

The indication of Martian gully formation processes by slope–area analysis

Susan Conway, Matthew Balme, John Murray, Martin C Towner, Chris H

Okubo, Peter M Grindrod

► To cite this version:

Susan Conway, Matthew Balme, John Murray, Martin C Towner, Chris H Okubo, et al.. The indication of Martian gully formation processes by slope–area analysis. The Geological Society, London, Special Publications, 2011, 356 (1), pp.171-201. 10.1144/SP356.10. insu-02276823

HAL Id: insu-02276823 https://insu.hal.science/insu-02276823

Submitted on 3 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	The indication of martian gully formation processes by slope-area analysis.							
2	*Susan J. Conway							
3	Work done at: Earth and Environmental Sciences, Open University, Walton Hall, Milton							
4	Keynes MK7 6AA UK tel:+44 (0)1908 659777 fax:+44 (0)1908 655151							
5	Now at: Laboratoire de planétologie et géodynamique, CNRS UMR 6112, Université de							
6	Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes cedex, France tel : +33 (0)251							
7	125570 Susan.Conway@univ-nantes.fr							
8								
9	Matthew R. Balme							
10	Earth and Environmental Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA							
11	UK tel:+44 (0)1908 659776 fax:+44 (0)1908 655151 m.r.balme@open.ac.uk							
12								
13	John B. Murray							
14	Earth and Environmental Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA							
15	UK tel:+44 (0)1908 659776 fax:+44 (0)1908 655151 j.b.murray@open.ac.uk							
16								
17	Martin C. Towner							
18	Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering,							
19	Imperial College London, SW7 2AZ, UK. tel:+44 (0)20759 47326 fax:+44 (0) 20 7594 7444							
20	m.towner@imperial.ac.uk							
21								
22	Chris H. Okubo							
23	Astrogeology Science Center, U.S. Geological Survey 2255 N. Gemini Dr.							
24	Flagstaff, AZ 86001, USA tel:+1 (928) 556-7015 fax:+1 (928) 556-7014 cokubo@usgs.gov							
25								
26	Peter M. Grindrod							
27	Department of Earth Sciences, University College London, Gower Street, London WC1E							
28	6BT UK tel:+44 (0)20 7679 7986							
29	p.grindrod@ucl.ac.uk							
30								
31	*Corresponding author (e-mail: s.j.conway@open.ac.uk)							
32								

- 33
- 34 Number of words: 12 624
- 35 Number of References: 180
- 36 Number of Tables: 2
- 37 Number of Figures: 11
- 38 The styles for each heading level:

39 Heading 1

- 40 *Heading* **2**
- 41 Heading 3
- 42 Running title: Martian gully formation processes.

44 **Abstract**

45 The formation process of recent gullies on Mars is currently under debate. This study aims to 46 discriminate between the proposed formation processes: pure water flow, debris flow and dry 47 mass wasting, through the application of geomorphological indices commonly used in 48 terrestrial geomorphology. We used high resolution digital elevation models of Earth and 49 Mars to evaluate the drainage characteristics of small slope sections. We have used the data 50 from Earth to validate the hillslope, debris flow and alluvial process domains previously 51 found for large fluvial catchments on Earth, and have applied these domains to gullied and 52 ungullied slopes on Mars. In accordance with other studies our results indicate that debris 53 flow is one of the main processes forming the martian gullies that we studied. The source of 54 the water is predominantly distributed surface melting, not an underground aquifer. We also 55 present evidence that other processes may have shaped martian crater slopes, such as ice 56 assisted creep and solifluction, in agreement with proposed recent martian glacial and 57 periglacial climate. Our results suggest that, within impact craters, different processes are 58 acting on differently oriented slopes, but further work is needed to investigate the potential 59 link between these observations and changes in martian climate.

60

62 Martian "gully" landforms were first described by Malin & Edgett (2000) and defined as 63 features that have an alcove, channel and debris apron with the general appearance of gullies 64 carved by water. Within this definition gullies have a wide range of morphologies (Fig. 1) 65 and they are found in abundance on steep slopes at mid latitudes in both hemispheres on Mars 66 (e.g., Heldmann & Mellon 2004; Heldmann et al. 2007). They are interpreted to be 67 geologically young features because of the pristine appearance and paucity of superposed 68 impact craters. Recent work has suggested that some gullies have been active in the last 69 3 - 1.25 Ma (Reiss et al. 2004; Schon et al. 2009). Malin et al. (2006) observed new, high-70 albedo, dendritic deposits (named light-toned deposits) located along the paths of some 71 gullies, and which formed between subsequent images taken by the Mars Orbiter Camera 72 (MOC). These light-toned deposits have been attributed to either dry mass wasting (Pelletier 73 et al. 2008; Kolb et al. 2010), or debris flow (Heldmann et al. 2010), involving up to 50 % 74 water (Iverson 1997). However, the origins of these deposits are still under debate and it is 75 not clear whether they are related to the formation processes of the gullies, or whether they 76 are formed by a secondary process.

77 The formation process for martian gullies in general is also still under debate. Three 78 main candidates exist: (1) aquifer outflow, (2) surface melting, or (3) dry granular flow. In 79 the aquifer model the water is either released from a near surface confined aquifer (Malin & 80 Edgett 2000; Heldmann et al. 2005) or brought up from depth by cryovolcanic processes 81 (Gaidos 2001). The main criticism of the aquifer based models is their failure to explain the 82 location of some gullies on isolated hills, impact crater central peaks, mesas and sand dunes. 83 Melting of near surface ground ice or surface ice has been proposed for the formation of 84 gullies under recent obliquity excursions (Costard et al. 2002). There is growing support for 85 this model with the most compelling arguments being: (1) the majority of gullies exists at 86 mid-latitudes, (2) the dominance of pole-facing gullies (Balme et al. 2006; Dickson et al.

2007; Kneissl *et al.* 2009) and, (3) observations of coincidence with sites of seasonal surface ice accumulation (Dickson & Head 2009). Granular flow has been suggested as either unassisted (Treiman 2003; Shinbrot *et al.* 2004), or carbon dioxide assisted flow (Musselwhite *et al.* 2001). The main criticism of the granular flow model is that it fails to replicate some commonly observed features of gullies, in particular channel sinuosity and complex tributary and distributary systems (McEwen *et al.* 2007).

