
HAL Id: insu-02270110
https://insu.hal.science/insu-02270110

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certification of Model-based Code Generators – Open
Problems and Possible Solutions

Ingo Stürmer

To cite this version:
Ingo Stürmer. Certification of Model-based Code Generators – Open Problems and Possible Solutions.
Embedded Real Time Software and Systems (ERTS2008), Jan 2008, toulouse, France. �insu-02270110�

https://insu.hal.science/insu-02270110
https://hal.archives-ouvertes.fr

 Page 1/8

Certification of Model-based Code Generators – Open Problems
and Possible Solutions

Ingo Stürmer1, Model Engineering Solutions, Friedrichstr. 50, 10117 Berlin, Germany

Abstract: Model-based development and automatic
code generation have become an established
approach in embedded software development for
both the automotive and avionics sectors. The use of
a code generator can lead to significant
improvements in productivity in the software
implementation phase. Moreover, early quality
assurance at the model level can lead to a higher
level of code quality. However, automotive or avionic
software is very often deployed in safety-critical
systems and as a result, may not contain errors. In
this context it is crucial that the use of a code
generator and its tool chain (editor, compiler, linker,
loader, etc.) does not incorporate errors in the target
system and leave them undetected. In general, this
cannot be fully avoided even when using a code
generator proven to be ‘correct-by-construction’.
Inappropriate modeling or the faulty configuration of
the code generator could, for example, lead to
erroneous generated code. This paper discusses
how code generators and generated code can be
safeguarded by means of tool certification (also
termed qualification in the avionics sector) in respect
to safety standards that are relevant for the
automotive and avionics sectors. Specific, tool-
related problems will be discussed and illustrated
with practice-relevant examples; possible solutions
for safeguarding model-based code generators will
be presented.

Keywords: Tool certification, qualification, model-
based development, test suite, guidelines, checks.

1. Model-based Code Generation

In model-based development (MBD), the seamless
use of executable models is characteristic of function
and control system design and the subsequent
implementation phase. This means that models are
used throughout entire control system development:
from the preliminaries to the detailed design. Such
models are designed using popular graphic modeling
languages, such as Simulink and Stateflow from
The MathWorks [1].
In the first design stage, a physical model is created,
which is derived from the requirements specification
(see Fig. 1). The physical model describes the
behavior of the control function to be developed,
containing transformation algorithms related to
continuous input signals as well as incoming events

or states. These algorithms are usually described
using floating-point arithmetic.
Since the physical model focuses on the design of
the control function and on checking its functional
behavior with regard to the stated requirements, it
cannot serve directly as a basis for production code
creation. Implementation details, which are the
prerequisite for automatic coding, are not considered
here. Therefore the physical model needs to be
manually revised by implementation experts with
regard to the requirements of the production code
(e.g. function parts are distributed between different
tasks). For example, in order to enhance the model
from a realization point of view, the floating-point
arithmetic contained in the physical model is
adjusted to the fixed-point arithmetic used by the
target processor. If fixed-point arithmetic is used, the
model must be augmented with necessary scaling
information in order to keep imprecision in the
representation of fixed-point numbers as low as
possible. Apart from the change in the type of
arithmetic, it may be necessary to substitute certain
model elements that are not part of the language
subset supported by a particular code generator.
Furthermore, it is often necessary to restructure the
behavioral model with regard to a planned software
design.
The result of this evolutionary reworking of the
physical model is what we call an implementation
model. The implementation model can be used as a
basis for (A) manual coding by a software developer
(not shown in Fig. 1), or (B) automatic code
generation with a code generator (see Fig. 1). The
implementation model contains all the information
that is needed for code generation and enables the
creation of efficient C code by the code generator.
Code efficiency is vital, due to the limited resources
of the embedded system running the generated
code. Code generators that are capable of
translating MATLAB Simulink and Stateflow models
into efficient production code include TargetLink [2]1
and the Real-Time Workshop/Embedded Coder [1].
Depending on the development stage and purpose,
the code is generated for the development computer,
in most cases a standard PC (Fig. 1, right). In this
case, a classical compiler / linker combination is

1 TargetLink uses its own graphical notation for code

generation (TargetLink blockset), which is based on the
Simulink modeling language.

