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Certification of Model-based Code Generators – Open Problems 
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Ingo Stürmer1, Model Engineering Solutions, Friedrichstr. 50, 10117 Berlin, Germany 
 
 
 

Abstract: Model-based development and automatic 
code generation have become an established 
approach in embedded software development for 
both the automotive and avionics sectors. The use of 
a code generator can lead to significant 
improvements in productivity in the software 
implementation phase. Moreover, early quality 
assurance at the model level can lead to a higher 
level of code quality. However, automotive or avionic 
software is very often deployed in safety-critical 
systems and as a result, may not contain errors. In 
this context it is crucial that the use of a code 
generator and its tool chain (editor, compiler, linker, 
loader, etc.) does not incorporate errors in the target 
system and leave them undetected. In general, this 
cannot be fully avoided even when using a code 
generator proven to be ‘correct-by-construction’. 
Inappropriate modeling or the faulty configuration of 
the code generator could, for example, lead to 
erroneous generated code. This paper discusses 
how code generators and generated code can be 
safeguarded by means of tool certification (also 
termed qualification in the avionics sector) in respect 
to safety standards that are relevant for the 
automotive and avionics sectors. Specific, tool-
related problems will be discussed and illustrated 
with practice-relevant examples; possible solutions 
for safeguarding model-based code generators will 
be presented. 

Keywords: Tool certification, qualification, model-
based development, test suite, guidelines, checks. 

1. Model-based Code Generation 

In model-based development (MBD), the seamless 
use of executable models is characteristic of function 
and control system design and the subsequent 
implementation phase. This means that models are 
used throughout entire control system development: 
from the preliminaries to the detailed design. Such 
models are designed using popular graphic modeling 
languages, such as Simulink and Stateflow from 
The MathWorks [1]. 
In the first design stage, a physical model is created, 
which is derived from the requirements specification 
(see Fig. 1). The physical model describes the 
behavior of the control function to be developed, 
containing transformation algorithms related to 
continuous input signals as well as incoming events 

or states. These algorithms are usually described 
using floating-point arithmetic.  
Since the physical model focuses on the design of 
the control function and on checking its functional 
behavior with regard to the stated requirements, it 
cannot serve directly as a basis for production code 
creation. Implementation details, which are the 
prerequisite for automatic coding, are not considered 
here. Therefore the physical model needs to be 
manually revised by implementation experts with 
regard to the requirements of the production code 
(e.g. function parts are distributed between different 
tasks). For example, in order to enhance the model 
from a realization point of view, the floating-point 
arithmetic contained in the physical model is 
adjusted to the fixed-point arithmetic used by the 
target processor. If fixed-point arithmetic is used, the 
model must be augmented with necessary scaling 
information in order to keep imprecision in the 
representation of fixed-point numbers as low as 
possible. Apart from the change in the type of 
arithmetic, it may be necessary to substitute certain 
model elements that are not part of the language 
subset supported by a particular code generator. 
Furthermore, it is often necessary to restructure the 
behavioral model with regard to a planned software 
design.  
The result of this evolutionary reworking of the 
physical model is what we call an implementation 
model. The implementation model can be used as a 
basis for (A) manual coding by a software developer 
(not shown in Fig. 1), or (B) automatic code 
generation with a code generator (see Fig. 1). The 
implementation model contains all the information 
that is needed for code generation and enables the 
creation of efficient C code by the code generator. 
Code efficiency is vital, due to the limited resources 
of the embedded system running the generated 
code. Code generators that are capable of 
translating MATLAB Simulink and Stateflow models 
into efficient production code include TargetLink [2]1 
and the Real-Time Workshop/Embedded Coder [1].  
Depending on the development stage and purpose, 
the code is generated for the development computer, 
in most cases a standard PC (Fig. 1, right). In this 
case, a classical compiler / linker combination is 

                                                            
1 TargetLink uses its own graphical notation for code 

generation (TargetLink blockset), which is based on the 
Simulink modeling language. 
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used to translate the generated code into an 
executable. For the target hardware (typically an 
evaluation board similar to the embedded system), a 
cross-compiler is required. Here a linker and loader 
build and load the binary code onto the embedded 
device. The tool chain established by the modeling 

tool (editor and simulator), the tools for model-to-
code translation (e.g. code generator, (cross-) 
compiler, linker, loader), and finally the target 
hardware itself make up the code generation tool 
chain (Fig. 1).  