93 There is also debate about the type of fluid involved: pure water, or brine. Whilst 94 pure water is not stable under the current surface environment on Mars, it can persist in a 95 metastable form (Hecht 2002), although its flow behaviour may be substantially different to 96 water on Earth (Conway et al. 2010a). Brines are a likely product of water sourced from 97 underground and, moreover, the presence of some common geological compounds can 98 substantially depress the freezing point of water (e.g., Chevrier & Altheide 2008). Brines are 99 less likely in a surface melting scenario, because water ice condensed from the atmosphere 100 will have had less opportunity to dissolve salts than an underground water body. Both pure 101 water and brine can support very high concentrations of entrained sediment, and form a flow 102 commonly termed a "debris flow". Debris flow is an attractive candidate process for forming 103 gullies, because large amounts of erosion and deposition can be brought about with only 10 to 104 50 % water content (Iverson 1997). Several authors have proposed debris flow as a potential 105 gully-forming mechanism on Mars due to the supply of loose sediment combined with the 106 steep slopes on which gullies are found (e.g., Malin & Edgett 2000; Balme et al. 2006). The 107 inclusion of debris might also limit evaporation and freezing of the water within the flow. 108 Debris flows on Earth are commonly triggered by sudden and intense or prolonged rainfall, 109 (e.g., Ben David-Novak et al. 2004; Decaulne & Sæmundsson 2007; Godt & Coe 2007; 110 Crosta & Frattini 2008; Morton et al. 2008) which is not a possible mechanism on Mars 111 under recent climate. However, debris flows can also be triggered by snowmelt, or melting 112 permafrost (Harris & Gustafson 1993; Decaulne et al. 2005). As noted by Lanza et al. (2010) 113 infiltration rates on Mars are likely to exceed the low discharge rates produced by a surface 114 melting source. Hence, overland flow is unlikely, unless there is a shallow impermeable 115 barrier, such as near-surface permafrost, or frozen layer formed at the base of the water flow 116 on contact with a cold substrate (Conway et al. 2010a). The dominance of infiltration satisfies 117 the conditions for debris flow triggering, sediment saturation and elevated pore pressures. 118 The lack of vegetation and the associated lower cohesion of the martian soil, compared to 119 Earth, potentially means that debris flows can be triggered on much lower slope gradients 120 than they are on Earth.

121 Gullies formed by dilute-water flow and debris flow on Earth can be visually very 122 similar to each other, and the basic structure of gullies can be formed by dry granular flow 123 (Mangeney et al. 2007). In many geomorphological problems, convergence of visual form 124 means that using images alone can make it very difficult to determine process. The ongoing 125 debate regarding the formation mechanisms of gullies on Mars is a prime example of this. For 126 example some workers have dismissed debris flow as a mechanism for forming martian 127 gullies, because they have not observed the levées that are one of the diagnostic features of 128 debris flow (e.g., Innes 1983). However, the ability to identify levées depends on viewing 129 geometry and sun angle; metre sized levées are often not visible on 25 cm/pixel air photos of 130 Earth. It is also possible that a combination of the lower gravity and different sediment type 131 on Mars means that the levées might be small compared to those on Earth.

The amount of water required to carve channels and transport and deposit sediment differs substantially between debris flow, water or brine flow (termed "alluvial" throughout the rest of this paper) and granular flow. Determining the amount of water available at the martian surface is important for questions of martian climate, hydrology and the study of potential martian habitats. Hence, an accurate determination of active processes is needed that 137 in turn can constrain the quantity of fluid required to form gullies. Quantitative 138 geomorphological study can provide the tools to discriminate between these three processes. 139 The recent availability of high resolution digital elevation models (DEMs) of Mars has 140 opened up the possibility of using quantitative geomorphic methods that have, until now, 141 been restricted to analysing landscapes on Earth. By taking well-developed slope-area 142 analyses and other geomorphic process indicators for the Earth and applying them to Mars, 143 this study aims to give insights into both the processes that formed the gullies on Mars and 144 the source of any water involved.

145 We used three geomorphic tools commonly applied in terrestrial geomorphology to 146 identify active processes forming gullies on Mars: slope-area plots (Fig. 2a), Cumulative 147 Area Distribution (CAD) plots (Fig. 2b) and wetness index maps. These analytical techniques 148 are described in more detail in the following sections. They are usually used to assess active 149 processes within catchment areas and other larger-scale landscape analyses. To test whether 150 they are equally applicable to smaller areas, we first applied them to five study sites on Earth 151 at an equivalent scale to gullies on Mars. Recently deglaciated areas were preferred as these 152 have: (1) a geologically short and well defined slope development history (i.e. since 153 deglaciation) and, (2) a glacial trough valley slope-profile which strongly resembles that of 154 fresh impact craters (compare relationships in Brook et al. (2008) and Garvin et al. (1999). 155 However, suitable quality data could not be found for the alluvial end-member process in 156 glacial environments, so two desert study sites were also included.

157 When we were satisfied that different geomorphic processes could be discriminated 158 on Earth using slope-area plots, CAD plots and wetness index maps, we applied these 159 analyses to slopes containing gullies on Mars.

160 Method

161 Slope-area and Cumulative Area Distribution (CAD) methods

The so-called "stream power law" was first proposed by Hack (1957) and has been widely used to investigate landscape evolution on Earth (e.g., Kirkby *et al.* 2003; Stock & Dietrich 2003). It is based on the detachment and transport limited rate of bedrock erosion, otherwise known as the shear-stress incision model, which is stated as follows:

 $S = kA^{-\theta} \tag{1}$

167 where S is local slope, A is upslope drainage area, k is a process related constant, which is 168 different for detachment and transport cases, and θ is the concavity index, which is process 169 dependent. It has also been noted that if the drainage area is plotted against the local slope for 170 drainage basins then process domains can be defined in log-log plots as shown in Fig. 2a 171 (after Montgomery & Foufoula-Georgiou 1993). These process domains were initially 172 schematic, based on few data, but have been supported by later work (e.g., Whipple & Tucker 173 1999; Snyder et al. 2000; Kobor & Roering 2004; Marchi et al. 2008). Brardinoni & Hassan 174 (2006) added an additional domain in which systems dominated by debris flow deposition, 175 occupy that part of the alluvial domain of Montgomery & Foufoula-Georgiou (1993), which 176 is located towards higher drainage areas and steeper slopes (Fig. 2a). This domain was 177 proposed from field observations in glacially modified area and has since been supported by 178 additional observations by Mao et al. (2009) in a different geomorphic setting. Process 179 information can be obtained both from the position of the data points relative to defined 180 domains on this slope-area plot, and from the trend of the data within these domains, for 181 example, whether the data points plot in a concave, convex, upward trending, or downward 182 trending curve (Tucker & Bras 1998). The general trend for an alluvial system is shown in 183 Fig. 2a, which passes through several process domains. The data for such plots are generally

derived from digital elevation models or topographic maps. The slope and contributing area data are either extracted from the channel only, or the whole drainage basin, depending on the focus of the study. In Fig. 2a these data are taken from every pixel contained within the catchment of the whole fluvial system (encompassing valley hillslopes, tributaries, main channels and estuary system) sampled at a single point in time.

