I Lafoz

M A Mozas

O Charrier

C Fernández De La Hoz

IMA Systems Development and Configuration: From UML to Binary. A Proposal of UML Profile to be used with the ARINC 653 Standard

Keywords: IMA systems, partitioning, ARINC 653, UML profile, XML schema, qualified tools, SW architectural design, VxWorks

The ARINC 653 standard is used more and more often for Safety-Critical Systems in Aerospace. The experience from the design and implementation of this kind of systems introduces new considerations to take into account compare to classical software development workflow, mainly related to the objective of multiple applications running on the same system. The return of experience that is presented in this paper includes a proposed UML extension (via profile) that resolves the lack of UML modelling formalism for the ARINC 653 artefacts, the XML schema updates to fit the objective of application independency, a validated way of automatically generating code relating to all the ARINC 653 elements, an optimal framework for defining tests and required stubs, and the use of qualified tools to verify and generate the binary version of the system configuration tables.

Introduction.

The advantages of IMA architectures have been widely discussed and demonstrated in recent years (multiple applications sharing and reusing the same computing resources, software isolated from the underlying bus and hardware architecture, maximize reuse, reduction of the cost of changes in terms of re-test, etc.) [START_REF] Parkinson | Safety-Critical Software Development for Integrated Modular Avionics[END_REF]. Despite a number of IMA architectures and standards have been emerged, the ARINC Specification 653 has achieved the widest adoption in the avionics community [START_REF] Fernández De La Hoz | ARINC Specification 653. Avionics Application Software Standard Interface[END_REF]. The current paper presents the specific characteristics of the design of ARINC 653 systems in section 2, and proposes and describes in detail a UML extension to deal with this design in chapter 3. Chapter 4 is focused on the description of the use of XML schema for defining the configuration of this kind of system. Once the design and configuration phases are covered, chapters 5 and 6 present an automatic generation of the configuration tables and a qualified validation process of them. Furthermore, automatic generation related to ARINC 653 artefacts is also described in terms of code and, in chapter 7, in terms of partition tests and stubs. Chapter 8 shows the achieved experience with the technology described.

ARINC 653 Systems Design Specificities.

The classical software design and development workflows don't usually consider the partitioning requirements of IMA architectures. Moreover, the design of a complete partitions architecture becomes a challenge for the System Architect. The EADS-CASA experience in the design and development of complete IMA systems is here presented in terms of a set of criterions to guide the partitions selection and design. A partition based design must take into account both the available resources, such as budget (time and staff), CPU and memory, and some system requirements, such as DAL criticality level, flexibility and fault tolerance. The goal of the selection/design of the partitions procedure is to reach the best balance between the use of resources and the accomplishment of requirement by focusing on the impact of using partitioning with respect to the next Quality Factors:  Certification Effort. A higher DAL a higher development and overall verification cost. Nevertheless, the isolation between software with different DAL assignments allows the application of different processes according to the needs of each software partition.  Safety. The isolation between partitions prevents failure propagation.  Reusability. The reusability reinforces the well-defined software component functionality, suitable for software reuse, and reduces undesirable execution coupling of software verified in equivalent contexts.  Scalability. The isolation between software reduces the needs of regression testing in case of software changes and allows the introduction or removal of software without changing execution conditions. Some others possible quality factors could be considered for deciding the partitioning as Security, IO Partitions, Development Tool-Chain or Languages, etc., but they are out of the scope of this analysis. An iterative procedure is shown in Figure 1, in order to drive the trade-off between the impact on the considered parameters and the requirements and available resources and find the most beneficial solution. The detailed description of this iterative decision flow is out of the scope of this paper, nevertheless a brief view on it has been shown in order to justify some of the concepts presented.

Once the partitioning architecture is defined a new UML profile is proposed in order to deal with the lack of modelling formalism of the ARINC 653 elements: partitions, processes, inter-partitions communications, etc. Furthermore, the new UML extension [START_REF] Omg | UML 1.4 Specification[END_REF] allows integrating in the model the design of the partitions and the rest of the UML design in the first stages of the architectural design. Thus, a complete coherence checks of the whole architecture at the design level, which reduces the possible undetected design errors. The cost of a re-design of the partitioning architecture, in terms of modification of interfaces (APEX ports) and distribution of functionality, could be, in many cases, quite huge or just unacceptable. So, as soon as the partitioning design is jointly checked with the application software architecture, the reduction in the risk of a bad design is mitigated.