 Page 2/8

used to translate the generated code into an
executable. For the target hardware (typically an
evaluation board similar to the embedded system), a
cross-compiler is required. Here a linker and loader
build and load the binary code onto the embedded
device. The tool chain established by the modeling

tool (editor and simulator), the tools for model-to-
code translation (e.g. code generator, (cross-)
compiler, linker, loader), and finally the target
hardware itself make up the code generation tool
chain (Fig. 1).

Figure 1: Model-based code generation

Model-based code generation is one of the principal
advantages of model-based development. The use
of a code generator leads to significant productivity
improvements in the software implementation phase.
Individual studies have shown a reduction in
software development time by up to 20% through
code generation [5]. If the manual verification
process at the code level can also be reduced,
savings of up to 50% are reported. This conforms
with internal information provided by other users. In
summary, productivity can increase by up to 50%
compared with traditional manual coding. Moreover,
the level of quality gained by early quality assurance
at the model level can lead to high quality code,
provided that the code generator works reliably. As a
result of these characteristics, there is a strong
industrial demand for code generators.
Some people still express reservations about using a
code generator for safety-related software
development. This may be due to the fact that code
generators are not as mature as established C or
ADA compilers. The technological risk of a code
generator can be high, because they (1) are used by
a relatively small group of developers, and (2) face a
high rate of technological innovation causing new
versions to appear in short cycles. As a result, formal
proof of code generator correctness is unfeasible in
practice. For this reason, productivity improvements
that can be achieved with model-based code
generation tools cannot be fully exploited. The
generated code must still be checked with the same
time and cost-intensive effort as manually written

code, even though intensive quality measures have
already been spent on the model. A survey of quality
assurance methods for model-based development
with code generation is provided in [3].
Model-based code generation is a new paradigm
that makes new demands on the development
process and poses additional questions concerning
the certification of systems. An important and
generally accepted approach for increasing
confidence in code generation is to use a certified or
qualified code generator. Apart from correctness
aspects, there are many benefits to be expected
from using a certified code generator:
• Higher quality of generated code (number of

errors, readability, traceability) in comparison to
manual code.

• Consistent level of code quality.
• Consistency between specification and software.
• Reusability of executable specifications in

subsequent projects.
• Internal development of software in

organizations / departments with an insufficient
number of implementation specialists.

• More efficient realization of the implementation
phase in software development.

Code generation relies on software that can
obviously never be completely free from faults or
errors. This is the main reason for the ongoing
debate regarding the use of code generation for
safety-related systems. However, the use of code
generators is recommended from the point of view of

 Page 3/8

the development process, and there is some advice
to be found in the different safety standards
(elaborated in Chapter 4). We will, however, first
focus on specific model design problems, which
directly influence the quality of the code generated
from the implementation model.

2. Problems with Model-based Code Generation

There are many sources of error that can be
identified within the model-based code generation
process. One example are design errors, which are
caused by inappropriate design of the (physical)
model with respect to its functional requirements or
due to misunderstandings regarding the semantics
of the modeling language (a survey on all possible
errors in the model-based code generation tool chain
is provided in [21]). The misuse or misunderstanding
of a modeling language used for code generation will
be discussed next.

Example 1

Figure 2: Buzzer realized as a flowchart (variant A)

The following two realizations of a buzzer exemplify
the need for quality assurance methods on the
model design level. The first realization (Figure 2)
was created at an early development stage of a
typical embedded software development project for
an automotive system. The model contains several
problems that are not obvious at first glance
(especially for flowchart novices). However, the two
possible and semantically comparable realizations of
a buzzer are presented in Figure 2 (flowchart, variant
A) and Figure 3 (Stateflow, variant B). The
generation of an acoustic warning (beep) is
controlled by the flag BEEP_flag_beep. When
initially activated, the flag for beep activation
BEEP_flag_buzzer is turned to true (1) during t_tON.