 
Figure 1: Model-based code generation 

Model-based code generation is one of the principal 
advantages of model-based development. The use 
of a code generator leads to significant productivity 
improvements in the software implementation phase. 
Individual studies have shown a reduction in 
software development time by up to 20% through 
code generation [5]. If the manual verification 
process at the code level can also be reduced, 
savings of up to 50% are reported. This conforms 
with internal information provided by other users. In 
summary, productivity can increase by up to 50% 
compared with traditional manual coding. Moreover, 
the level of quality gained by early quality assurance 
at the model level can lead to high quality code, 
provided that the code generator works reliably. As a 
result of these characteristics, there is a strong 
industrial demand for code generators.  
Some people still express reservations about using a 
code generator for safety-related software 
development. This may be due to the fact that code 
generators are not as mature as established C or 
ADA compilers. The technological risk of a code 
generator can be high, because they (1) are used by 
a relatively small group of developers, and (2) face a 
high rate of technological innovation causing new 
versions to appear in short cycles. As a result, formal 
proof of code generator correctness is unfeasible in 
practice. For this reason, productivity improvements 
that can be achieved with model-based code 
generation tools cannot be fully exploited. The 
generated code must still be checked with the same 
time and cost-intensive effort as manually written 

code, even though intensive quality measures have 
already been spent on the model. A survey of quality 
assurance methods for model-based development 
with code generation is provided in [3].  
Model-based code generation is a new paradigm 
that makes new demands on the development 
process and poses additional questions concerning 
the certification of systems. An important and 
generally accepted approach for increasing 
confidence in code generation is to use a certified or 
qualified code generator. Apart from correctness 
aspects, there are many benefits to be expected 
from using a certified code generator:  
• Higher quality of generated code (number of 

errors, readability, traceability) in comparison to 
manual code. 

• Consistent level of code quality. 
• Consistency between specification and software. 
• Reusability of executable specifications in 

subsequent projects. 
• Internal development of software in 

organizations / departments with an insufficient 
number of implementation specialists. 

• More efficient realization of the implementation 
phase in software development. 

Code generation relies on software that can 
obviously never be completely free from faults or 
errors. This is the main reason for the ongoing 
debate regarding the use of code generation for 
safety-related systems. However, the use of code 
generators is recommended from the point of view of 



 Page 3/8 

the development process, and there is some advice 
to be found in the different safety standards 
(elaborated in Chapter 4). We will, however, first 
focus on specific model design problems, which 
directly influence the quality of the code generated 
from the implementation model.  

2. Problems with Model-based Code Generation 

There are many sources of error that can be 
identified within the model-based code generation 
process. One example are design errors, which are 
caused by inappropriate design of the (physical) 
model with respect to its functional requirements or 
due to misunderstandings regarding the semantics 
of the modeling language (a survey on all possible 
errors in the model-based code generation tool chain 
is provided in [21]). The misuse or misunderstanding 
of a modeling language used for code generation will 
be discussed next. 

Example 1 

 

Figure 2: Buzzer realized as a flowchart (variant A) 

The following two realizations of a buzzer exemplify 
the need for quality assurance methods on the 
model design level. The first realization (Figure 2) 
was created at an early development stage of a 
typical embedded software development project for 
an automotive system. The model contains several 
problems that are not obvious at first glance 
(especially for flowchart novices). However, the two 
possible and semantically comparable realizations of 
a buzzer are presented in Figure 2 (flowchart, variant 
A) and Figure 3 (Stateflow, variant B). The 
generation of an acoustic warning (beep) is 
controlled by the flag BEEP_flag_beep. When 
initially activated, the flag for beep activation 
BEEP_flag_buzzer is turned to true (1) during t_tON. 