UML Extension for supporting ARINC 653.

UML/ARINC-653 profile has been created based on "XML Schema Element Relationship" (fig 5.2-1 in [START_REF] Fernández De La Hoz | ARINC Specification 653. Avionics Application Software Standard Interface[END_REF]), shown in Figure 2, and on "Service Requirements", (chapter 3.0 in [START_REF] Fernández De La Hoz | ARINC Specification 653. Avionics Application Software Standard Interface[END_REF]). This extension has been built for UML 1.4 [START_REF] Omg | UML 1.4 Specification[END_REF]. The main difference in doing it for UML 2.1 [START_REF] Omg | UML 2.1 Specification[END_REF] would be that stereotypes for ARINC-653 communication resources would apply to UML Ports instead of to Classes. The semantics of most of stereotypes and tags are the same as stated in [START_REF] Fernández De La Hoz | ARINC Specification 653. Avionics Application Software Standard Interface[END_REF]. Some new information has been added it order to support the actual OS implementation specificities (depending on the OS supplier), and to relate ARINC-653 entities with logical software entities.

UML Extension Stereotypes Description.

The following tables list the most relevant stereotypes and the related information defined for the profile. From the logical design point of view, there is complete independence about the actual mechanism used to distribute, to run and to communicate the software components. Even the code derived from logical design is independent of the component plane supposed, on the one hand, that the interfaces act like wrappers of the concrete implementation of the communication mechanism, which depends on the component design and, on the other hand, that active logical entities are not aware about where the execution thread comes from.

In the other side, it is important to take into account the nature of communication mechanisms supported by ARINC-653 resources (asynchronous, blockingtimed-out, unidirectional…) when designing the logical solution, particularly the interfaces definition, to guarantee the feasibility of getting advantage of flexibility in the mapping with the component plane.

Moreover, the policy for realization and usage of interfaces in the logical plane (polling, call-back registration…) must be defined before logical detailed design and implementation, because it can condition detailed design decisions and because it will became a requirement for the interface wrapper realization.

From other point of view, the fact of having a formalintegrated model for the solution, allows verifying the integral coherence of the whole design, by taking into account both the logical architecture (coming from the application domain), and the ARINC-653 services configuration and usage. Even due to the formality on the description, much correctness verification can be done automatically.

Besides, the integrated model allows making time analysis, by considering the performance constrains at logical plane (time and memory) in front of the ARINC-653 services configuration and behaviour (partition scheduling configuration, communication performance and memory configuration). Performance and Time constrains specification could be defined by using [START_REF] Omg | UML Profile for Schedulability, Performance and Time[END_REF] or [START_REF] Omg | UML Profile for Modelling and Analysis of Real-time and Embedded Systems (MARTE)[END_REF].

ARINC 653 XML Configuration Schemas.

As described in the ARINC 653 Specification Part 1 [START_REF] Fernández De La Hoz | ARINC Specification 653. Avionics Application Software Standard Interface[END_REF], an ARINC 653 system is configured using "Static Data Areas accessed by the OS". This XML Schema definition is the return of experience of Wind River and its customers, which includes hosting Flight Management, Data Management or Mission Computer applications on the same system in both civil and military aircrafts. This Schema has been proposed as a start point for the ARINC 653 XML Definition Subcommittee, led by Wind River, and counting for ARINC 653 Part 1 Supplement 3. This XML Schema definition has been used as reference for the UML profile definition.

Automatic Code Generation of ARINC 653

Artefacts.

One important advantage of formal models is to get the possibility of generating automatically some code, which is typically routine, tedious, and often error prone. In our scenario, it is not only one advantage, but also a requirement for making feasible the feature of trying out easily (in an efficient way) different architecture designs. At least, we consider beneficial the automatic generation of code for ARINC-653 configuration tables, interfaces implementation (wrapper and body), partitions procedures and processes procedures.

Anyway, the activity of code generation should be flexible enough to support different possible scenarios:  With respect to the source code, some aspects can differ from a project to other. o Coding language. o Safety level, and associated implementation constrains. o Policy for usage/realization of interface wrappers, etc.

