
HAL Id: insu-02270112
https://insu.hal.science/insu-02270112

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint-based Design of Avionics Platform:
Preliminary Design Exploration

P. Bieber, Jean-Paul Bodeveix, Charles Castel, David Doose, M Filali, F.
Minot, Cédric Pralet

To cite this version:
P. Bieber, Jean-Paul Bodeveix, Charles Castel, David Doose, M Filali, et al.. Constraint-based Design
of Avionics Platform: Preliminary Design Exploration. 4th International Coongress on Embedded
Real Time Software and Systems (ERTS 2008), 3AF : Association Aéronautique et Astronautique de
France; SEE : Société de l’électricité, de l’électronique et des technologies de l’information et de la
communication, Jan 2008, Toulouse, France. �insu-02270112�

https://insu.hal.science/insu-02270112
https://hal.archives-ouvertes.fr

 PA

Constraint-based Design of Avionics Platform – Preliminary
Design Exploration

P. Bieber3, J.P Bodeveix2, C. Castel3, D. Doose3, M.Filali2, F. Minot1, C. Pralet3

1: AIRBUS, Toulouse, France
2: IRIT, Toulouse, France

3: ONERA, Toulouse, France

Abstract: The PAM project has developed
techniques and tools based on constraint solving to
assist the avionics platform design team to select the
adequate number of resources, the topology of
resource interconnection and the safe allocation of
resources to functions and data-flows of the
supported applications. We explain how avionics
platforms and supported functions are modelled and
what constraints are taken into account by the PAM
approach. The approach is illustrated by a fire
detection system case-study.

Keywords: Integrated Modular Avionics, Safety,
Constraint Solving

1. Preliminary Design Exploration

In modern aircrafts, a global avionics platform made
of interconnected shareable computing and
communication resources is used to support both
safety critical applications such as flight control and
non-safety critical application such as flight operation
assistance systems.

The platform design team is in charge of selecting
the adequate number of resources, the topology of
resource interconnection and the safe allocation of
resources to functions and data-flows of the
supported applications.

System design teams are in charge of the definition
of the applications to be supported by the platform.
They define the architecture of the applications in
terms of functions and data flow exchanged between
functions. They also define the level of redundancy
and segregation between the various functions and
data flows. But they are not responsible for the
design of the supporting platform.

So, at early stages of the Aircraft design, system
designers and platform designers have to cooperate
in order to assess whether an application could be
supported by the avionics platform. As the design is
not frozen, it is important that system and platform
designers can easily explore a large number of
potential solutions in order to help them find the best
way to support the applications.

The PAM (“Platform Architecture Management”)
project aims at providing new methods and tools to
support the design of avionics platform. The
approach is based on models of system functional
architecture, avionics platform architecture and
constraints on the allocation of the application on the
resources of the platform. These models are shared
by system designers and platform designers. An
important part of the PAM project, not covered by
this paper, is the design of a tool that can be used by
the design teams to build these models. In this paper
we focus on a plug-in to the PAM tool that
automates the exploration of platform designs. This
tool is based on constraint solving techniques.

In the following of this paper we first detail how
platform and supported applications are modelled.
We introduce a hypothetical Fire Detection System
(FDS) as an example that illustrates the notions
related with these models. Then we detail the
constraints taken into account and we explain how
they are formalised. We also describe the tool that
supports the proposed method and, finally, we
discuss the results we have obtained on the FDS
case-study.

2. Application and Platform Models

The four models used to support trade-off analysis
are:

• a description of the application in terms of
functions and exchanged data flows,

• a description of the platform architecture in
terms of interconnected computing and
communication resources,

• a set of constraints, called allocation
directives, derived from safety, operational
reliability and functional requirements,

• allocations that relate each function and data
flow with the supporting resources in the
platform.

An Ecore data model was created for all these
categories of data with the TOPCASED model editor

[1]. XML formats were derived from these models in
order to import data from the tool being developed
by AIRBUS. But we think that the model and related
formats should also be compatible with notations
devoted to the description of software architectures
such as AADL [2].

In the following of this section, the models are
illustrated with a hypothetical Fire Detection System
(FDS). Its goal is to manage fire detection sensors
that are located in four zones of the aircraft: Engine
1 (E1) on the left wing, Engine 2 (E2) on the right
wing, Auxiliary Power Unit (APU) at the rear of the
aircraft and Main Landing Gear Bay (MLGB)
between the wings at the middle of the aircraft. The
FDS computes and sends a Fire Alarm to the Pilot
Displays located in the cockpit.