After t_tON the flag is turned back to false (0). The 
buzzer beeps three times. In variant A, which was 
created at an early development stage of the project, 
the buzzer is realized as a flowchart diagram that 
typically consists of transitions and connective 
junctions. A connective junction defines a decision 
point between possible paths of a transition, whereas 
a transition can bear a complex label for checking 
specific conditions (e.g. runs > 0) and for performing 
actions (e.g. counter++;). This modeling paradigm is 
comparable to if-then-else control structures used in 
e.g. C. The appropriate use of flowcharts for 
automatic controller code implementation often 
produces efficient C code with little overhead. 
Modeling with flowcharts, however, allows quasi free 
C code programming. The assignments in the curly 
braces, for example, can contain an arbitrary number 
of C statements. As a consequence, classical 
programming errors can occur, such as the faulty use 
of a bitwise AND (&) instead of a logical one (&&). 
Such human sources of error are often neglected or 
underestimated in the literature, e.g. [7]. Inappropriate 
modeling must be considered as an additional error 
source. Timing behavior, for example, such as the 
fractions of time the buzzer is activated or disabled, is 
realized by incrementing the local counter variable. 
This kind of modeling temporal behavior is often used 
by Stateflow novices. However, when using the model 
for production code generation, such modeling of 
temporal behavior implies intrinsic errors. Timing is no 
longer independent of the processor’s execution 
speed or the time for computations assigned by the 
operating system respectively. In variant A, the 
flowchart realization of the buzzer is more technical 
rather than intuitive, since the functionality of the 
buzzer is, in principle, state-based. Essentially, the 
expected improvements in efficiency on the code level 
are largely compensated for by the aforementioned 
disadvantages.  

 

Figure 3: Buzzer realized in Stateflow (variant B) 
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The realization of the buzzer as a Stateflow state 
machine (Figure 3) is easier to understand intuitively. 
In variant B, temporal behavior is modeled by using 
Stateflow’s after operator, which allows a precise 
definition of how long a state is activated, e.g. when 
the transition from state On to Off is executed. Timing 
is ‘incremented’ by using the Stateflow CLK event. In 
doing so, timing is independent of the processor’s 
execution speed or resource allocations of the 
operating system. In contrast to variant A, this variant 
is easier to parameterize (e.g. for double beeps). In 
summary, we can see that on the one hand, modeling 
by using states and events increases the 
understandability and readability of the model, while 
on the other hand, the use of states and events is 
problematic in projects where resource consumption 
(e.g. required RAM/ROM size) is of decisive 
importance, since both produce a large overhead.  

For the reasons stated above, a compromise between 
understandable modeling and code efficiency must be 
found. Modeling guidelines must clarify the 
advantages and disadvantages of different modeling 
techniques and patterns. It is also advisable to use a 
‘safe-subset’ of the modeling language in order to 
prevent problematic patterns in generated code, 
which cannot be fully avoided even when using a 
code generator that is considered to be ‘correct-by-
construction’. An example for this statement is given 
next. 

Example 2 

 

Figure 4: Stateflow chart with potential ‘dead’ 
transition path 

Figure 4 shows a simplified detail of a complex 
Stateflow chart. This chart consists of 2 super states 
(A and B) as well as two sub-states (B1. and B.2). 
There are several transition paths originating from 
state A. One path goes from state A to sub-state B.2 
(highlighted with a red dashed line). Within this 
pathway, two conditions are checked whether the 
condition flag equals two. At first glance, this way of 
modeling a control flow does not seem problematic. 
But a correct code generator translates the pattern 
shown in Figure 4 into the code pattern shown in 
Figure 5. 

As we can see, the code generator generated a 
correct, but not optimized, code pattern that 
identically reflects the behavior of the model. Only 
analytical quality assurance methods on code level, 
e.g. structural testing or a code review, can detect 
such problematic patterns on code level. This means 

that even having a correct or certified code generator 
does not imply that quality assurance methods on 
code level can be fully omitted. A typical solution to 
prevent the use of such modeling patterns is the 
application of modeling guidelines and checking the 
models with regard to modeling guideline compliancy 
(elaborated in Chapter 5.2). 

3. Code Generation for Safety-related Systems 

The trend towards increasing model-based 
application development also extends to safety-
relevant systems. However, more stringent 
developmental requirements must be fulfilled if such 
systems should be subject to certification. The 
principal expectation is that the methods used to 
design the system are all state-of-the-art, thus 
everything possible has been done to ensure that 
safety is guaranteed. General requirements on the 
development of safety-related systems are usually 
summarized in standards, such as DO-178B for 
avionic software, or IEC 61508 for E/E systems. In 
addition to providing certification of the system under 
development, these standards serve to define more 
or less specific demands for using specific tools for 
automating development steps. 
Both software tools and development tool chains 
offer potential sources of error. Normally errors 
produced by development tools have no direct 
influence on the product itself. However, this is not 
the case for tools like compilers and code 
generators. When developing safety-relevant 
systems, it is particularly important to ensure that the 
use of a code generator and its tool chain (editor, 
compiler, linker, loader, etc.) does not incorporate 
errors into the target system and leave them 

 
Figure 5: Code pattern generated from Figure 4 



 Page 5/8 

undetected. Certification institutions therefore never 
certify source code on its own, but only in connection 
with the corresponding machine codes and usually 
when integrated in the whole system. 
3.1. Advantages of Code Generator Certification  

This is not sufficient reason to dispense with code 
generation in the first place. Other reasons, 
especially those relating to process improvement 
and development efficiency, underscore the need for 
qualified code generators: 
1. We are faced with continual tool improvement: 

this means a high rate of updates, since code 
generation for production is a relatively new 
technology. 