189 Cumulative Area Distribution (CAD) is the probability distribution of points in the 190 landscape having a drainage area greater than any particular area, A^* . The log-log plot of 191 $P(A > A^*)$ against A^* gives information on the processes acting within a catchment (Perera & 192 Willgoose 1998; McNamara et al. 2006). Interpretation of this index varies, but generally it is 193 split into three areas: (1) at small drainage areas the plot usually evolves from convex to 194 concave, and represents diffusive erosion, (2) intermediate drainage areas are linear in a log-195 log plot and this is thought to represent incision, (i.e. channel formation), and (3) at large 196 drainage areas there are small steps where major tributaries join the channel (Fig. 2b). 197 McNamara et al. (2006) split domain (1) into three sub-domains (Fig.2b): (1a) a convex 198 section, representing hillslopes that diverge and do not gather drainage, (1b) linear and steep 199 section in a log-log plot, indicating hillslopes with convergent topography and, (1c) a 200 concave section, which they suggest is a reach dominated by pore pressure triggered 201 landsliding (including debris flows which are triggered by this mechanism).

The stream-power law (Eq. 1), and process interpretations in slope-area and CAD plots of Montgomery & Foufoula-Georgiou (1993), Brardinoni & Hassan (2006) and Tucker & Bras (1998) are based on empirical hydraulic geometry functions that are predicated on, and developed for, studies of large fluvial systems with channel morphology well-adjusted to perennial discharge. It could therefore be argued that these systems are unlike the hillslope systems in this study. Hence, we have tested these interpretive analysis techniques on small gully-systems on Earth where we know the active processes in order to demonstrate that they 209 can still be valid. It is, of course, necessary to bear in mind that there is always some 210 uncertainty in inferring process from landscape form, in part due to the intrinsic variability 211 and complexity of natural systems but also due to the effects of vegetation, tectonics, climate 212 and perhaps human interaction with the landscape. However, on Mars the surface processes 213 are likely to be simpler, with little chance of factors, such as rain, vegetation or human action 214 confounding the process domains, so these indices should provide an important addition to 215 the "visual" morphology when inferring process from form.

216 Application of slope-area method to Mars

217 The reduced gravitational acceleration of Mars shifts the slope-area boundary of the alluvial 218 slope-area domain vertically (dotted line in Fig. 2a). This means that the unchanneled domain 219 extends to higher slopes for a given drainage area for Mars (extending into the alluvial and 220 debris flow domains for Earth); however the hillslope domain is unaffected. Considering the 221 fact that gullies on Mars do not have large tributary-channel networks it seems unlikely that 222 this domain would be well developed. Appendix 1 gives details of the calculations performed 223 to account for the gravitational acceleration of Mars. The relative gradients and curvatures of 224 the trends described by the alluvial data in slope-area plots are unaffected by the reduced 225 gravity. We have not been able to revise the position of the domain added by Brardinoni & 226 Hassan (2006) as a function of gravitational acceleration because this domain was added 227 empirically, based on field observations.

The slope threshold for dry mass wasting or landsliding in loose material is the same as on Earth (Moore & Jakosky 1989; Peters *et al.* 2008). The slope thresholds for pore pressure failure are also unaffected by the difference in gravitational acceleration. Hence there would be no change to these process domains or trends for either dry mass wasting or pore pressure triggered processes such as debris flow.

We note that on Earth, vegetation cover, soil type and geology can have profound impacts on the slope values in a landscape for a given drainage area (Yetemen *et al.* 2010), but we would expect only variations in soil type and geology to affect the data on Mars. Despite these differences in surface properties, basins with similar processes on Earth show a similar pattern or trend of data, but displaced vertically in slope-area plots (Yetemen *et al.* 2010).

239 Datasets and generation of digital elevation models

240 Slope-area analysis is only possible with high quality elevation data, preferably at a 241 resolution better than 10 m per pixel, or 1:25 000 map scale (Montgomery & Foufoula-242 Georgiou 1993; Tarolli & Fontana 2009). For each of the terrestrial sites 1 m resolution 243 DEMs were derived from airborne laser altimeter (LiDAR) data. These were then 244 resampled to 5 m resolution to match the Mars data, as described below. Table 1 lists the 245 data sources for the study sites on Earth. The DEM for NW Iceland was produced from the 246 raw LiDAR point data collected by the UK's Natural Environment Research Council's 247 Airborne Research and Survey Facility in 2007 using techniques described by Conway et 248 al. (2010b) and correcting for between-track shifts using methods developed by Akca 249 (2007a, b).

For Mars we used four 1 m resolution DEMs produced using stereo photogrammetry from 25 cm per pixel High Resolution Science Imaging Experiment (HiRISE) images. The DEMs for sites PC, GC, KC and TS were produced by the authors from publically released HiRISE images using methods described by Kirk *et al.* (2008). Significant metre-scale random noise present in the DEMs of sites GC, KC and TS had a detrimental effect on preliminary slope-area analyses. Hence, all the DEMs were resampled to 5 m per pixel before the reanalysis was performed.