2.1. Functional Architecture Model

The functional architecture connects computation
activities called functions (denoted by rectangles)
with communication activities called data flows
(denoted by hexagons).

The master level description groups together similar
functions and data flows: the FireSensor function
produces data FireSensorData that is sent to a
function FireManagement. This function computes
FireAlarm that is sent to the function
FireAlarmDispay.

Figure 1. FDS – Master level

The occurrence level description is derived from the
master level by drawing all the occurrences of the
master functions and data flows. There are 8
occurrences, 2 per zones, of FireSensor,
FireSensorData and FireManagement. The names
of occurrences indicate the zone (E1, E2, APU or
MLGB) and the group of the sensor (LA or LB).There
are 2 occurrences of FireAlarmDisplay, one for the
pilot and the other one for the first officer. There are
16 occurrences of data flow FireAlarm as it is
computed by 8 occurrences of FireManagement and
sent to 2 occurrences of FireAlarmDisplay
(FDS_DU_L and FDS_DU_R).

Figure 2 : FDS – Occurrence Level

2.2. Platform Architecture Model

The platform architecture connects together
computing equipments such as CPIOM and Sensors
denoted by rectangles and communication
equipments as Remote Data Concentrator (RDC)
and AFDX switches denoted by hexagons.

Figure 3. FDS platform – Occurrence level.

The FDS platform is made of 8 sensors (SensorNi,
i:1..8), and eight RDC that collect the values
produced by the sensors and send them via a field
bus to one of the 4 CPIOM computers. The CPIOM
computers send their data to the 2 Display Units
(DU_L and DU_R) via the AFDX network. The AFDX
network is made of 5 switches (AFDX_SW1,
AFDX_SW2, AFDX_SW3, AFDX_SW4 and
AFDX_SWi).

The data model associate several attributes with
platform equipments such as the side (either side 1
or side 2) or the zone where the equipment is
located in the aircraft, the electrical source (either
DC1, DC2 or DCEss) of the equipment, the mass of
the equipment, the volume needed to install the
equipment, the type of media (either analogue, field
bus, Arinc 429 or AFDX) if it is a communication
equipment, the computation or communication
capacity of the equipment, …

Equipments that appear in blue in figure 3 are
powered by DC1 and equipments in violet are
powered by DC2. CPIOM1, CPIOM2, AFDX_SW1
and AFDX_SW3 are located on side 1 whereas
CPIOM3, CPIOM4, AFDX_SW2 and AFDX_SW4
are located on side 2.

2.2. Directive Model

Directives are provided by the user to guide the
allocation search. Directives are derived from the
requirements that the application has to enforce. In
the current version of the approach, the directives
that we consider are mainly derived from Safety or
Operational Reliability requirements such as “Total
loss of fire detection is classified Hazardous. No
single failure shall lead to this situation. The failure
rate shall be less than 1e-7 per flight hour”, “The
failure of one FDS equipment shall not lead to flight
cancel or delay”.

To decide whether a design enforces its Safety
requirements system designers apply safety
assessment techniques such as the production of
fault trees in order to generate safety results (list of
failure scenarios, probabilities, …). This decision is
often based on the assumption that some group of
functions or data flows should fail independently.
From these assumptions, System Designers derive a
set of allocation directives such segregations or co-
locations. In [3] we presented a technique that
automatically extracts segregation directives from a
set of minimal scenarios generated by safety
assessment tools.

Segregation of a group of functions or data flows
means that this group should not be supported by
group of equipments with a common point of failure,
such if this failure occurs then all supported
functions and data flows would also fail. We
consider that equipments sharing the same source
of electrical power, being located in the same zone
or the same side have a common point of failure.
Co-location is the dual notion of segregation, i.e. co-
location of a group of functions means that this
group should be supported by a group of
equipments with a common group of failures. In the
following we use notation seg_T(f1,f2) (resp.
coloc_T(f1,f2)) to denote a segregation (resp. co-
location) directive with respect to common point of
failure T for functions or data flows f1 and f2.

2.3. Allocation Model

An allocation associates a computation equipment to
each function and a sequence of communication
equipments to each data flow. In most cases, an
allocation is the result provided to the user by the
method and tool described in this paper. But a partial

allocation may also be provided by the user to guide
the allocation search. A total allocation might also be
provided by the user, in this case the tool would just
check that the allocation is consistent with the
constraints derived from the directives.

