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Abstract:  The PAM project has developed 
techniques and tools based on constraint solving to 
assist the avionics platform design team to select the 
adequate number of resources, the topology of 
resource interconnection and the safe allocation of 
resources to functions and data-flows of the 
supported applications. We explain how avionics  
platforms and supported functions are modelled and 
what constraints are taken into account by the PAM 
approach. The approach is illustrated by a fire 
detection system case-study. 
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1. Preliminary Design Exploration  

In modern aircrafts, a global avionics platform made 
of interconnected shareable computing and 
communication resources is used to support both 
safety critical applications such as flight control and 
non-safety critical application such as flight operation 
assistance systems.  
 
The platform design team is in charge of selecting 
the adequate number of resources, the topology of 
resource interconnection and the safe allocation of 
resources to functions and data-flows of the 
supported applications. 
 
System design teams are in charge of the definition 
of the applications to be supported by the platform. 
They define the architecture of the applications in 
terms of functions and data flow exchanged between 
functions. They also define the level of redundancy 
and segregation between the various functions and 
data flows. But they are not responsible for the 
design of the supporting platform. 
 
So, at early stages of the Aircraft design, system 
designers and platform designers have to cooperate 
in order to assess whether an application could be 
supported by the avionics platform. As the design is 
not frozen, it is important that system and platform 
designers can easily explore a large number of 
potential solutions in order to help them find the best 
way to support the applications.  

 
The PAM (“Platform Architecture Management”) 
project aims at providing new methods and tools to 
support the design of avionics platform. The 
approach is based on models of system functional 
architecture, avionics platform architecture and 
constraints on the allocation of the application on the 
resources of the platform. These models are shared 
by system designers and platform designers. An 
important part of the PAM project, not covered by 
this paper, is the design of a tool that can be used by 
the design teams to build these models. In this paper 
we focus on a plug-in to the PAM tool that 
automates the exploration of platform designs. This 
tool is based on constraint solving techniques. 
 
In the following of this paper we first detail how 
platform and supported applications are modelled. 
We introduce a hypothetical Fire Detection System 
(FDS) as an example that illustrates the notions 
related with these models. Then we detail the 
constraints taken into account and we explain how 
they are formalised. We also describe the tool that 
supports the proposed method and, finally, we 
discuss the results we have obtained on the FDS 
case-study. 
 

2. Application and Platform Models 

 
The four models used to support trade-off analysis 
are:  

• a description of the application in terms of 
functions and exchanged data flows,  

• a description of the platform architecture in 
terms of interconnected computing and 
communication resources,  

• a set of constraints, called allocation 
directives, derived from safety, operational 
reliability and functional requirements, 

• allocations that relate each function and data 
flow with the supporting resources in the 
platform. 

 
An Ecore data model was created for all these 
categories of data with the TOPCASED model editor 



 

 

[1]. XML formats were derived from these models in 
order to import data from the tool being developed 
by AIRBUS. But we think that the model and related 
formats should also be compatible with notations 
devoted to the description of software architectures 
such as AADL [2]. 
 
In the following of this section, the models are 
illustrated with a hypothetical Fire Detection System 
(FDS). Its goal is to manage fire detection sensors 
that are located in four zones of the aircraft: Engine 
1 (E1) on the left wing, Engine 2 (E2) on the right 
wing, Auxiliary Power Unit (APU) at the rear of the 
aircraft and Main Landing Gear Bay (MLGB) 
between the wings at the middle of the aircraft. The 
FDS computes and sends a Fire Alarm to the Pilot 
Displays located in the cockpit. 
 
2.1. Functional Architecture Model 
 
The functional architecture connects computation 
activities called functions (denoted by rectangles) 
with communication activities called data flows 
(denoted by hexagons). 
 
The master level description groups together similar 
functions and data flows: the FireSensor function 
produces data FireSensorData that is sent to a 
function FireManagement. This function computes 
FireAlarm that is sent to the function 
FireAlarmDispay. 