After t_tON the flag is turned back to false (0). The
buzzer beeps three times. In variant A, which was
created at an early development stage of the project,
the buzzer is realized as a flowchart diagram that
typically consists of transitions and connective
junctions. A connective junction defines a decision
point between possible paths of a transition, whereas
a transition can bear a complex label for checking
specific conditions (e.g. runs > 0) and for performing
actions (e.g. counter++;). This modeling paradigm is
comparable to if-then-else control structures used in
e.g. C. The appropriate use of flowcharts for
automatic controller code implementation often
produces efficient C code with little overhead.
Modeling with flowcharts, however, allows quasi free
C code programming. The assignments in the curly
braces, for example, can contain an arbitrary number
of C statements. As a consequence, classical
programming errors can occur, such as the faulty use
of a bitwise AND (&) instead of a logical one (&&).
Such human sources of error are often neglected or
underestimated in the literature, e.g. [7]. Inappropriate
modeling must be considered as an additional error
source. Timing behavior, for example, such as the
fractions of time the buzzer is activated or disabled, is
realized by incrementing the local counter variable.
This kind of modeling temporal behavior is often used
by Stateflow novices. However, when using the model
for production code generation, such modeling of
temporal behavior implies intrinsic errors. Timing is no
longer independent of the processor’s execution
speed or the time for computations assigned by the
operating system respectively. In variant A, the
flowchart realization of the buzzer is more technical
rather than intuitive, since the functionality of the
buzzer is, in principle, state-based. Essentially, the
expected improvements in efficiency on the code level
are largely compensated for by the aforementioned
disadvantages.

Figure 3: Buzzer realized in Stateflow (variant B)

 Page 4/8

The realization of the buzzer as a Stateflow state
machine (Figure 3) is easier to understand intuitively.
In variant B, temporal behavior is modeled by using
Stateflow’s after operator, which allows a precise
definition of how long a state is activated, e.g. when
the transition from state On to Off is executed. Timing
is ‘incremented’ by using the Stateflow CLK event. In
doing so, timing is independent of the processor’s
execution speed or resource allocations of the
operating system. In contrast to variant A, this variant
is easier to parameterize (e.g. for double beeps). In
summary, we can see that on the one hand, modeling
by using states and events increases the
understandability and readability of the model, while
on the other hand, the use of states and events is
problematic in projects where resource consumption
(e.g. required RAM/ROM size) is of decisive
importance, since both produce a large overhead.

For the reasons stated above, a compromise between
understandable modeling and code efficiency must be
found. Modeling guidelines must clarify the
advantages and disadvantages of different modeling
techniques and patterns. It is also advisable to use a
‘safe-subset’ of the modeling language in order to
prevent problematic patterns in generated code,
which cannot be fully avoided even when using a
code generator that is considered to be ‘correct-by-
construction’. An example for this statement is given
next.

Example 2

Figure 4: Stateflow chart with potential ‘dead’
transition path

Figure 4 shows a simplified detail of a complex
Stateflow chart. This chart consists of 2 super states
(A and B) as well as two sub-states (B1. and B.2).
There are several transition paths originating from
state A. One path goes from state A to sub-state B.2
(highlighted with a red dashed line). Within this
pathway, two conditions are checked whether the
condition flag equals two. At first glance, this way of
modeling a control flow does not seem problematic.
But a correct code generator translates the pattern
shown in Figure 4 into the code pattern shown in
Figure 5.

As we can see, the code generator generated a
correct, but not optimized, code pattern that
identically reflects the behavior of the model. Only
analytical quality assurance methods on code level,
e.g. structural testing or a code review, can detect
such problematic patterns on code level. This means

that even having a correct or certified code generator
does not imply that quality assurance methods on
code level can be fully omitted. A typical solution to
prevent the use of such modeling patterns is the
application of modeling guidelines and checking the
models with regard to modeling guideline compliancy
(elaborated in Chapter 5.2).