The allocation table given in table 1 describes how
the previous platform architecture could support the
FDS system. All occurrences of FireManagement
are supported by CPIOM1. Each occurrence of
FireSensor and FireSensorData are supported by an
occurrence of sensor and RDC.

Table 1. Allocation table

Resources Functions and data flows

CPIOM1 FMj

SensorNi

i:1..8

FSj

j: E1LA, E2LB, APULA,
APULB, E2LA, E2LB,
MLGBLA, MLGBLB

RDCi

i : 1..8

FSj

j: E1LA, E2LB, APULA,
APULB, E2LA, E2LB,
MLGBLA, MLGBLB

3. Formalization of Allocation Constraints

Let Function be the set of functions and Data the set
of data flows that appear in the functional
description, we use two constant functions to
formalize the functional description: orig: Data
Function associates a data flow with its origin
Function and dest : Data Function associates a
data flow with its destination Function.

Let Cpu and Bus be the set of, respectively,
computing and communication resources that
appear in the platform description. We note Res =
Cpu U Bus the set of all platform resources. Path is
the set of all finite paths in the graph of resources, a
path is a sequence r1; …; rn such that resource ri is
connected to ri+1 in the platform architecture. The
length of a path is the number of connected
resources. The set of paths of length 1 is equal to
Res.

The main variable used to formalize allocation
constraints is allo: (Function U Data) Path ,
allo(x) is equal to y whenever x is allocated on
resource y.

We first explain two allocation constraints that are
applicable to any system.

Unique Allocation: Any function (resp. data flow)
has to be allocated to one and only one computation
resource (resp. communication path).
forall t:Function, exists ! c:Cpu, allo(t)=c
forall d:Data, exists ! b:Path, allo(d) = b

Compatible connections: If a data flow d is
allocated on a path then its origin function should be
allocated to the first resource in this path and the
destination function should allocated the last
resource in this path.
forall d: Data, allo(orig(d))= first(allo(d)) and
allo(dest(d))= last(allo(d))

The system designers use the following families of
allocation directives to constrain the possible
allocations.

Segregation: Segregated Functions or data flows
shall not be allocated to paths with common points
of failure of type T. Where T is an attribute
associated with equipments in the data model such
as equipment name, side, power source,...
forall t1,t2: seg_T, not(common_T(allo(t1), allo(t2)))
where
common_T(p1,p2) = exists r1: p1, r2: p2, T(r1)=T(r2)

Co-location : Co-located Functions or data flows
shall be allocated on paths that share a common
point of failure of type T.
forall t1,t2: coloc_T, common_T(allo(t1), allo(t2))

Allocation : All Functions and data flows in F shall
be allocated to a Path in R.
forall t: F , exists r:R, allo(t)= r

Exclusion: All Functions and dataflows in F shall not
be allocated to a Path in R.
forall t: F , forall r:R, not (allo(t)= r)

We use auxiliary variable uscnx: Res*Res {0,1}
that is equal to 1 whenever the connection between
two resources is used. uscnx is an auxiliary variable
because it is defined in terms of the allo variable, it
does not constrain the allocation of resources. But it
provides a very interesting indication of what
connections could be removed in the platform
architecture without problems.

 This variable can be used to provide a quality
measure on allocation solutions and to guide the
search of good solutions. For instance, we use as a
search criterion the minimisation of the number of
used connections: Σb:Path,c:Cpu length(b)*(uscnx(b,c) +
uscnx(c,b)) as this should help to find architectures
with the smaller number of useful communication
and computing resources.

4. Tool support

Architectural View

Functional View

Allocation Directives

Allocation
Constraint
Generator

Allocation
Viewer

Constraints

Constraint
Solver

(ILOG Solver,
LPSolve,
Satzoo,…)

(.lpformat)

Allocations

Figure 4 : Tool support for Allocation search and
visualisation

The three inputs of the allocation search and
visualisation tool are: functional architecture and
platform architecture descriptions, and a set of
allocation directives (segregation, co-location,
allocation and exclusion) in the XML format defined.

The Allocation Constraint Generator reads the inputs
and use them to generate a set of constraints as well
as an optimisation criteria. The resulting file is sent
to a Constraint Solver that tries to solve the
constraints and find an allocation. The Allocation
viewer function takes as input the allocation and
shows graphically its effect on the function and
architecture descriptions.