257 The precision of elevation values in the DEMs used here can be estimated based on 258 viewing geometry and pixel scale. For the DEM of site PC, the attendant image pair 259 PSP_004060_1440 (0.255 m/pixel) and PSP_005550_1440 (0.266 m/pixel) have a 12.6° 260 stereoscopic convergence angle. Assuming 1/5 pixel matching error and using a pixel scale of 261 0.266 m/pixel from the more oblique image, the vertical precision is estimated to be ~ 0.24 m 262 (cf. Kirk et al. 2008). DEMs for sites GC, KC and TS have a similar magnitude of vertical 263 precision. The pixel matching error is influenced by signal-to-noise ratio, scene contrast and 264 differences in illumination between images. Pattern noise can also be introduced by the 265 automatic terrain extraction algorithm, especially in areas of low correlation. Manual editing 266 is necessary to correct spurious topography in areas of poor correlation (e.g., smooth, low 267 contrast slopes and along shadows).

Finally, a synthetic crater was constructed to test whether the results from the Mars study sites in general reflected the process, or instead were a result of the geometry imposed by the impact crater setting (all the Mars study areas were on the inner walls of bowl shaped depressions, but none of the ones on Earth were). A 10 km diameter synthetic crater was created by applying a smooth parabolic radial profile, which was derived by fitting curves through ungullied radial profiles of the craters in sites PC and GC. Metre-scale "pink" (also called "1/f") noise was added to simulate a natural rough surface (Jack 2000).

275 Derivation of drainage area and local slope

Representative slope sections were chosen in each DEM (Figs. 3 and 4). For Earth, these were chosen to represent end member and intermediate process domains, including dry mass wasting, debris flow and alluvial processes. On Mars, some areas were chosen that covered the complete slope on which gullies are found, whilst others covered a single gully system, or ungullied slope for comparison. Slope sections always included the drainage divide at the top and extended downslope as far as the visible signs of the distal extent of the gully (or slope) 282 deposits. Where possible lines delineating drainage basins were followed to define the lateral 283 extent of slope sections, but on poorly incised hillslopes this was not always possible and the 284 lateral extent was defined as a straight line. For site KC, on Mars, we chose different 285 configurations of slope sections to test the sensitivity of our analyses to the exact method 286 used to delineate the slope-sections. Careful delineation of slope sections is necessary for two 287 reasons. Firstly, because the larger the sample area, the more processes are included within it, 288 and the more difficult the results will be to interpret. Secondly, if parts of the slope that are 289 integral to the process to be identified are omitted, then the process signal will not be 290 complete.

291 The slope and the flow directions of each pixel in each DEM were determined using 292 a "Dinf" algorithm. This algorithm gives flow directions in any direction, rather than only 293 towards one of the eight neighbouring pixels (Tarboton *et al.* 1991). This has been shown to 294 produce better results from slope-area analysis because it gives a more accurate 295 approximation of the real path of flow through the landscape (Borga et al. 2004). For each 296 pixel, the accumulation of flow was calculated from the flow directions by summing the 297 number of pixels located upstream, and multiplying by the pixel area. These analyses were 298 performed using the TauDEM extension for ArcGIS, based on the algorithms developed by 299 Tarboton (1997). For each DEM the "wetness index" was also calculated. This is the natural 300 logarithm of the ratio of contributing area to slope. It provides information on the potential 301 connectivity of the landscape drainage and the potential ability of the surrounding landscape 302 to route drainage (Woods & Sivapalan 1997). However, in the case of Earth and particularly 303 in the case of Mars this index should not be interpreted literally as implying that the terrain is 304 "wet". In our study it is used as a visual aid to interpret the spatial variability of the slope-305 area plot. For example, highly permeable talus slopes on Earth are essentially dry, but they 306 may have moderate to high wetness index. However, we would expect a talus slope on Earth to show a characteristic spatial pattern of wetness index, indicative of dry mass wastingprocesses. All the DEMs underwent the same processing steps.

We extracted the drainage area and slope for every pixel within the chosen slope sections. To simplify the representation of these data we calculated the mean slope for 0.05 wide logarithmic bins of drainage area, and then constructed the slope-area and CAD plots. Binning data in this way make the trends in slope-area and CAD plots clearer and is a commonly used display technique (e.g., Snyder *et al.* 2000).

In addition, for one site on Mars (site KC), we visually identified the initiation sites of the gullies on orthorectified HiRISE images. The initiation points for the gullies were defined as the furthest upstream extent defined by a distinct cut, or scarp (Fig. 5a). For each of these locations we extracted the slope and drainage area for the underlying pixel. This analysis was not performed for site PC because edge contamination and noise made it impractical. The analysis was also omitted for site GC because the gullies start at the top of the slope, so would by definition occur at the lowest drainage areas.

321 Study areas

322 **Earth**

All the study sites on Earth are located in the northern hemisphere and most are within the continental USA. Table 1 provides a summary of the sites and Fig. 3 shows the setting of the areas studied.

326 Site SJ – San Jacinto, California

This site is located in California along a splay of the San Andreas fault, called the San Jacinto fault. This area is a desert with little rainfall (~ 150 mm, annual average recorded by NOAA weather station in nearby Borrego Springs), which has undergone rapid recent uplift caused 330 by the fault system. The landscape has a well developed ephemeral gully network with large 331 alluvial fans. From the study of the 1 m LiDAR data and aerial images we infer the processes 332 forming these fans to be sheet-flow rather than debris flow, based on the lack of levées and 333 lobate terminal deposits. The vegetation is sparse, consisting of small scrub bushes. The 334 underlying geology of the study area is mainly granite, schist and gneiss with minor outcrops 335 of Quaternary older fan deposits (Moyle 1982). For our analyses we used three study areas 336 that contained small complete gully systems, including sources, channels and debris aprons, 337 but avoided large fan systems and debris aprons from neighbouring systems (Figs. 3a and 3b: 338 study areas SJ1, SJ2 and SJ3). Due to the small size of the fans in area SJ1 it is difficult to 339 entirely rule out debris flow as a potential process in forming these alluvial fans.

340 Site DV - Death Valley, California

341 This site is located a few kilometres NE of Ubehebe volcano, in Death Valley, California. 342 This is a desert area that has well developed ephemeral gully networks with large alluvial 343 fans. There is little precipitation in this area although the nearby mountains receive as much 344 as 85 mm of rain per year (Crippen 1979) and rare large storms can do much geomorphic 345 work. Debris flows are found on the fans in the area (e.g., Blair 1999, 2000), but the primary 346 process active in the gullies is alluvial transport (Crippen 1979). We inspected the 1 m 347 LiDAR data for presence of levées and depositional lobes on the fans and found no evidence 348 of these. However, without direct field observations the fact that debris flows do not act on 349 these fans remain an assumption. The bedrock consists of Palaeozoic sedimentary rocks 350 (Workman et al. 2002). We chose two study areas (Fig. 3c: study areas DV1 and DV2) with 351 gully systems that were not affected by neighbouring alluvial fans or gully systems so only 352 receive local rainfall levels.