3. Code Generation for Safety-related Systems

The trend towards increasing model-based
application development also extends to safety-
relevant systems. However, more stringent
developmental requirements must be fulfilled if such
systems should be subject to certification. The
principal expectation is that the methods used to
design the system are all state-of-the-art, thus
everything possible has been done to ensure that
safety is guaranteed. General requirements on the
development of safety-related systems are usually
summarized in standards, such as DO-178B for
avionic software, or IEC 61508 for E/E systems. In
addition to providing certification of the system under
development, these standards serve to define more
or less specific demands for using specific tools for
automating development steps.
Both software tools and development tool chains
offer potential sources of error. Normally errors
produced by development tools have no direct
influence on the product itself. However, this is not
the case for tools like compilers and code
generators. When developing safety-relevant
systems, it is particularly important to ensure that the
use of a code generator and its tool chain (editor,
compiler, linker, loader, etc.) does not incorporate
errors into the target system and leave them

Figure 5: Code pattern generated from Figure 4

 Page 5/8

undetected. Certification institutions therefore never
certify source code on its own, but only in connection
with the corresponding machine codes and usually
when integrated in the whole system.
3.1. Advantages of Code Generator Certification

This is not sufficient reason to dispense with code
generation in the first place. Other reasons,
especially those relating to process improvement
and development efficiency, underscore the need for
qualified code generators:
1. We are faced with continual tool improvement:

this means a high rate of updates, since code
generation for production is a relatively new
technology.

2. Taking this into account, the generated output of
the tool has to be checked with the same time-
consuming effort as code that has been written
manually, even though the types of errors
produced by code generation are completely
different to those found in manual coding.

3. This drastically reduces potential improvements
in productivity that can be brought about by
automatic code generation.

In general, the qualification of a software tool has the
objective of compiling evidence of the tool’s high-
quality output, thus ensuring the use of the tool in
the development of systems with safety-related
aspects.
Advantages that can be expected from the
application of a qualified code generator, provided
that a ‘safe subset’ of the modeling language is
used(!), are as follows:
• Decreased overall effort spent on verification

and validation activities, e.g. (a) eliminating
source code reviews for generated code parts,
and (b) eliminating or minimizing the effort
needed for unit testing.

• Improved productivity of software development,
especially in the software implementation phase.

• Ensuring the controllability of rapid iterations in
development.

• Consistent or higher code quality despite the
aforementioned points.

How should we therefore safeguard the deployment
of a code generator in the model-based development
process? In such a way that allows errors induced
into the development product to be discovered or
completely circumvented, without resulting in a
considerable reduction in efficiency of the
development process.
This is answered in part by existing safety standards,
such as IEC 61508 [4] and DO-178B [12]. However
since additional measures should be considered for
safeguarding code generation, this is discussed in
the next chapter.

4. Safety Standards Applicable for Tool
Certification

The various applicable safety standards that we use
today were published some time ago, so they give
no explicit guidance for the application of model-
based development and the utilization of code
generation. Future versions such as RTCA/DO-178C
will be expanded with respect to this development
paradigm. In any case, the general requirements
with respect to product certification or development
tool qualification can be adopted. The latter aspect is
of major interest here.
4.1 RTCA/DO-178B
RTCA/DO-178B (Software Considerations in
Airborne Systems and Equipment Certification
Requirements) is an international standard, which is
mandatory in all avionic software development. This
standard focuses on the software development
process.
The qualification of a development tool can be
handled in a similar way to the certification of the
application software itself. In other words, qualifying
a development tool such as a code generator does
not mean proving its correctness. Instead, it is
merely important to gain sufficient confidence in its
correctness. In this context, the prerequisite for
qualification is an assessment, which shows the
conformance of the tool development process with
the development requirements of the standard. Tool
qualification is closely connected to the development
and certification of a system and its criticality. This
means that a tool that is issued with all its
development documents in conformity with the
standard could be seen as a qualifiable tool.
4.2. IEC 61508
The International Electrotechnical Commission (IEC)
has submitted the international safety standard
IEC 61508 [4], which is primarily concerned with
safety-related control systems incorporating
electrical / electronic / programmable electronic
safety-related systems (E/E/PES). It also provides a
framework, which is applicable to safety-related
systems, irrespective of the technology on which
those systems are based (e.g. mechanical,
hydraulic, or pneumatic). For specific demands, the
standard has been adapted to a particular industry
as is currently the case in the automotive industry for
certifying safety-related (software-based) E/E/EPS
parts.
In the context of IEC 61508, only compilers
(translators) have so far been regularly subject to
tool certification procedures. Compilers are
assessed in two different ways: (1) the compiler or
translator is certified against its respective language
or process standards, (2) compilers or translators
are assessed by their increased confidence from use