 

Figure 1. FDS – Master level 

The occurrence level description is derived from the 
master level by drawing all the occurrences of the 
master functions and data flows. There are 8 
occurrences, 2 per zones, of FireSensor, 
FireSensorData and FireManagement. The names 
of occurrences indicate the zone (E1, E2, APU or 
MLGB) and the group of the sensor (LA or LB).There 
are 2 occurrences of FireAlarmDisplay, one for the 
pilot and the other one for the first officer. There are 
16 occurrences of data flow FireAlarm as it is 
computed by 8 occurrences of FireManagement and 
sent to 2 occurrences of FireAlarmDisplay 
(FDS_DU_L and FDS_DU_R).  
 

 
Figure 2 : FDS – Occurrence Level  

 
2.2. Platform Architecture Model 
 
The platform architecture connects together 
computing equipments such as CPIOM and Sensors 
denoted by rectangles and communication 
equipments as Remote Data Concentrator (RDC) 
and AFDX switches denoted by hexagons.  

Figure 3. FDS platform – Occurrence level. 

 

 
The FDS platform is made of 8 sensors (SensorNi, 
i:1..8), and eight RDC that collect the values 
produced by the sensors and send them via a field 
bus to one of the 4 CPIOM computers. The CPIOM 
computers send their data to the 2 Display Units 
(DU_L and DU_R) via the AFDX network. The AFDX 
network is made of 5 switches (AFDX_SW1, 
AFDX_SW2, AFDX_SW3, AFDX_SW4 and  
AFDX_SWi). 
 
The data model associate several attributes with 
platform equipments such as the side (either side 1 
or side 2) or the zone where the equipment is 
located in the aircraft, the electrical source (either 
DC1, DC2 or DCEss) of the equipment, the mass of 
the equipment, the volume needed to install the 
equipment, the type of media (either analogue, field 
bus, Arinc 429 or AFDX) if it is a communication 
equipment, the computation or communication 
capacity of the equipment, … 
 



 

 

Equipments that appear in blue in figure 3 are 
powered by DC1 and equipments in violet are 
powered by DC2. CPIOM1, CPIOM2,  AFDX_SW1 
and AFDX_SW3 are located on side 1 whereas 
CPIOM3, CPIOM4, AFDX_SW2 and AFDX_SW4 
are located on side 2. 
 
 
2.2. Directive Model 
 
Directives are provided by the user to guide the 
allocation search. Directives are derived from the 
requirements that the application has to enforce. In 
the current version of the approach, the directives 
that we consider are mainly derived from Safety or 
Operational Reliability requirements such as “Total 
loss of fire detection is classified Hazardous. No 
single failure shall lead to this situation. The failure 
rate shall be less than 1e-7 per flight hour”, “The 
failure of one FDS equipment shall not lead to flight 
cancel or delay”. 
 
To decide whether a design enforces its Safety 
requirements system designers apply safety 
assessment techniques such as the production of 
fault trees in order to generate safety results (list of 
failure scenarios, probabilities, …). This decision is 
often based on the assumption that some group of 
functions or data flows should fail independently. 
From these assumptions, System Designers derive a 
set of allocation directives such segregations or co-
locations. In [3] we presented a technique that 
automatically extracts segregation directives from a 
set of minimal scenarios generated by safety 
assessment tools. 
 
Segregation of a group of functions or data flows 
means that this group should not be supported by 
group of equipments with a common point of  failure, 
such if this failure occurs then all supported 
functions and data flows would also fail.  We 
consider that equipments sharing the same source 
of electrical power, being located in the same zone 
or the same side have a common point of failure. 
Co-location is the dual notion of segregation, i.e. co-
location of a group of functions means that this 
group should be supported by a group of 
equipments with a common group of failures. In the 
following we use notation seg_T(f1,f2) (resp. 
coloc_T(f1,f2)) to denote a segregation (resp. co-
location) directive with respect to common point of 
failure T for functions or data flows f1 and f2. 
 
2.3. Allocation Model 
 
An allocation associates a computation equipment to 
each function and a sequence of communication 
equipments to each data flow.  In most cases, an 
allocation is the result provided to the user by the 
method and tool described in this paper. But a partial 

allocation may also be provided by the user to guide  
the allocation search. A total allocation might also be 
provided by the user, in this case the tool would just 
check that the allocation is consistent with the 
constraints derived from the directives.  
 