2. Taking this into account, the generated output of 
the tool has to be checked with the same time-
consuming effort as code that has been written 
manually, even though the types of errors 
produced by code generation are completely 
different to those found in manual coding. 

3. This drastically reduces potential improvements 
in productivity that can be brought about by 
automatic code generation. 

In general, the qualification of a software tool has the 
objective of compiling evidence of the tool’s high-
quality output, thus ensuring the use of the tool in 
the development of systems with safety-related 
aspects. 
Advantages that can be expected from the 
application of a qualified code generator, provided 
that a ‘safe subset’ of the modeling language is 
used(!), are as follows: 
• Decreased overall effort spent on verification 

and validation activities, e.g. (a) eliminating 
source code reviews for generated code parts, 
and (b) eliminating or minimizing the effort 
needed for unit testing.  

• Improved productivity of software development, 
especially in the software implementation phase.  

• Ensuring the controllability of rapid iterations in 
development.  

• Consistent or higher code quality despite the 
aforementioned points.  

How should we therefore safeguard the deployment 
of a code generator in the model-based development 
process? In such a way that allows errors induced 
into the development product to be discovered or 
completely circumvented, without resulting in a 
considerable reduction in efficiency of the 
development process. 
This is answered in part by existing safety standards, 
such as IEC 61508 [4] and DO-178B [12]. However 
since additional measures should be considered for 
safeguarding code generation, this is discussed in 
the next chapter. 

4. Safety Standards Applicable for Tool 
Certification 

The various applicable safety standards that we use 
today were published some time ago, so they give 
no explicit guidance for the application of model-
based development and the utilization of code 
generation. Future versions such as RTCA/DO-178C 
will be expanded with respect to this development 
paradigm. In any case, the general requirements 
with respect to product certification or development 
tool qualification can be adopted. The latter aspect is 
of major interest here. 
4.1 RTCA/DO-178B 
RTCA/DO-178B (Software Considerations in 
Airborne Systems and Equipment Certification 
Requirements) is an international standard, which is 
mandatory in all avionic software development. This 
standard focuses on the software development 
process. 
The qualification of a development tool can be 
handled in a similar way to the certification of the 
application software itself. In other words, qualifying 
a development tool such as a code generator does 
not mean proving its correctness. Instead, it is 
merely important to gain sufficient confidence in its 
correctness. In this context, the prerequisite for 
qualification is an assessment, which shows the 
conformance of the tool development process with 
the development requirements of the standard. Tool 
qualification is closely connected to the development 
and certification of a system and its criticality. This 
means that a tool that is issued with all its 
development documents in conformity with the 
standard could be seen as a qualifiable tool. 
4.2. IEC 61508 
The International Electrotechnical Commission (IEC) 
has submitted the international safety standard 
IEC 61508 [4], which is primarily concerned with 
safety-related control systems incorporating 
electrical / electronic / programmable electronic 
safety-related systems (E/E/PES). It also provides a 
framework, which is applicable to safety-related 
systems, irrespective of the technology on which 
those systems are based (e.g. mechanical, 
hydraulic, or pneumatic). For specific demands, the 
standard has been adapted to a particular industry 
as is currently the case in the automotive industry for 
certifying safety-related (software-based) E/E/EPS 
parts. 
In the context of IEC 61508, only compilers 
(translators) have so far been regularly subject to 
tool certification procedures. Compilers are 
assessed in two different ways: (1) the compiler or 
translator is certified against its respective language 
or process standards, (2) compilers or translators 
are assessed by their increased confidence from use 
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(fitness for purpose). In general, however, compilers 
are not certified in any way with regard to safety2. 
4.3. Examples of tool Certification w.r.t. Safety 
Standards 
Qualifiable code generators w.r.t. DO-178B, such as 
SCADE, which endorse a certification of the 
application software, do exist. They make it possible 
to reduce the total amount of the verification 
activities, without allowing them all to be omitted 
completely. However, their source language is not as 
popular as Simulink / Stateflow, and they perform 
only a limited number of optimizations. The latter is 
crucial for the automotive sector, where developers 
must deal with strict resource limitations 
ASCET-SD [LBB+97], developed by ETAS, is the 
first code generator for automotive embedded 
control systems that is certified as being fit for its 
purpose for SIL 3 according to IEC 61508 [10]. To 
gain this certificate, TÜV inspectors performed an in-
depth analysis of the ETAS tool chain to understand 
the purpose of its use and the tool’s development 
process. Based on this knowledge, the inspectors 
created a test plan according to IEC 61508 SIL 3. 
This test plan aims to access the ‘fitness for purpose’ 
of the code generator and includes, for example, 
formal characteristics of the documentation, software 
requirements specification, the test as part of design, 
development and integration, verification and 
validation (V&V). Following this test plan, the tool 
developer could show, for instance, “the existence of 
conclusive evidence for correct code generation.” 