353 Site KA – St Elias Mountains, Alaska

354 This site is located east of the abandoned town of Katalla close to the recently deglaciated 355 mountain range of St Elias, near the coast of Alaska and on the border with Yukon, Canada. 356 The area has been unglaciated for approximately the last 10 000 years (Sirkin & Tuthill 1987) 357 and receives very high precipitation, which falls as snow on the upper slopes and rain on the 358 lower. Our study area overlies Tertiary volcanic materials. The slope scarp was generated by 359 the active Ragged Mountain Fault (Miller 1961). The area was neither snow covered nor tree 360 covered at the time of survey and the slopes are composed of steep bedrock cliffs that lead 361 directly into large talus aprons. Debris flow tracks are apparent across this talus slope, 362 especially in study areas KA3 and KA4, and might have occurred in study area KA3 as well 363 (Fig. 3d). Study area KA1 has no evidence of debris flow processes (Fig. 3d).

364 Site FR – Front Range, Colorado

365 This site is located in the mountainous eastern side of the continental divide. The area was 366 deglaciated around 14 000 to 12 000 years before present (Godt & Coe 2007) and the 367 landscape is dominated by glacially carved valleys. This area has experienced recent debris 368 flows (Coe et al. 2002; Godt & Coe 2007) and has no permanent snowpack. Our study 369 slopes, located above the tree line, are dominated by Precambrian biotitic gneiss and quartz 370 monzonite, scattered Tertiary intrusions, and by various surface deposits, all of which host 371 debris flows (Godt & Coe 2007). The head and sidewalls of the circues have large rockfall 372 talus deposits and which have also experienced recent debris flows. These slopes have little 373 or no vegetation. Three of our study areas (Figs. 3e and 3f: study areas FR2 to FR4) include 374 debris flows located on talus. By way of contrast, we also examined a partially vegetated 375 slope (study area FR1) that is unchanneled and which we infer to be dominated by creep 376 processes (Fig. 3e).

377 Site WF – Westfjords, Iceland

378 The site is located in NW Iceland and is dominated by fjords and glacially carved valleys. 379 The last glacial retreat occurred approximately 10 000 years before present (Norðdalh 1990). 380 The valley walls have many active debris flows (Conway et al. 2010b) and on the slopes 381 above Ísafjörður (Fig. 3g: study area WF1) they occur in most years (Decaulne et al. 2005). 382 The site has a maritime climate, so has high levels of both snow and rainfall, but does not 383 have permanent ice or snow patches. The site is underlain by Miocene basalts, although the 384 debris flows occur most often in glacial till. From this site we chose a study area above the 385 town of Ísafjörður that has very active debris flows (Fig. 3g: study area WF1), two study 386 areas with less active debris flows and more alluvial processes (Figs. 3g and 3h: study areas 387 WF2 and WF3), and one study area dominated by rockfall and rock slide processes, although 388 there are some debris flow tracks visible in the field (Fig. 3h: study area WF4). All these 389 study areas have patchy vegetation, but no trees.

390 *Mars*

All the gullies that we studied on Mars were located on the inner walls of craters in the southern hemisphere (Table 2). Slopes both with and without gullies were analysed for comparison. Sites PC, GC and KC were analysed by Lanza *et al.* (2010), because all the sites showed visual evidence of debris flows.

395 Site PC – Penticton Crater in Eastern Hellas

This site contains the very recent, light-toned deposits observed by Malin *et al.* (2006) and interpreted by them to be a recent "gully forming" event. These flows were later suggested by Pelletier *et al.* (2008) to be produced by dry granular flow, or possibly also debris flow. This slope does not have any well defined channels. We used two study areas within the ~ 7.5 km diameter crater for our slope-area analyses, shown in Figs. 4a and 4b. Study area PC1 is 401 located over the equator-facing light-toned deposits (Fig. 4a) and study area PC2 on the west-402 facing crater wall which contains small gullies (Fig. 4b). These gullies appear to be incised 403 into "mantle deposits" (Mustard *et al.* 2001). The mantle is hypothesised to be the remnants 404 of a previously extensive volatile rich deposit (e.g., Mangold 2005). This crater is very 405 asymmetric, with the east and north rims being subdued in terms of elevation (the rim is 406 nearly absent on the east side) whilst the southern rim is abrupt and steep.

407 Site GC – Gasa Crater in Terra Cimmeria

This \sim 7 km wide crater, shown in Figs. 4c and 4d, has well developed alcoves or indentations into the rim of the crater. Gully channels are most obvious on the west-facing to pole-facing slopes (Figs. 4c and 4d) and the equator-facing slope lacks these well defined alcoves and channels (Fig. 4e). We chose sections on the pole- (study areas GC1 and GC2), west- (study area GC3) and equator-facing (study area GC4) slopes. This crater is located within a larger crater, which also has gullies on its west- to pole-facing slopes. There is no evidence of mantle deposits being present anywhere within this crater.

415 Site KC – crater inside Kaiser Crater in Noachis Terra

416 The study crater, ~ 12 km across is located within the larger Kaiser crater, which not only has 417 gullies down its own rim, but also gullies on the dunes within it (Bourke 2005). Gullies in 418 this crater have alcoves at various positions on the slope, which converge to form well 419 defined tributary networks. Lateral levées bound some of the channels (Figs. 5b and 5c). This 420 slope has the subdued appearance often attributed to the presence of volatile rich mantle 421 deposits (Mustard et al. 2001). We chose study areas that encompass the drainage area of two 422 gullies (study area KC2), a single gully (study area KC1) and also the slope section as a 423 whole (study area KC3), all of which are shown in Fig. 4f. We chose study area KC4, an area 424 of the slope not affected by gullies, for comparison (Fig. 4f).

425 Site TS – crater in Terra Sirenum

This ~ 7 km diameter crater is located to the south of Pickering Crater in Terra Sirenum and
contains pole-facing gullies. We analysed an equator-facing slope (Fig. 4g: study area TS1)
which has no evidence of channels but contains an apparently well developed talus apron.
There is no evidence of mantle deposits being present on this slope.