The allocation table given in table 1 describes how 
the previous platform architecture could support the 
FDS system. All occurrences of FireManagement 
are supported by CPIOM1. Each occurrence of 
FireSensor and FireSensorData are supported by an 
occurrence of sensor and RDC. 

Table 1. Allocation table 

Resources Functions and data flows 

CPIOM1 FMj 

SensorNi 

i:1..8 

FSj 

j: E1LA, E2LB, APULA, 
APULB, E2LA, E2LB, 
MLGBLA, MLGBLB 

RDCi 

i : 1..8 

FSj 

j: E1LA, E2LB, APULA, 
APULB, E2LA, E2LB, 
MLGBLA, MLGBLB 

 

3. Formalization of Allocation Constraints 

 
Let Function be the set of functions and Data the set 
of data flows that appear in the functional 
description, we use two constant functions to 
formalize the functional description: orig: Data  
Function associates a data flow with its origin 
Function and dest : Data  Function associates a 
data flow with its destination Function.  
 
Let Cpu and Bus be the set of, respectively, 
computing and communication resources that 
appear in the platform description. We note Res = 
Cpu U Bus the set of all platform resources. Path is 
the set of all finite paths in the graph of resources, a 
path is a sequence r1; …; rn such that resource ri is 
connected to ri+1 in the platform architecture. The 
length of a path is the number of connected 
resources. The set of paths of length 1 is equal to 
Res.  
 
The main variable used to formalize allocation 
constraints is allo: (Function U Data)  Path ,  
allo(x)  is equal to y whenever x is allocated on 
resource y.  
 
We first explain two allocation constraints that are 
applicable to any system. 
 



 

 

Unique Allocation: Any function (resp. data flow) 
has to be allocated to one and only one computation 
resource (resp. communication path). 
forall t:Function, exists !  c:Cpu,  allo(t)=c 
forall d:Data, exists ! b:Path,  allo(d) = b 
 
Compatible connections: If a data flow d is 
allocated on a path then its origin function should be 
allocated to the first resource in this path and the 
destination function should allocated the last 
resource in this path.  
forall d: Data, allo(orig(d))= first(allo(d)) and 
allo(dest(d))= last(allo(d)) 
 
The system designers use the following families of 
allocation directives to constrain the possible 
allocations.  
 
Segregation: Segregated Functions or data flows 
shall not be allocated to paths with common points 
of failure of type T. Where T is an attribute 
associated with equipments in the data model such 
as equipment name, side, power source,... 
forall t1,t2:  seg_T, not( common_T(allo(t1), allo(t2))) 
where 
common_T(p1,p2) = exists r1: p1, r2: p2, T(r1)=T(r2)  
 
Co-location : Co-located Functions or data flows 
shall be allocated on paths that share a  common 
point of failure of type T.  
forall  t1,t2: coloc_T,  common_T(allo(t1), allo(t2)) 
 
Allocation : All Functions and data flows in F shall 
be allocated to a Path in R. 
forall  t: F , exists  r:R,  allo(t)= r 
 
Exclusion: All Functions and dataflows in F shall not 
be allocated to a Path in R. 
forall  t: F , forall  r:R,  not (allo(t)= r) 
 
We use auxiliary variable uscnx: Res*Res  {0,1} 
that is equal to 1 whenever the connection between 
two resources is used. uscnx is an auxiliary variable 
because it is defined in terms of the allo variable, it 
does not constrain the allocation of  resources. But it 
provides a very interesting indication of what 
connections could be removed in the platform 
architecture without problems. 
 
 This variable can be used to provide a quality 
measure on allocation solutions and to guide the 
search of good solutions.  For instance, we use as a 
search criterion the minimisation of the number of 
used connections: Σb:Path,c:Cpu length(b)*(uscnx(b,c) + 
uscnx(c,b))  as this should help to find architectures 
with the smaller number of useful communication 
and computing resources. 
 

4. Tool support 
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Figure 4 : Tool support for Allocation search and 
visualisation 

The three inputs of the allocation search and 
visualisation tool are: functional architecture and 
platform architecture descriptions, and a set of 
allocation directives (segregation, co-location, 
allocation and exclusion) in the XML format defined. 
 
