(compiled) to basic clocked data flow. In that way the 
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state-machines bring useful syntactical facilities but 
do not break the data-flow principles.  

Let us explain the main principle through an 
example. We choose the same example as in [11] 
that illustrates how a data can be computed in 
several ways according to modes.   

<UD>

B

1

 last 'x x

A

 last 'x

1

x

1

x >= 5

1

x <= -5

 

In textual : 

 

Figure 18: Node UpDown 

 

Figure 19: UpDown node behaviour 

The initial state is A, in this state x is computed 
according to x = last’x + 1, last’x is the value 
of x in the previous cycle in the complete state-
machine. When x >= 5 then the cycle after (weak 
transition) state B is activated. x = last’x-1  is 
then computed until x<=-5. 

State transitions: 

SCADE offers three different kinds of state 
transitions: strong, weak and synchronisation 
transition. The two first ones correspond to common 
ways to fire a transition in control models. The last 
one allows synchronizing parallel state-machines. 

In SCADE, a State Machine has one and only one 
active state per cycle. 

This property preserves the unicity of the definition of 
a flow during a cycle. 

With strong preemption transition, when the 
transition is fired, the target state becomes active 
within the cycle. 

Example: 
<ev en_odd_c>

C

3 o

ODD

2 o

EVEN

1 o

1

a

2

b

1

true
1true

 

Figure 20: Node UpDown 

 
Figure 21: even_odd_c node behaviour 

With weak transition, when the transition is fired, the 
target state becomes active the cycle after but the 
actions on transition are activated within the cycle. 

Example: 
<ev en_times_delay ed>

ODD

i

-2

o

EVEN

1

i

o

1

c

1

c

  
node even_times_delayed (c: bool; i : int ) returns (o: int )
let
  automaton
    initial state EVEN
      let
        o = i + 1 ;
      tel
    until if c restart ODD ;
    state ODD
      let
        o = -2 * i ;
      tel
    until if c restart EVEN ;
  returns o;
tel

 
Figure 22: Node even_time_delayed 

 
Figure 23: even_time_delayed node behavior 
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A state can be flagged as final by using the keyword 
final before the keyword state. Any state can be final 
(even the initial one) and a State Machine is not 
limited to only one final state. 

Given a state S containing several sub-State 
Machines running in parallel, if at the next cycle all 
these sub-State Machines are in a state marked as 
final, then a synchronization transition can be fired 
from state S. The target state becomes active the 
cycle after but the actions on the transition are 
activated within the cycle (as for weak transitions). 

Example: 

The example illustrated bellow (Figure 24) shows a 
state-machine that detects two events (A and B) 
independently of the way it occurs, A before B or B 
before A or A and B simultaneously. When both 
events are detected, F_A and F_B are active then 
the synchronisation transition is fired and OSig 
signal is emitted. R is a preemption transition that 
resets the state-machine.    

OSig O

<ABRO>

ABO

<SM2>

O

AB

<B>

F_B

B

<A>

F_A

A

1
A

1
B

1

R

1

emit 'OSig;

 
Figure 24: Node ABRO 

 

The state-machine is translated by the code 
generator to clocked blocks as shown in the example 
below. 

<SM1>

ST1

-2

i

o

ST0

1

i o

1

c0

1

c1

 

 

 

In textual : 

node N (c0 : bool; c1 : bool; i : int) 
returns (o : int)
  let
    automaton SM1
    initial state ST0
    unless if c0 restart ST1;
      o = i + 1;
    state ST1
      o = -2 * i;
    until if c1 restart ST0 ;
    returns o;
  tel

 