 With respect to the ARINC-653 configuration tables, there can be specificities and even standard deviations, depending on the OS manufacturer.

So, the activity of code generation must take into account the architecture information and the pattern applicable for the output.

Application of the Proposed Extension to the Partition Testing.

One main advantage of using ARINC-653 (IMA) is the increase of testability at partition level, because of the clearly defined interfaces and the well defined and controlled partition execution environment (time and memory).

Once reached this point, it is a temptation to trying to take advantage from the ability of code generation described in chapter 5 (mainly relating with interfaces and configuration tables), as well as of the formalism required for defining the external partition interfaces (interface wrapper and realization/usage policy). So, a generic test framework solution, could hook with partition code, just by complementing the partition under test; that is, by realizing the interfaces required by the partition, using the interfaces realized by the partition, and respecting the budget of time and memory used by the partition.

As long as the required partition behaviour has been defined by means of formal UML behaviour diagrams, the test case could be described by using instances of Sequence diagrams extracted from State chart diagrams and Sequence diagrams (for checking requirements about sequencing and time constrains) with concrete data values (for checking requirements about algorithms and data transformation).

Return of Experience.

The technology described along this paper has been defined, implemented and successfully used in the framework of the Advanced Air Refuelling Boom System Project developed by the Military Transport Aircraft Division of EADS-CASA.

The UML profile has been applied in an actual ARINC 653 system created, tested and validated using Wind River's VxWorks 653 OS. It implements a separation in two layers at the Software Design Level, which allows multiple capabilities :

 Evaluation of different implementations keeping the Logical solution stable.  Verification of the coherence of the whole design and application time analysis.  Easy creation of test stubs for code running inside an ARINC 653 partition.

The return of experience shows easy modelling of an ARINC 653 approach with optimal results and important reduction of the coding time and the proportion of coding errors.

Configuration and development processes are also key factors for successful certification  Time and integration are where the challenges are, not the applications, the OS or the hardware Special emphasize should be put on these two areas from the start of a program. Both areas need to be carefully designed.

The right balance needs to be found between built-in configuration and data driven configuration for all parts of a system  Data driven configuration allows changes to be bring in with minimal impact, even during the certification cycle Use a unified and qualified process to manage all data driven configuration data

Conclusion

The presented ARINC 653 UML profile optimally extends standard UML for supporting partitioning design and allows connect it with a classical software component based design. The use of this new profile provides some clear advantages, as flexibility, feasibility, verifiability, reusability, etc., widely described along the paper. Besides, automatic code generation of both ARINC 653 elements and configuration tables is also provided, which increase the reliability and the reduction of effort and errors cost. Related to the configuration tables of an ARINC 653 the followed XML schemas policy has been described and the main advantages of its use have been also highlighted. Taking into account the application of all these concepts to Safety-Critical Systems, the certification point of view has been also considered. Special interest has been put in the qualified validation process of the mentioned ARINC 653 configuration tables, which allows directly translate them to binary. Finally, a feasible and reliable testing framework has been also proposed mainly focused to the partition testing.

Acknowledgement

Special thanks to the Military Transport Aircraft Division of EADS-CASA for the support during the development of this paper and for providing the frame of a concrete project environment, in which this technology has been developed.



 Testability. The clearly defined and controlled interface of a partition, besides the standard execution environment definition, makes the testing process and tools easier and more accurate.  Design Cost. The higher design cost must be considered in terms of data coupling, synchronization, coherence and complexity of interfaces between partitions. Moreover, are there a maximum affordable/reasonable number of partitions/ports from the design point of view?  Performance. Increasing the number of partitions produces a loss of performance due to the next issues: o Switching Partition Time. The context switching between partitions always implies a loss of time. This time directly depends on the operating system features. o Worst-Case Time Assignment. The time or minor frame assigned to a partition must support the worstcase execution time. o Worst-Case Memory Assignment. The memory assigned to a partition must support the worst-case execution resources usage. o Inter-Partition Communication. The spent of time of the standard mechanism for communicating partitions based on APEX ports is higher than other classical or intrapartition communication mechanisms.