 Page 6/8

(fitness for purpose). In general, however, compilers
are not certified in any way with regard to safety2.
4.3. Examples of tool Certification w.r.t. Safety
Standards
Qualifiable code generators w.r.t. DO-178B, such as
SCADE, which endorse a certification of the
application software, do exist. They make it possible
to reduce the total amount of the verification
activities, without allowing them all to be omitted
completely. However, their source language is not as
popular as Simulink / Stateflow, and they perform
only a limited number of optimizations. The latter is
crucial for the automotive sector, where developers
must deal with strict resource limitations
ASCET-SD [LBB+97], developed by ETAS, is the
first code generator for automotive embedded
control systems that is certified as being fit for its
purpose for SIL 3 according to IEC 61508 [10]. To
gain this certificate, TÜV inspectors performed an in-
depth analysis of the ETAS tool chain to understand
the purpose of its use and the tool’s development
process. Based on this knowledge, the inspectors
created a test plan according to IEC 61508 SIL 3.
This test plan aims to access the ‘fitness for purpose’
of the code generator and includes, for example,
formal characteristics of the documentation, software
requirements specification, the test as part of design,
development and integration, verification and
validation (V&V). Following this test plan, the tool
developer could show, for instance, “the existence of
conclusive evidence for correct code generation.”

5. Possible Solutions for Code Generator
Certification

Certification authorities such as the technical
supervisory agencies TÜV (Technischer
Überwachungsverein / German Technical Inspection
Authority) or the British Standards Institution
generally consider the qualification of an optimizing
compiler for safety-relevant software as
sophisticated. On one hand, it is a particularly
complex tool and on the other, its behavior when
applied to optimizations cannot be clearly
comprehended. Code generators can be viewed in
the same way, since the main focus of their work is
on code optimization, at least in automotive
applications. Moreover, code generators are not as
mature as established compilers, which have been
proven to be reliable in use and whose correct
functioning is constantly validated by numerous
programmers.
Challenges from the tool supplier and the
development management point of view are as
follows:

2 [4], part 7, Appendix C4.3

• At present, insufficient regulations and a lack of
common rules for tool qualification hinder the
tool supplier in defining an approved, long-term
validation strategy.

• A prerequisite for a valid qualification process is
that all development information must be
available. However, tool suppliers are usually
unwilling to make their internal know-how public.

• The focus of a tool supplier’s work is on the
development itself and not on qualification
procedures.

• The qualification procedure is conducted for a
particular tool. This means that qualifying a code
generator does not consider the compiler, linker,
etc. These tools either need to be qualified
themselves or their results have to be checked
manually each time they are used.

• The costs of a qualification procedure are fairly
high, at least when following the RTCA DO-178B
approach.

Considering the aforementioned qualification issues,
there is obviously a need to define different
approaches to efficiently safeguard code generation.
5.1. Code Generator Certification via a Test Suite
Since the use case of code generators is quite
similar to that of compilers, it could be helpful to
adapt the current practice for compiler validation.
The utilization of test suites for the certification of
compilers has been proven in use for Ada and C
compilers. Although this does not fulfill the
qualification requirements stipulated in DO-178B, it
appears to be an efficient way of facilitating sufficient
compliance with quality and reliability requirements.
A general approach for validating a code generator
(including examples) is documented in [8]. This
approach could be used, for example, to generate
those parts of such a test suite, which focus on
optimization criteria. An important initiative of
automotive manufacturers and suppliers are
currently working on a test suite for code generators,
see [9].
The advantages of utilizing a test suite as a
qualification approach for code generators are as
follows:
• Cost-effective qualification and validation

approach.
• Modification and patches of the tool can be

handled; ‘Delta Certificates’ can be assessed
more easily and at lower cost compared to a
complete qualification.

• The input language of the code generator must
not necessarily be considered completely. A
subset can be defined and incrementally
expanded.

• A common view of the content and application of
the test suite could emerge. At least if the major

 Page 7/8

constraints and a basic set of tests become
public and even standardized.