430 **Results**

431 **Earth**

Initially we chose two study areas with talus and with active creep. The slope-area analysis results for these are shown in Fig. 6a. The study areas with well developed talus (WF4 and KA1) show the following pattern on log-log plots: (1) At small drainage area the curves are initially flat. (2) There is then a linear decrease in slope with increasing drainage area. (3) The curve then becomes horizontal again at higher drainage area with a lower slope value. Talus slopes that have a mixture of processes (e.g., KA2) show a curve that drops off linearly in log-log plots then flattens at higher drainage areas.

The CAD plot (Fig. 7a) provides additional information: the talus dominated study areas have a very smooth convex shape. The gradient of the curve is low until the drainage area is between approximately 0.001 km² after which the curve drops sharply and continues to steepen with increasing drainage area.

The soil creep diffusive process study area (FR1 in Fig. 6a) shows a distinctive signature in slope-area plots: (1) The curve is initially horizontal to gently downwards sloping. (2) Between drainage areas of 0.0001 to 0.001 km² the slope increases linearly with increasing drainage area. (3) There is then a marked slope turnover at which the curve switches to decreasing slope with increasing drainage area. The soil creep diffusive process study area resembles the talus slopes in CAD plots (FR1, Fig. 7a). 449 Figs. 6b and 7b show the debris flow study areas that are influenced by talus 450 processes and Figs. 6c and 7c show those that are more influenced by alluvial processes. 451 Generally in slope-area plots debris flow produces a curve that drops off linearly in log-log 452 plots, flattening off before finally dropping away steeply. The difference between the talus 453 study areas (e.g. KA2, Fig. 6a) and the debris flow study areas influenced by talus (Fig. 6b) is 454 subtle in some cases. In a similar way the difference between the debris flow areas influenced 455 by talus processes (Fig. 6b) and those influenced by alluvial processes (Fig. 6c) is also subtle. 456 Without field information it would be difficult to differentiate talus dominated and debris 457 flow dominated slopes reliably in slope-area plots (e.g., compare Figs. 6a, KA2 and 6b). 458 However, in CAD plots it is possible to differentiate between the two process types. The 459 debris flow dominated study areas (Figs. 7b and 7c) show the following pattern: (1) The 460 curve drops away from the horizontal slowly (but faster than the talus slopes) at small 461 drainage areas. (2) The curve then either dips down linearly, or follows a flattened convex 462 path, and (3) at high drainage areas the curve drops away sharply with increasing drainage 463 area.

464 Study areas modified by ephemeral water flow have distinct signatures in slope-area 465 plots (Fig. 6d) and in CAD plots (Fig. 7d). In slope-area plots they show a shallow linearly 466 decreasing trend at small drainage areas, which gets steeper at higher drainage areas, and 467 drops into the alluvial domain. The CAD plot drops away from the horizontal slowly and then 468 dips down linearly (or even with a concave profile) until the tail of the curve drops sharply 469 off at the highest drainage areas.

470 Synthetic Crater

The slope-area and CAD plots for the synthetic crater are easily differentiated from the process study areas that we have examined on Earth. In slope-area plots the synthetic crater produces a hump-backed curve (Fig. 8d): at small drainage areas the curve rises steeply, then

474 levels off and drops at high drainage areas. In appearance the curve is, as expected, nearest to 475 study area FR1, the area dominated by diffusive creep (Fig. 6a). In CAD plots (Fig. 9d) the 476 line follows a smooth convex arc, similar to that shown by talus on Earth, except without a 477 break in gradient.

478 *Mars*

479 The slope-area plots for sites PC and GC (Penticton Crater and Gasa Crater inner slopes) 480 closely resemble each one another (Fig. 8a and b). The resulting curve can be divided into 481 three zones: (1) A short initial increase in slope with increasing drainage area, followed by a 482 slope turnover at very small drainage areas. (2) A linear or slightly concave decreasing slope 483 trend with increasing drainage area that continues for most of the plot. (3) Finally, at the 484 largest drainage areas, there is a steep decrease in slope with increasing drainage area. For 485 study area PC1 there is a distinct and linear decline in slope with drainage area, whereas for 486 study areas PC2, GC1, GC2 and GC3 this section is slightly concave. The drop-off at the 487 highest drainage areas occurs at lower absolute drainage area values than for site GC. In the 488 CAD plot, study areas PC1 and GC4 have a smooth convex form, whereas study areas PC2, 489 GC1 and GC2 all have a nearly linear, flattened section at intermediate drainage areas (Figs. 490 9a and 9b). Study area GC3 lies close to PC1, GC1 and GC2 but without any sign of 491 flattening.

The slope-area plots for gullies in study areas KC1, KC2 and KC3 (Fig. 8c) can be split into three sections as follows: (1) at small drainage areas the curve is sub-horizontal with a subtle upward trend. This trend is more apparent for the data from individual gullies than the data obtained from the whole slope section and is somewhat variable between gully systems. (2) At intermediate drainage areas there is a transitional zone, occurring at different drainage areas for each gully system, in which slope drops off markedly with drainage area.

498 (3) At higher drainage areas there is a gently declining relationship between slope and499 drainage area, which is the same for all the gully systems.

500 The ungullied study area (KC4) is also shown in Fig. 8c. This study area has a 501 hump-back shape, resembling that seen for the synthetic crater. The hump occurs across the 502 same slope values as the transition zone (2) for the gullied slopes. In CAD plots (Fig. 9c) 503 study areas KC2 and KC3 have a flattened section at intermediate drainage areas, followed 504 by a steepening decrease at higher drainage areas. The study area without gullies (KC4) has a 505 curve that is convex and initially declines slowly, before dropping off steeply. Study area 506 KC1 has a less flattened profile than study areas KC2, or KC3 and it seems to be a mixture 507 between slope types typified by gullied study areas KC2 or KC3 and ungullied study area 508 KC4.

In slope-area plots, study area TS1, an ungullied slope, shows a slope-area turnover at small drainage areas, followed by a decreasing and slightly concave trend in slope with drainage area (Fig. 8d). There is a slight upturn at the highest drainage areas, but this is likely to be an artefact caused by few data-points being used to calculate the mean slope in these bins. In CAD plots (Fig. 9d) study area TS1 has a very smooth convex curve.