The allocation constraint generator produces
constraints compatible with the considered solver. It
does not produce constraints as described in the
previous section because they do not reflect the
constraints that are used by the different tools that
we have considered. Minisat [4] solves Boolean
logic equations, Satzoo solves {0,1} linear
constraints. ILOG Solver solves more general
constraints written in OPL language

The allocation constraint generator analyses the
inputs in order to produce constraints that will be
solved more efficiently. For instance, it computes
the set of allowed path in the platform architecture
instead of adding constraints on allowed paths such
as a path shall cross from side 1 to side 2 at most
once. It is also possible to pre-compute paths with
common points of failure with respect to the various
attributes considered.

We have developed an experimental Graphical User
Interface that has two main windows: one for viewing
the platform and the other for viewing the functional
description. When the user launches the allocation
search, a pop-up window lets the user select the
allocation directive and search criterion to be used.
If no solution is found then all the functions and data
flows of the functional view are coloured in Grey.
Otherwise, the result of the optimisation criteria is
displayed. Functions and data-flows are coloured

with the colour of the resource that was allocated to
them.
For instance, the two following picture show an
allocation. We can quickly see that all
FireSensorData occurrences related with group A
(resp. group B) are supported by RDC that are
powered by DC1 (resp. DC2) because they are
coloured in Blue or Dark Grey (resp. Purple or Light
Grey). To investigate allocations in more details, the
user can point with the mouse on a resource of the
architecture and this highlights the function or data
flow that was allocated to it. In the following picture,
by clicking on CPIOM1 in the platform view the user
highlights functions FME1LA and FMAPULA.

Finally, unused connections and resources of the
architecture are coloured in Grey. For instance, in
the next picture, RDC are connected to only one
CPIOM and the ADCN connections and equipments
are not used.

Figure 5 : Visualisation of an allocation –
Functional view

 Figure 6 : Visualisation of an allocation -
Platform view

5. Case-study results

5.1. FireSensor allocation study

We studied the allocation of platform resources to
the FDS system in two steps. We first looked at the
FireSensor occurrences. So we used a restricted
view of the architecture, that is described in Figure 5,
where the AFDX switches and the display units are
hidden.

Allocation directives are used to force the allocation
of occurrences of FireSensor function on Sensor

resources and we consider that SensorN1,
SensorN2 are in zone E1, Sensor N3, SensorN4
are in zone APU, SensorN5, SensorN6 are in zone
E2 and SensorN7, SensorN8 are in zone MLGB:
allocation({FSE1LA,FSE1LB},{SensorN1,SensorN2})
allocation({FSAPULA,FSAPULB},{SensorN3,Sensor
N4})
allocation({FSE2LA,FSE2LB},{SensorN5,SensorN6})
allocation({FSMLGBLA,FSMLGBLB},{SensorN7,Sen
sorN8})

Similarly we force the allocation of occurrences of
FireManagement on CPIOM, we consider that zone
E1 is on side1 and E2 is on side 2. We also suppose
that CPIOM1 and CPIOM2 are on side 1 and
CPIOM3 and 4 are on side 2:
allocation({FME1LA, FME1LB }, {CPIOM1,CPIOM2})
allocation({FME2LA, FME2LB}, {CPIOM3,CPIOM4})

To enforce safety requirements, in each zone there
shall be segregation of occurrences of FireSensor
and FireManagement for group A and group B.
Actually it is sufficient to segregate occurrences of
FireManagement function:
seg_name(FME1LA,FME1LB)
seg_name(FME2LA, FME2LB)
seg_name(FMAPULA,FMAPULB)
seg_name(FMMLGBLA, FMMLGBLB)

With this first set of constraints we obtained 256
solutions with 16 used connections. This included
the solution described in figures 5 and 6 that was
proposed by System Architects. But we also found
other topologies for the connection between the
RDC and the CPIOM such as the one presented in
the following picture where RDC7 is connected to
CPIOM1 and RDC4 is connected to CPIOM4.

Figure 7. A different allocation choice

But if we consider that APU is on side 1 and MLGB
is on side 2 and we place FMAPULA and FMAPULB
on CPIOM1 or CPIOM3 and we place FMMLGBLA
and FMMLGBLB on CPIOM2 or CPIOM4 then the
only solution found is similar to what was proposed
by the System Architects.

5.2. FireAlarm allocation study

After placing FireSensor occurrences on the platform
we studied the placement of FireAlarm occurrences.
The architecture considered includes the AFDX
switches and the display units.