5.2. Use of a ‘Safe Subset’
IEC 61508-3, for example, highly recommends the
use of a language subset for software development
in accordance with SIL3 and SIL4. However, since
IEC 61508 was written with traditional, (hand-coded)
software development processes in mind, the
standard does not cover advanced embedded
software development technologies such as model-
based design and production code generation. A
“safe subset” for modeling languages such as
Simulink or Stateflow is often defined in general
accepted model design guidelines such as those
defined by the MathWorks Automtoive Advisory
Board [14]. However, the MAAB guidelines do not
directly address model patterns for code generators.
Publicly available guidelines such as the MAAB
guidelines are often supplemented by in-house sets
of modeling guidelines, for example the Daimler
Model-based Development Guidelines [15]. These
are are hosted via the e-Guidelines Server [16], a
web-based infrastructure for publishing and centrally
administering different sets of guidelines. The
Daimler guidelines provide a sound basis for
checking the models used for production code
generation. The adoption of such guidelines can
significantly improve the efficiency of generated
code.
Apart from having guidelines for model-based
development available, it is also important to check
and ideally repair models with regard to guideline
compliancy automatically. Static model analysis tools
exist for the automatic verification of models with
respect to modeling guideline compliancy. The
purpose of these tools is to establish a framework in
which to perform checks. The check itself is a
program that verifies a particular guideline.
Commercial static model analysis tools that are
available for MATLAB Simulink, Stateflow, and
TargetLink models are the Simulink Model
Advisor [17], MINT [18], or the Model Examiner (M-
XAM) [19]. With such tools, model analysis is carried
out by executing a selection of MATLAB M-scripts.
The checks either come with the tool or can be
supplemented as user-written checks. The results of
model verification using the checks are compiled into
reports. These show all detected guideline violations
linked to the model. In a final step, the faulty model
patterns must be investigated and, where necessary,
corrected by the developer: a highly time-intensive
and error-prone task. Case Studies have shown, that
this task can be significantly reduced up to 50% by
using automatic model repair functionality with tools
such as the Model Examiner or MATE [20]. Up to
90% of model rework with regard to modeling
guidelines compliancy can be saved by using

automatic repair functions with user feedback (so far
only available with tool such as MATE).
Advantages of using and enforcing modeling
guidelines for production code generation are:
• Deveopers can built upon expert know-how

proven to be feasible in practice
• It is ensured that a safe subset of the modeling

language is used
• Increase comprehensibility (readability) of a

model
• Facilitate maintenance
• Ease testing, reuse, and expandability
• Simplify the exchange of models between OEMs

and suppliers

6. Code Generation in Practice

Model-based development of automotive
applications has proved its effectiveness over the
last 10 to 15 years. Furthermore, the utilization of
code generation has begun to become established
for series production in conjunction with the further
development of optimizing code generators.
Although the use of code generation appears natural
in model-based development, project experience has
shown that it cannot be considered a pure ‘push
button’ approach; rather the whole development
process has to be adjusted towards the aim of
production code generation. This starts with the
availability of appropriate modeling and design
guidelines as well as company and project-specific
guidelines, and ends with sophisticated quality
assurance measures, cf. [21].
Two major aspects must be taken into account when
moving towards production code generation:
• A consummate physical model is not necessarily

an implementation model suitable for code
generation. However, the physical model usually
matches the structure of the specification of the
function to be implemented.

• Code safety/efficiency is strongly dependent on
the use of appropriate modeling constructs.

Thus, a conflict between comprehensibility and code
efficiency arises. In practice, a compromise between
both important aspects must be found in each
specific project.
Essentially, experts who are skilled with respect to
the modeling paradigm are required. The influence
of their knowledge on the quality of developed code
is comparable to the influence of the programmer’s
experience in code-based development. Overheads
of generated code compared with manual code are
usually caused by improper modeling or incorrect
configuration of the code generator.
As a result, the application of code generation for
safety-critical systems is a feasible option, even

 Page 8/8

when there is no general means of qualification at
hand.