The slope and drainage area of the gully head initiation points were recorded for site KC. These data are displayed on Fig. 8c. Interestingly, the locations of the gully heads cluster around the range of drainage areas of the transitional section in the slope-area plot, but are located at higher slope values.

518 Wetness Index on Earth and Mars

The spatial distribution of the slope-area data is most easily visualised using a wetness index map. Maps of wetness index are presented for Earth (Fig. 10) and for Mars (Fig. 11). The alluvial study areas in Earth sites SJ and DV show very low overall wetness indices – only the channels have significant wetness index (Figs. 10a, 10b, and 10c). Debris flow study 523 areas are slightly more complex (Figs. 10d, 10e, 9f, 10g, and 10h): the slopes generally have 524 moderate wetness index, but there are localised paths along which the wetness index is 525 higher. Site WF (Figs. 10g and 10h) is the best example of this pattern, but it is also the area 526 with the highest influence of overland flow. For site KA (Fig. 10d) this signature is poorly 527 developed, but this site has been influenced by talus processes. The creep dominated study 528 area, FR1, has moderate wetness index throughout (Fig. 10e). The talus study areas KA1, 529 KA2 (Fig. 10d) and WF4 (Fig. 10h) show lobe-like areas of low wetness index with widening 530 streaks of higher wetness index in between.

531 On Mars, study area PC1 (Fig. 11a) and the synthetic crater (Fig. 11h) have similar 532 wetness index maps: the slope generally increases in wetness index going downhill and there 533 are quasi-linear streaks of higher wetness index that increase in value going downslope. 534 Study area PC2 (Fig. 11b) has overall low wetness index, apart from concentrated lines of 535 high wetness index within the gully alcoves, that spread and become more diffuse in the 536 debris aprons. A similar overall pattern is shown for study areas GC1, GC2 and GC3 (Figs. 537 11c and 11d), but the ridges around the alcoves have very low wetness index. Study area GC2 538 in particular (Fig. 11c) shows very concentrated slightly sinuous high wetness index lines on 539 its debris apron. However this part of the DEM contains significant noise, making it hard to 540 judge whether this is simply an artefact. Study areas GC4 (Fig. 11e) and TS1 (Fig. 11g) have 541 similar wetness index maps: there is low wetness index at the crest of the slope and where 542 bedrock is exposed and the wetness index generally increases downslope, but this trend is 543 superposed with diffuse linear streaks of higher relative wetness index. Site KC (Fig. 11f) has 544 generally moderate wetness index, with the alcoves and channels of the gullies showing 545 focussed high wetness index flanked by much lower wetness index and the debris aprons 546 having generally high wetness index with diffuse downslope streaking.

547 **Discussion**

548 Comparison of Earth data to previously published slope-area

549 process domains

550 There are two interlinked methods of determining slope processes from slope-area plots:

(1) The data points fall within domains in the plots which have been found both theoreticallyand empirically to relate to particular processes, and

553 (2) The data points exhibit trends and gradients that provide information on active processes.

554 We compared our data from Earth to the slope-area process domains of Montgomery 555 & Foufoula-Georgiou (1993) and the additional domain added by Brardinoni & Hassan 556 (2006), shown as solid lines in Fig. 6. The data from our creep, talus and debris flow analyses 557 fall into the debris flow domain of Montgomery & Foufoula-Georgiou (1993). However, 558 some of our debris flow data drop into the alluvial domain at the highest drainage areas. 559 Because they are small systems with limited drainage areas, however, only a few points fall 560 within the alluvial domain. Some of our data approach the additional domain added by 561 Brardinoni & Hassan (2006), but do not extend towards sufficiently high drainage areas (or 562 low drainage areas) to enter it (Fig. 6b and 6c). Our data from the alluvial systems (Fig. 6d) 563 fall into both the debris flow and alluvial domains. They start to trend downwards in slope-564 area plots at lower drainage areas than our debris flow systems.

Tucker & Bras (1998) simulated the effects of different dominant processes on slope-area plots and we now compare their model results to the patterns in slope-area plots shown by our data. Our talus systems (Fig. 6a) closely fit their model of a landscape dominated by landsliding (which includes the process of debris flow). In slope-area plots our talus data have an initial flat section at small drainage areas, which represents the slope threshold for the rock wall failure and so differs between localities. At higher drainage areas the curves are again flat, representing the failure threshold of loose talus, which is consistent for all areas at approximately 0.7 gradient, equivalent to a slope of approximately 35°. This is an approximate mean slope angle for talus slopes on Earth (Chandler 1973; Selby 1993) and is shown by a dotted horizontal line in Figs. 6 and 8. Between these two horizontal sections there is a transition where the dominance shifts from rock wall failure to unconsolidated talus failure.

577 Within the framework of Tucker & Bras (1998) the pattern shown by the debris flow 578 slopes on Earth (Figs. 6b and 6c) is most consistent with the transition from unsaturated 579 landsliding (dry mass wasting of both talus and rock wall) to pore pressure triggered 580 landsliding (which we interpret to also include debris flow), in a landscape dominated by 581 landsliding. The presence of processes with a slope failure threshold cause data in slope-area 582 plots to fall along horizontal lines. Hence, as the process dominance changes from rock wall 583 failure (highest threshold) to unsaturated landsliding (intermediate threshold) to saturated 584 landsliding (lowest threshold) the curve declines and levels off at the slope value of the 585 saturated landslide threshold in that particular area. As each physical locality has its own 586 saturation threshold this horizontal section occurs at different slope values for different 587 localities but is always located below the dry stability line at 0.7.