The Allocation Constraint Generator reads the inputs 
and use them to generate a set of constraints as well 
as an optimisation criteria. The resulting file is sent 
to a Constraint Solver that tries to solve the 
constraints and find an allocation. The Allocation 
viewer function takes as input the allocation and 
shows graphically its effect on the function and 
architecture descriptions. 
 
The allocation constraint generator produces 
constraints compatible with the considered solver. It 
does not produce constraints as described in the 
previous section because they do not reflect the 
constraints that are used by the different tools that 
we have considered.  Minisat [4] solves Boolean 
logic equations, Satzoo solves {0,1} linear 
constraints. ILOG Solver solves more general 
constraints written in OPL language 
 
The allocation constraint generator analyses the 
inputs in order to produce constraints that will be 
solved more efficiently. For instance, it computes  
the set of allowed path in the platform architecture 
instead of adding constraints on allowed paths such 
as a path shall cross from side 1 to side 2 at most 
once. It is also possible to pre-compute paths with 
common points of failure with respect to the various 
attributes considered.  
 
We have developed an experimental Graphical User 
Interface that has two main windows: one for viewing 
the platform and the other for viewing the functional 
description. When the user launches the allocation 
search, a pop-up window lets the user select the 
allocation directive and search criterion to be used.  
If no solution is found then all the functions and data 
flows of the functional view are coloured in Grey. 
Otherwise, the result of the optimisation criteria is 
displayed. Functions and data-flows are coloured 



 

 

with the colour of the resource that was allocated to 
them.  
For instance, the two following picture show an 
allocation. We can quickly see that all 
FireSensorData occurrences related with group A 
(resp. group B) are supported by RDC that are 
powered by DC1 (resp. DC2) because they are 
coloured in Blue or Dark Grey (resp. Purple or Light 
Grey). To investigate allocations in more details, the 
user can point with the mouse on a resource of the 
architecture and this highlights the function or data 
flow that was allocated to it. In the following picture, 
by clicking on CPIOM1 in the platform view the user 
highlights functions FME1LA and FMAPULA.  
 
Finally, unused connections and resources of the 
architecture are coloured in Grey. For instance, in 
the next picture, RDC are connected to only one 
CPIOM and the ADCN connections and equipments 
are not used. 

 
Figure 5 : Visualisation of an allocation – 
Functional view 

 

 Figure 6 : Visualisation of an allocation - 
Platform view 

5. Case-study results 

5.1. FireSensor allocation study 
 
We studied the allocation of platform resources to 
the FDS system in two steps. We first looked at the 
FireSensor occurrences. So we used a restricted 
view of the architecture, that is described in Figure 5, 
where the AFDX switches and the display units are 
hidden.  
 
Allocation directives are used to force the allocation 
of occurrences of FireSensor function on Sensor 

resources and we consider that SensorN1, 
SensorN2 are in zone E1,  Sensor N3, SensorN4 
are in zone APU, SensorN5, SensorN6 are in zone 
E2 and SensorN7, SensorN8 are in zone MLGB: 
allocation({FSE1LA,FSE1LB},{SensorN1,SensorN2}) 
allocation({FSAPULA,FSAPULB},{SensorN3,Sensor
N4}) 
allocation({FSE2LA,FSE2LB},{SensorN5,SensorN6}) 
allocation({FSMLGBLA,FSMLGBLB},{SensorN7,Sen
sorN8}) 
 
Similarly we force the allocation of occurrences of 
FireManagement on CPIOM, we consider that zone 
E1 is on side1 and E2 is on side 2. We also suppose 
that CPIOM1 and CPIOM2 are on side 1 and 
CPIOM3 and 4 are on side 2: 
allocation({FME1LA, FME1LB }, {CPIOM1,CPIOM2}) 
allocation({FME2LA, FME2LB}, {CPIOM3,CPIOM4}) 
 
To enforce safety requirements, in each zone there 
shall be segregation of occurrences of FireSensor 
and FireManagement for group A and group B. 
Actually it is sufficient to segregate occurrences of 
FireManagement function: 
seg_name(FME1LA,FME1LB) 
seg_name(FME2LA, FME2LB) 
seg_name(FMAPULA,FMAPULB) 
seg_name(FMMLGBLA, FMMLGBLB) 
 
With this first set of constraints we obtained 256 
solutions with 16 used connections. This included 
the solution described in figures 5 and 6 that was 
proposed by System Architects. But we also found 
other topologies for the connection between the 
RDC and the CPIOM such as the one presented in 
the following picture where RDC7 is connected to 
CPIOM1 and RDC4 is connected to CPIOM4. 