6. Conclusions

Since model-based development began to become
widespread in the application development of
different automotive domains, code generation has
become more and more common.
This trend has thrown up a number of questions,
which address the whole application development,
especially when safety-critical systems are under
development. More specifically, we are faced with
the question as to whether tools used for automating
manual transformation work need to be qualified or
somehow validated in accordance with a defined
procedure. At present, safety standards like DO-
178B only request this if a verification of the
generated results is omitted. The definition of a
dedicated test suite for code generator validation in
combination with the use and enforcement of a safe
subset for model design appears another promising
approach. In any case, it is reasonable to implement
further measures to safeguard code generation. The
main challenge facing the use of code generation is
not qualification of the tool, but still a combination of
process adoption and project member training.

7. References

[1] The MathWorks Inc (product information),
www.mathworks.com/products, 2007.

[2] dSPACE. TargetLink 1.3p2: Production Code
Generator. http://www.dspace.com, 2007.

[3] Stürmer, I., Weinberg, D., and Conrad, M.:
“Overview of Existing Safeguarding Techniques for
Automatically Generated Code”, Proc. of 2nd Intl.
ICSE Workshop on Software Engineering for
Automotive Systems (SEAS'05), St. Louis,
Missouri, USA, May. 21, pp. 1-6, 2005.

[4] IEC 61508: Functional Safety of Electrical
/Electronic/Programmable Electronic Safety-
Related Systems, International Electrotechnical
Commission, 1999.

[5] Ueda, T., Ohata, A., “Trends of Future Powertrain
Development and the Evolution of Powertrain
Control Systems”, Proc. of 30th Int. Congress on
Transportation Electronics (Convergence 2004),
Detroit, Michigan, USA, SAE #2004-21-0063, pp.
439-449, Oct 2004.

[6] Authors: "Title of Paper", Name of the conference,
Location (Town, Country), Year of conference.

[7] Edwards, P.D. “The Use of Automatic Code
Generation Tools in the Development of Safety-
Related Embedded Systems”, Vehicle Electronic
Systems, Europ. Conference and Exhibition, Jun
1999.

[8] Stürmer, I., Conrad, M., Dörr, H., Pepper, P.:
Systematic Testing of Model-based Code

Generators, IEEE Transactions on Software
Engineering, Vol. 33(9), Sep 2007.

[9] Beine, M., Eisemann, U., Wewetzer, C.: Quality
Assurance Aspects and Activities in Automotive
Model-based Development, Automotive Safety &
Security, Jul 2006.

[10] Junker, F., Glöe, G.: “Guaranteed Product Safety
According to the IEC 61508 Standard”, RealTime,
Vol. 1, pp. 28-29, 2003.

[11] Lefarth, U., Baum, U., Beck, T., and Zurawka, T.,
“ASCET-SD – Development Environment for
Embedded Control Systems”, Proc. of IFAC
Symposium on Cumpter Aided Control System
Design, Gent, Apr 1997.

[12] RTCA/DO-178B, “Software Considerations in
Airborne Systems and Equipment Certification”,
Requirements and Technical Concepts for Aviation,
Inc., Dec 1992.

[13] Conrad, M., “Using Simulink and Real-Time
Workshop Embeddd Coder for Safety-critical
Automotive Applications”, Proc. of Dagstuhl
Seminar MBEES ’07, pp. 41-50, 2007.

[14] MathWorks Automotive Advisory Board, Control
Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow, Version 2.0”, 2007.

[15] Daimler Model-based Development Guidelines
(DCX:2007). http://www.eguidelines.de, internal,
2007.

[16] Model Engineering Solutions, http://www.model-
engineers.com, e-Guidelines Server, 2007.

[17] The Mathworks Inc, Simulink Model Advisor,
www.mathworks.com/products, 2007.

[18] Ricardo, Inc., MINT,
http:/www.ricardo.com/mint, 2007.

[19] Model Engineering Solutions, The Model Examiner
M-XAM, www.model-engineers.com, 2008.

[20] Ameluxen, C., Legros, E., Schürr, A., Stürmer, I.,
“Checking and Enforcement of Modeling Guidelines
with Graph Transformations”, Proc. of Application of
Graph Transformations with Industrial Relevance
(AGTIVE), LNCS, Springer, 2007.

[21] Fey, I., Stürmer, I.: Quality Assurance Methods for
Model-based Development: A Survey and
Assessment. SAE World Congress, SAE Doc.
#2007-01-0506, Detroit, 2007.