We have considered a segregation directive that
aims at avoiding that a single failure could lead to
the loss of fire alarm from the two engines on both
displays:
seg_name(FME1LA_DU_L,FME2LB_DU_R)
seg_name(FME1LB_DU_L,FME2LA_DU_R)

The allocation proposed in the next figure uses 36
connections. We notice that switch AFDX-SW_i is
not used. We were not satisfied by this allocation
because CPIOM2 and CPIOM4 are connected to
two switches AFDX_SW_2 and AFDX_SW_4 and
CPIOM have usually only one AFDX connection.
The tool did not provide other solutions with 36 used
connections that would connect CPIOM and Display
units to a unique switch.

Figure 8. Allocation proposed by the tool

We proposed a simplified architecture with display
units and CPIOMs connected to a unique AFDX
switch and checked whether all the constraints were
enforced. That is the case for the following
allocation that uses 40 connections and
consequently it was not proposed by the tool
because it is less optimal with respect to the criterion
we have used. The criterion we have used has to be
reworked because it counts connections to path and
not connections between equipments, so if several
paths share an equipment then connections to this
equipment will be counted more than once. One
lesson learnt is that the user should be given the
possibility to test possible solutions even if they are
not optimal with respect to the criteria .

Figure 9 . A better allocation

The allocation described in the previous picture
might not be accepted by the platform designers
because it breaks a rule that states that the
connection of equipment to the network should be
symmetrical. Display units are not connected to a
pair of symmetrical switches (AFDX_SW_1 and
AFDX_SW_2 are symmetrical but AFDX_SW_1 and
AFDX_SW_4 are not). We were not able to find a
symmetrical allocation with four switches.

6. Conclusion

The proposed approach is consistent with industrial
trend as constraint based allocation generation and
design exploration is also under study at several
industrial companies (automotive manufacturer [6]
and drone manufacturer [7]).

Several experiments were conducted to test the
approach including the fire-detection case-study and
another case study that involves a more complex
AFDX network design. These case-studies are
representative of early stages of the design where
various architecture trade-offs have to be examined.
The approach was quite successful as results similar
to solutions proposed by platform designers were
found without performance problems. All the
underlying constraint satisfaction tools we have used
were able to provide an answer within a few
seconds. One drawback of the approaches based on
Satzoo or Minisat is that when the architecture size
increases the time to generate Boolean or {0,1}
constraints becomes greater than constraint
satisfaction time. This is not the case for the
approach based on ILOG Solver.

Once system designers have performed their
preliminary allocation study the platform designer
should be able to test whether all the system needs
can be integrated into a unique platform. It is, in
principle, possible to merge all the constraints used
for the preliminary allocation studies and try to solve
them. In practice, if the number of resources and
connections grows a lot it is likely that we will reach
the limitations of constraint solving tools. So we will

have to adopt an incremental approach in the
allocation generation phase. For instance, one could
start with a platform made of a small number of
virtual communication and computing resources that
are progressively refined if needed.

The paper shows that early stages of the platform
design could benefit from tools that support both the
development process and constraint solving. These
tools are mature enough to consider inclusion of the
approach in the aircraft design process.

7. References
[1] Topcased, http://www.topcased.org/
[2] P. H. Feiler, D. P. Gluch, J. J. Hudak, “The

Architecture Analysis & Design Language (AADL):
An Introduction”, Technical Note, CMU/SEI-2006-
TN-011

[3] L. Sagaspe, G. Bel, P. Bieber, F. Boniol, Ch.
Castel, “Safe Allocation of Shared Avionics
Resources”, High Assurance System Engineering
(HASE), 2005.

[4] N. Eén, N. Sörensson, “An Extensible SAT-solver”,
SAT'03 proceedings, 2003

[5] Alloy, http://alloy.mit.edu/
[6] S. Kanajan, C. Pinello, H. Zeng, A. Sangiovanni-

Vincentelli, “Exploring Trade-offsBetween
Centralized versus Decentralized Automotive
Architectures Using a Virtual Integration
Environment”, 2006 IEEE/ACM Design
Automation and Test in Europe Conference
and Exposition (DATE 2006), Munich,
Germany, March 2006,

[7] C. Guettier, J.-F. Hermant, "Static Mapping of Hard
Real-Time Applications Onto Multi-Processor
Architectures Using Constraint Logic
Programming", CPPS 2005, Workshop on
Constraint Programming for Planning and
Scheduling, held in conjunction with the 15th AAAI
International Conference on Automated Planning
and Scheduling, Monterey, California, USA, 6-10
June, pp. 20-28, 2005