Figure 1 :

 1 Figure 1: Iterative Decision Flow to Balance the Partitioning Design.

Figure 2 :

 2 Figure 2: UML Representation of XML Schema Elemnt Relationship.

Figure 3 :

 3 Figure 3: Example. Multi-Partition Solution.

Figure 4 :

 4 Figure 4: Example Alternative Intra-Partition/Multi-Process solution.

Figure 5 :Figure 6 :

 56 Figure 5: Code Generation Dependencies.

Table 1 :

 1 Module Stereotype Properties.

	Stereotype	Base Class		Tags
	Module	Class		ModuleName
				ModuleVersion
				TargetType*
	Tag	Type		Multiplicity
	ModuleName	NameType		[0..1]
	ModuleVersion	NameType		[0..1]
	TargetType	Enumeration	of:	[1]
		OsManufacturer		
	Stereotype	Base Class	Tags
	Partition	Class	PartitionIdentifier
			PartitionName
			Criticality
			SystemPartition
			EntryPoint
	Tag	Type	Multiplicity
	Partition Identifier	Integer	[1]	
	PartitionName	NameType	[0..1]
	Criticality	Enumeration of:	[1]	
		LEVEL_A,		
		LEVEL_B,		
		LEVEL_C,		
		LEVEL_D,		
		LEVEL_E		
	SystemPartition	Boolean	[1]	
	Entry Point	NameType	[1]	

*Target Type represents the specificities (and deviation from the standard) introduced by OS manufacturers.

Table 2 :

 2 Partition Stereotype Properties.

	Stereotype	Base Class	Tags
	Pseudo Partition	Class	Name
			PhysicalAddress
			Procedure
	Tag	Type	Multiplicity
	Name	NameType	[0..1]
	PhysicalAddress	Integer	[0..1]
	Procedure	NameType	[0..1]

Table 3 :

 3 Pseudo Partition Stereotype Properties.

	Stereotype	Base Class	Tags
	EntryPointClass*	Dependency	

Table 4 :

 4 Entry Point Class Stereotype Properties. Logical class that defines the EntryPoint method for the Process.

	<<EntryPointClass>>	dependency	relates	a
	<<Process>> with the Stereotype Base Class		Tags
	Process	Class			Name
					StackSize
					BasePriority
					Period
					TimeCapacity
					DeadLine
					EntryPoint
					Preamble*
	Tag	Type			Multiplicity
	Name	NameType		[1]
	StackSize	Integer			[0..1]
	BasePriority	Integer			[1]
	Period	Float			[1]
	TimeCapacity	Float			[0..1]
	DeadLine	Enumeration	of:	[0..1]
		Soft, Hard	
	EntryPoint	String			[1]
	Preamble	String			[0..1]

Table 5 :

 5 Process Stereotype Properties.

	Stereotype	Base Class		Tags
	QueuingPort	Class		PortName
				MaxMessageSizeDire
				ction
				MaxNbMessages
	Tag	Type		Multiplicity
	PortName	NameType		[1]
	MaxMessageSize	Integer		[1]
	Direction	Enum.	of:	[1]
		Source		
		Destination		
	MaxNbMessages	Integer		[1]

Preamble represents a method called before EntryPoint for specific partition initialization.

Following stereotypes are focusing on the Inter-Partition Communications modelling.

Table 6 :

 6 Queuing Port Stereotype Properties.

	Stereotype	Base Class	Tags
	Memory	Class	RegionName
	Requirements		Type
			SizeBytes
			PhysicalAddress
			Access
	Tag	Type	Multiplicity
	RegionName	NameType	[0..1]
	Type	String	[1]
	SizeBytes	Integer	[1]
	PhysicalAddress	Integer	[1]
	Access	String	[1]

Table 17 :

 17 Memory Requirements Stereotype Properties.

	PartitionPeriodStart	Boolean	[1]

Table 21 :

 21 Window Schedule Stereotype Properties.

	3.2 Modelling pattern for UML/ARINC 653.
	Based on this UML extension for ARINC-653, we
	propose a SW Design in two planes: a conventional
	design to deal with the logical architecture of the
	solution, based on elements from the application
	domain, and a component design based on ARINC-
	653 elements. Both planes are connected in specific
	points, which are interface realizations and
	Process/EntryPoint. This approach allows trying out
	and evaluating different implementation solutions
	while keeping stable the logical architecture.

Stereotype

Base