 

Figure 7. A different allocation choice 

But if we consider that APU is on side 1 and MLGB 
is on side 2 and we place FMAPULA and FMAPULB 
on CPIOM1 or CPIOM3 and we place FMMLGBLA 
and FMMLGBLB on CPIOM2 or CPIOM4 then the 
only solution found is similar to what was proposed 
by the System Architects.   
 
5.2. FireAlarm allocation study 



 

 

 
After placing FireSensor occurrences on the platform 
we studied the placement of FireAlarm occurrences. 
The architecture considered includes the AFDX 
switches and the display units.   
 
We have considered a segregation directive that 
aims at avoiding that a single failure could lead to 
the loss of fire alarm from the two engines on both 
displays: 
seg_name(FME1LA_DU_L,FME2LB_DU_R) 
seg_name(FME1LB_DU_L,FME2LA_DU_R) 
 
The allocation proposed in the next figure uses 36 
connections. We notice that switch AFDX-SW_i is 
not used.  We were not satisfied by this allocation 
because CPIOM2 and CPIOM4 are connected to 
two switches AFDX_SW_2 and AFDX_SW_4 and 
CPIOM have usually only one AFDX connection. 
The tool did not provide other solutions with 36 used 
connections that would connect CPIOM and Display 
units to a unique switch. 
 

 
Figure 8.  Allocation proposed by the tool 

 
We proposed a simplified architecture with display 
units and CPIOMs connected to a unique AFDX 
switch and checked whether all the constraints were 
enforced. That is the case for the following  
allocation that uses 40 connections and 
consequently it was not proposed by the tool 
because it is less optimal with respect to the criterion 
we have used. The criterion we have used has to be 
reworked because it counts connections to path and 
not connections between equipments, so if several 
paths share an equipment then connections to this 
equipment will be counted more than once. One 
lesson learnt is that the user should be given the 
possibility to test possible solutions even if they are 
not optimal with respect to the criteria .  

 

Figure 9 . A better allocation 

The allocation described in the previous picture 
might not be accepted by the platform designers 
because it breaks a rule that states that the 
connection of equipment to the  network should be 
symmetrical.  Display units are not connected to a 
pair of symmetrical switches (AFDX_SW_1 and 
AFDX_SW_2 are symmetrical but AFDX_SW_1 and  
AFDX_SW_4 are not). We were not able to find a 
symmetrical allocation with four switches.  

6. Conclusion 

The proposed approach is consistent with industrial 
trend as constraint based allocation generation and 
design exploration is also under study at several 
industrial companies (automotive manufacturer [6] 
and drone manufacturer [7]). 
 
Several experiments were conducted to test the 
approach including the fire-detection case-study and 
another case study that involves a more complex 
AFDX network design. These case-studies are 
representative of early stages of the design where 
various architecture trade-offs have to be examined. 
The approach was quite successful as results similar 
to solutions proposed by platform designers were 
found without performance problems. All the 
underlying constraint satisfaction tools we have used 
were able to provide an answer within a few 
seconds. One drawback of the approaches based on 
Satzoo or Minisat is that when the architecture size 
increases the time to generate Boolean or {0,1} 
constraints becomes greater than constraint 
satisfaction time. This is not the case for the 
approach based on ILOG Solver.  
 
Once system designers have performed their 
preliminary allocation study the platform designer 
should be able to test whether all the system needs 
can be integrated into a unique platform. It is, in 
principle,  possible to merge all the constraints used 
for the preliminary allocation studies and try to solve 
them. In practice, if the number of resources and 
connections grows a lot it is likely that we will reach 
the limitations of constraint solving tools.  So we  will 



 

 

have to adopt an incremental approach in the 
allocation generation phase. For instance, one could 
start with a platform made of a small number of 
virtual communication and computing resources that 
are progressively refined if needed.  
 
The paper shows that early stages of the platform 
design could benefit from tools that support both the 
development process and constraint solving. These 
tools are mature enough to consider inclusion of the 
approach in the aircraft design process. 
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