5. Possible Solutions for Code Generator 
Certification  

Certification authorities such as the technical 
supervisory agencies TÜV (Technischer 
Überwachungsverein / German Technical Inspection 
Authority) or the British Standards Institution 
generally consider the qualification of an optimizing 
compiler for safety-relevant software as 
sophisticated. On one hand, it is a particularly 
complex tool and on the other, its behavior when 
applied to optimizations cannot be clearly 
comprehended. Code generators can be viewed in 
the same way, since the main focus of their work is 
on code optimization, at least in automotive 
applications. Moreover, code generators are not as 
mature as established compilers, which have been 
proven to be reliable in use and whose correct 
functioning is constantly validated by numerous 
programmers. 
Challenges from the tool supplier and the 
development management point of view are as 
follows: 

                                                            
2 [4], part 7, Appendix C4.3 

• At present, insufficient regulations and a lack of 
common rules for tool qualification hinder the 
tool supplier in defining an approved, long-term 
validation strategy.  

• A prerequisite for a valid qualification process is 
that all development information must be 
available. However, tool suppliers are usually 
unwilling to make their internal know-how public. 

• The focus of a tool supplier’s work is on the 
development itself and not on qualification 
procedures. 

• The qualification procedure is conducted for a 
particular tool. This means that qualifying a code 
generator does not consider the compiler, linker, 
etc. These tools either need to be qualified 
themselves or their results have to be checked 
manually each time they are used. 

• The costs of a qualification procedure are fairly 
high, at least when following the RTCA DO-178B 
approach. 

Considering the aforementioned qualification issues, 
there is obviously a need to define different 
approaches to efficiently safeguard code generation.  
5.1. Code Generator Certification via a Test Suite 
Since the use case of code generators is quite 
similar to that of compilers, it could be helpful to 
adapt the current practice for compiler validation. 
The utilization of test suites for the certification of 
compilers has been proven in use for Ada and C 
compilers. Although this does not fulfill the 
qualification requirements stipulated in DO-178B, it 
appears to be an efficient way of facilitating sufficient 
compliance with quality and reliability requirements. 
A general approach for validating a code generator 
(including examples) is documented in [8]. This 
approach could be used, for example, to generate 
those parts of such a test suite, which focus on 
optimization criteria. An important initiative of 
automotive manufacturers and suppliers are 
currently working on a test suite for code generators, 
see [9]. 
The advantages of utilizing a test suite as a 
qualification approach for code generators are as 
follows: 
• Cost-effective qualification and validation 

approach.  
• Modification and patches of the tool can be 

handled; ‘Delta Certificates’ can be assessed 
more easily and at lower cost compared to a 
complete qualification.  

• The input language of the code generator must 
not necessarily be considered completely. A 
subset can be defined and incrementally 
expanded.  

• A common view of the content and application of 
the test suite could emerge. At least if the major 
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constraints and a basic set of tests become 
public and even standardized.  