Figure 20: Node N 

The flow state_sel carries the notion of selected 
state, state_act, the notion of activated state, and 
state_next, the notion of the next cycle’s selected 
state. The equation defining state_act uses state_sel 
and the strong transition part of the automaton’s 
states. The equation defining state_next uses 
state_act and the body and the weak part of the 
automaton. These variables belong to an 
enumerated type that represents the states of the 
automaton (one enumerator per state). Since only 
one transition must be fired during a cycle, the 
knowledge of already fired strong transition in the 
selected state must be used before firing a weak 
transition in the active one. A type enumerating all 
possible transitions is used therefore. 
type  
A_states = {ST0 , ST1 }; 
A_trans = {no_trans,ST0_strong_1, 
ST1_weak_1 }; 
Node N_Bis2(c0 : bool; c1 : bool; i : 
int) 
returns (o : int) 
var 
   state_sel : A_states; 
   state_act : A_states; 
   state_next : A_states; 
   fired_strong : A_trans; 
let 
  state_sel=ST0 -> pre state_next; 
  activate A1 when state_sel match 
  |ST0 : 
    let 
    state_act =if c0 then ST1 else ST0; 
    fired_strong =if c0 then S0_strong 
    else no_trans ; 
    tel 
  |ST1 : 
    let 
      state_act = ST1; 
      fired_strong = no_trans ; 
    tel 
    returns state_act , fired_strong; 
    activate A2 when state_act match 
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    |ST0 : 
      let 
        o = i + 1; 
        state_next = ST0; 
 tel 
    |ST1 : 
      let 
        o = -2 * i; 
        activate if fired_strong <> 
                    no_trans 
       then state_next = ST1; 
       else state_next=if c1 then 
   ST0 else ST1 ; 
 returns ..; 
 tel 
    returns o, state_next ; 
tel 
 

2.3 Safe loop (iterators) 

Repeating a computation for large array data or 
computing vectors or matrices is very common in 
embedded systems. The challenge for a modeling 
language addressing safety critical systems is to 
provide safe loop constructs. The principle in 
SCADE version 6 is to provide several predefined 
iterators scheme. We present in this paper the main 
ones.  

Iterators are again higher order operators with the 
following general syntactic form: 

X = (iterator Node <<dimension >>) ( arguments ) ;  

Map: 

Given a node N, that requires k arguments, and k 
arrays of size d. Let suppose now that the expected 
result is a new array of size d built out of the 
application of node N to the successive elements of 
these arrays, as follows: 

X = [ N(x[0] ,... ,z [0]) , N(x[1] ,... ,z [1]) , ... , N(x[d -1] 
,... ,z[d -1]) ] ; 

This expanded form can be summarized using the 
map iterator applied on node N: 

X = (map N <<d > >)(x ,... ,z) ;  

Example: 

Pointwise sum of two arrays can be expressed in the 
following way: 

b

a
c

Node Sum_scalar

c = a + b  

Figure 21: Node Sum_Scalar 

v

u

t
1

Sum_scalar

map<<3>>

Node sum_array

 

 

Figure 21: Node Sum_array 

 

Fold: 

The fold operator also allows applying a node 
successively to array arguments. But contrary to 
map operator, it does not build an array of the same 
size as its arguments: it provides an element 
belonging to the basic type of the arrays (called 
accumulator) which is initialized in the called 
parameter then passed from one array element to 
the next one. The result is the accumulator provided 
by the N applyed to the last element. 

Example Sum of the elements of an array: 

s
0

1

Sum_scalar

fold<<3>>

a
t

Node Array_sum

 
 

Figure 22: Node Array_sum 

s = Sum_scalar ( Sum_scalar ( sum_scalar (0, t[0]) , 
t[1]) , t [2]) ; 

Other iterators exist such as mapfold which is a 
combination of map and fold, others iterators allow to 
get access to the index of the computation (mapi, 
foldi, …). 

2.3 Other modelling features 

Assume and guarantee: 

Design-by-contract is a clean and safe software 
engineering principle. A contract is a specification of 
the condition of use and the expectations of a 
function (or a node). 

This contract is made of a pair of observers. 

• one corresponding to condition of use: assume, 

• one corresponding to ensured properties: 
guarantee. 

Assume and guarantee do not impact the semantic 
of the model, they are part of the model for proof 
purpose. 
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Sensor: 

A sensor defines a global flow that can be read 
anywhere by the model, and is a model input. A 
sensor is semantically very close to a constant but 
with the ability to be updated between each cycle. A 
sensor should remain stable during all the cycle 
computation. 

Package: 
The package (or module or namespace) mechanism 
is a software engineering feature provided by many 
program languages. It makes the design and the 
usage of libraries easier. 
A package definition is a block of declarations 
starting with the keyword package and the name of 
the package and ended with the keyword end 
followed by a semicolon. 
package Integer 
type T = int ; 
const ZERO : T = 0 ; 
function plus (x,y: T) returns (z: T)  
  z = x+y; 
end;  

Polymorphism: 
SCADE provides a way to define generic nodes, also 
called polymorphic nodes. Genericity is expressed 
by using type variables written as quoted ident.  
node sample_generic (a,b: ’T)  
returns (c: ’T) 
var 
flag : bool ; 
  let 
    flag = true -> not (pre flag ) ; 
    c = if flag then a else b ; 
  tel 
The quoted ident ’T represents a type variable: a, b 
and c can be of any type. The only constraint they 
have to fulfil is that they belong to the same type. If 
more than one type variable is required in a node 
profile, one has to use a different quoted ident.  