5.2. Use of a ‘Safe Subset’ 
IEC 61508-3, for example, highly recommends the 
use of a language subset for software development 
in accordance with SIL3 and SIL4. However, since 
IEC 61508 was written with traditional, (hand-coded) 
software development processes in mind, the 
standard does not cover advanced embedded 
software development technologies such as model-
based design and production code generation. A 
“safe subset” for modeling languages such as 
Simulink or Stateflow is often defined in general 
accepted model design guidelines such as those 
defined by the MathWorks Automtoive Advisory 
Board [14]. However, the MAAB guidelines do not 
directly address model patterns for code generators. 
Publicly available guidelines such as the MAAB 
guidelines are often supplemented by in-house sets 
of modeling guidelines, for example the Daimler 
Model-based Development Guidelines [15]. These 
are are hosted via the e-Guidelines Server [16], a 
web-based infrastructure for publishing and centrally 
administering different sets of guidelines. The 
Daimler guidelines provide a sound basis for 
checking the models used for production code 
generation. The adoption of such guidelines can 
significantly improve the efficiency of generated 
code.  
Apart from having guidelines for model-based 
development available, it is also important to check 
and ideally repair models with regard to guideline 
compliancy automatically. Static model analysis tools 
exist for the automatic verification of models with 
respect to modeling guideline compliancy. The 
purpose of these tools is to establish a framework in 
which to perform checks. The check itself is a 
program that verifies a particular guideline.  
Commercial static model analysis tools that are 
available for MATLAB Simulink, Stateflow, and 
TargetLink models are the Simulink Model 
Advisor [17], MINT [18], or the Model Examiner (M-
XAM) [19]. With such tools, model analysis is carried 
out by executing a selection of MATLAB M-scripts. 
The checks either come with the tool or can be 
supplemented as user-written checks. The results of 
model verification using the checks are compiled into 
reports. These show all detected guideline violations 
linked to the model. In a final step, the faulty model 
patterns must be investigated and, where necessary, 
corrected by the developer: a highly time-intensive 
and error-prone task. Case Studies have shown, that 
this task can be significantly reduced up to 50% by 
using automatic model repair functionality with tools 
such as the Model Examiner or MATE [20]. Up to 
90% of model rework with regard to modeling 
guidelines compliancy can be saved by using 

automatic repair functions with user feedback (so far 
only available with tool such as MATE). 
Advantages of using and enforcing modeling 
guidelines for production code generation are: 
• Deveopers can built upon expert know-how 

proven to be feasible in practice  
• It is ensured that a safe subset of the modeling 

language is used 
• Increase comprehensibility (readability) of a 

model 
• Facilitate maintenance 
• Ease testing, reuse, and expandability 
• Simplify the exchange of models between OEMs 

and suppliers 

6. Code Generation in Practice  

Model-based development of automotive 
applications has proved its effectiveness over the 
last 10 to 15 years. Furthermore, the utilization of 
code generation has begun to become established 
for series production in conjunction with the further 
development of optimizing code generators. 
Although the use of code generation appears natural 
in model-based development, project experience has 
shown that it cannot be considered a pure ‘push 
button’ approach; rather the whole development 
process has to be adjusted towards the aim of 
production code generation. This starts with the 
availability of appropriate modeling and design 
guidelines as well as company and project-specific 
guidelines, and ends with sophisticated quality 
assurance measures, cf. [21].  
Two major aspects must be taken into account when 
moving towards production code generation:  
• A consummate physical model is not necessarily 

an implementation model suitable for code 
generation. However, the physical model usually 
matches the structure of the specification of the 
function to be implemented.  

• Code safety/efficiency is strongly dependent on 
the use of appropriate modeling constructs.  

Thus, a conflict between comprehensibility and code 
efficiency arises. In practice, a compromise between 
both important aspects must be found in each 
specific project.  
Essentially, experts who are skilled with respect to 
the modeling paradigm are required. The influence 
of their knowledge on the quality of developed code 
is comparable to the influence of the programmer’s 
experience in code-based development. Overheads 
of generated code compared with manual code are 
usually caused by improper modeling or incorrect 
configuration of the code generator.  
As a result, the application of code generation for 
safety-critical systems is a feasible option, even 
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when there is no general means of qualification at 
hand. 

6. Conclusions 

Since model-based development began to become 
widespread in the application development of 
different automotive domains, code generation has 
become more and more common.  
This trend has thrown up a number of questions, 
which address the whole application development, 
especially when safety-critical systems are under 
development. More specifically, we are faced with 
the question as to whether tools used for automating 
manual transformation work need to be qualified or 
somehow validated in accordance with a defined 
procedure. At present, safety standards like DO-
178B only request this if a verification of the 
generated results is omitted. The definition of a 
dedicated test suite for code generator validation in 
combination with the use and enforcement of a safe 
subset for model design appears another promising 
approach. In any case, it is reasonable to implement 
further measures to safeguard code generation. The 
main challenge facing the use of code generation is 
not qualification of the tool, but still a combination of 
process adoption and project member training. 
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