3. Safety apply to SCADE 6 itself 

3.1 Framework safety principles 

SCADE 6 is a model based framework made of 
several tool addressing Safety critical systems. In 
this section, we address some of the key points that 
contribute to the safety of the complete tool chain. 
The question we want to answer here is: “what are 
the characteristics that can make a tool chain 
suitable in safety-critical context?” 
First, the language (or the formalism) is one major 
point. In the first part of the paper we have presented 
it and let’s recall the main characteristics: 
• formal, deterministic and documented 
• graphical and textual (with a mapping between 

both) 

• simple and powerful (the tradeoff is very difficult 
to tune) 

• precise and concise 
Derived from these principles: 
• Only one assignment per variable shall be 

possible per cycle 
• Only one state shall be active per state-machine 

and cycle 
• Only one transition shall be fired per state-

machine and cycle 
• Semantic errors shall be detected at compile 

time in order to prevent most of the runtime 
errors (except overflow, underflow, div0): 

o Type check 
o Clock check 
o Initialization check 
o Causality check 

Then, once the language is formally defined, the 
main goal of the approach is to generate code out of 
the description (model) of the system. 
Currently the most appropriate approach is the 
certification approach according to standards like 
DO-178B and IEC 61508 and EN 50128.  
In the future, the proof of the correctness of the code 
generator should be very suitable and for the time 
being, this approach is only experimented in 
academics [13]. 
The code generator takes as input files containing 
the description of the model according to language 
concrete syntax. 
The graphical editor has to generate these files 
(storage file) with a clear separation between the 
graphical data and the semantical data. The 
graphical data should only contain drawing data 
(positions, size, etc) and shall not impact the 
semantics. 
The editing feature is generally out of the scope of 
the certification but the tool should be intuitive and 
should avoid source of errors. The constraint to 
address is to be able during edition to save the 
model in a correct syntactic form (wrt to language) in 
order to be able to load it afterward to continue the 
modeling work. This has a huge impact on all editing 
principles 
 

3.2 Standards 

It’s important that the same standard requested by 
the application is fulfilled by the tool. For that reason, 
the Code generator has been developed according 
to standards such as DO178-B, EN 50128, IEC 
61508. Several other tools like MTC (Model Test 
Coverage), CVK (Compiler verification Kit) and the 
Reporter has been qualified according to DO178-B 
as verification tool. 
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3.3 Design and developments 

SCADE 6 has been used to model and code some 
complex part of the SCADE 6 simulator. The 
simulator needs to handle several modes with a 
complex logic containing pre-emption. Figure 23 and 
24 represent the state-machine used for modelling 
the logic of simulator. Then, about 1000 lines have 
been then generated out of SCADE 6 code 
generator and are now part of the product 

<ModeStateMachine>

StepMode
DirectMode

ContinuousMode

IdleMode

1

ContinuousAction

2

DirectAction

3

StepAction or 
ResetAction

1

 'suspended_signal or  
'exception_signal

1

 'suspended_signal or  
'exception_signal

1

 'suspended_signal or  
'exception_signal

 
Figure 23: SCADE 6 simulator mode state-machine 

<SimulatorStateMachine>

Exit

SimuLoaded

<StateMachine2>

Exception

Running

<PauseMgt>

Pause

Run

<StateMachineRunning>

End

InputSet

OuputReady

InSubNode

Suspended

1

StepAction or 
ContinuousAction or 

DirectAction

1StepDoneInjection

1OutputGetInjection

1InputSetInjection

2

AbortTickInjection

1
PauseAction

1

ExceptionInjection

2

( 'end_of _tick and  'pause_asked) or ( 
'end_of_tick and BreakInjection)

3

( 'end_of_tick and  'continuous_signal) 
or ( 'end_of _tick and  'direct_signal)

4

 'end_of_tick

1

ResetAction

2

ExitAction

 
Figure 24: SCADE 6 simulator state-machine 

4. Conclusion 

SCADE 6 is a major step that addresses safety 
critical systems. It has been designed to address 
such systems, reducing the gap between the system 
engineers and the control engineers. It has been 
designed with the same standard as embedded 
systems (DO-178B, EN 50128, IEC 61508) and 
sometimes with the same tools (SCADE 6 itself). 
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8. Glossary 

SCADE:  Safety Critical Application Development 
Environment 