In slope-area plots, our data from alluvial systems on Earth (Fig. 6d) show a simple decline of slope with drainage area, possibly steepening at higher drainage areas. The data are scattered at drainage areas > 0.001 km^2 , due to the limitations of the small sizes of the gully systems available. This means a relatively small number of pixels were used to generate each point, leading to random scatter. However, even taking into account the scatter, the data are below the slope threshold for dry slope failure at 0.7 gradient, which suggests a gradual transition from pore pressure dominated landsliding to fluvial processes. 595 The main feature of our creep dominated hillslope data (FR1, Fig. 6a), is a turnover 596 from increasing slope with drainage area to decreasing slope with drainage area. One of the 597 alluvial systems in site SJ (study area SJ3) shows a weak slope turnover at the lowest 598 drainage areas but none of the other plots show this feature. The slope-area turnover is shown 599 in Fig. 2 and is generally expected to occur in slope-area plots (e.g., Tucker & Bras 1998). It 600 usually occurs in, or close to, the "hillslope" domain of Montgomery & Foufoula-Georgiou 601 (1993). The turnover represents a transition from convex slopes dominated by diffusive 602 processes (which include soil creep often modified by plant roots and other biota) to concave 603 slopes dominated by advective, or alluvial processes. Within the diffusive processes domain 604 in slope-area plots, slope increases with drainage area. The most likely reason that most of 605 our data do not show this turnover is that the slopes we studied lack stable vegetation 606 (Dietrich & Perron 2006; Marchi et al. 2008). Another potential contributing factor is that the 607 bedrock and colluvium in our study areas are not naturally cohesive, for example, clay-rich 608 rocks can exhibit convex creep-dominated slopes in unvegetated badlands on Earth.

609 The pattern of data in slope-area plots shown by our alluvial systems and some of 610 our debris flow systems (slow decline at small drainage areas followed by a steep decline at 611 higher drainage areas) has been shown from numerous remote sensing and field studies to 612 mark the transition from the colluvial (including debris flow) regime, to that of a fully fluvial 613 regime (e.g., Lague & Davy 2003; Stock & Dietrich 2003; Stock & Dietrich 2006). Some 614 have described the transition as a separate linear portion of the plot between the colluvial and 615 the fluvial (Lague & Davy 2003) and some as a gradual curved transition (Stock & Dietrich 616 2003). However, both are consistent with Tucker & Bras' (1998) transition from pore 617 pressure triggered landsliding into a fully fluvial system. Our plots do not show a well 618 developed alluvial regime, but this is due to the use of high resolution data of very small 619 areas rather than large, well developed fluvial catchments.

In summary, our terrestrial data are consistent with published slope-area process domains, and provide reassurance that the method is applicable and that the Mars data can be used to infer process in a similar way. The caveat to this is that the environmental differences between Earth and Mars, as detailed in the introduction, must be considered when comparing terrestrial process domains to data from Mars. Furthermore, improved process discrimination can be made by considering CAD profiles in addition to slope-area analysis.

626 **Comparison of Earth data to published CAD process domains**

627 Comparison of all our CAD plots for Earth (Fig. 7) to the published process domains for 628 CAD (Fig. 2) reveals that our data do not generally follow the cited trends. This is possibly 629 because we are studying small areas, rather than large catchments. However, the shape of the 630 curve outlined by our data in CAD plots does allow process discrimination and does follow 631 some of the framework outlined by McNamara et al. (2006). Specifically region 1 on Fig. 2 632 has three sub-regions whose shapes can be recognised in our datasets. The talus data (Fig. 7a) 633 and synthetic crater (Fig. 9d) are both convex in their CAD plots, resembling most closely 634 region 1a of McNamara et al. (2006). They describe this region as representing "hillslopes 635 that diverge and do not gather drainage." Our alluvial data and some of our debris flow data 636 show a flattening of the CAD plot curve in the middle region, giving a steep linear section, 637 corresponding to either region 1b or region 2 (Fig. 2b) which McNamara et al. (2006) 638 describe as slopes that are convergent (1b), or channel forming (2). Two debris flows (WF2 639 and WF3 in Fig. 7c) show a concave section, which would correspond to region 1c of 640 McNamara *et al.* (2006) and which they attribute to pore pressure triggered landsliding or 641 debris flow.

The similarity of talus and debris flow in slope-area plots can be attributed to theirsimilarly linear long profiles. However, the two processes produce different patterns in CAD

644 plots because talus slopes tend to disperse drainage but debris flow slopes tend to have 645 convergent drainage. This can also be seen in the wetness index plots (Fig. 10).

646 This difference of behaviour in CAD and wetness index plots, in addition to the 647 information from the slope-area plots, shows that we can detect slopes dominated by alluvial, 648 debris flow and dry mass wasting on the basis of these parameters, even for small catchments 649 such as individual gullies or debris flow tracks. However, it should be noted here that these 650 analyses have been performed on relatively few sample sites on Earth and some of the 651 differences are subtle. Future work has to include extending this analysis to a greater number 652 of test sites on Earth to verify that this kind of process discrimination is robust. Using these 653 initial results we continue and apply these methods of process discrimination to Mars.

654 **Process domains for gullies on Mars**

In slope-area plots all the Mars slope sections, except study area TS1, fall below the slope threshold for dry mass wasting (dotted line in the plots in Fig. 8). This means that talus-like dry mass wasting is not a dominant process in these areas. However, study area TS1, visually similar to talus on Earth, is not only above the slope threshold for dry mass wasting, but also bears a signature similar to talus on Earth in the combination of its slope-area plot, CAD plot and wetness index map

661 Within the process domains of Montgomery & Foufoula-Georgiou (1993) the 662 majority of the Mars data lie within the debris flow domain, with some data located in the 663 debris flow deposition domain added by Brardinoni & Hassan (2006) and a few in the 664 alluvial domain. The difference in gravity between Earth and Mars requires an upwards slope 665 adjustment to the alluvial channels domain boundary (see Fig. 2a) in slope-area plots 666 (Appendix 1), but does not change the gradient of the line. This is marked by the dash-dot 667 line on the plots in Fig. 8. This shift places more data in the unchanneled domain, but does 668 not place any additional data into the alluvial or debris flow domains. This in itself distribution does not provide very detailed information on the formation mechanisms for gullies. However, by combining slope-area trends, CAD plots and wetness index maps we can make more detailed assessments. We examine each of the study areas on Mars in turn and then discuss the overall implications for the gully formation processes.

673 Synthetic Crater

674 The pattern in slope-area plots of the interior of impact craters is, in part, a result of 675 the inherent shape of the crater slope which in turn is due to the impact process and the 676 modification that occurs immediately afterwards. The slope of a fresh impact crater is 677 concave and exponentially shaped in profile (Garvin et al. 1999). Thus in slope-area plots it 678 resembles a well developed alluvial system on Earth (e.g., Hack 1957). This reinforces the 679 uncertainty in inferring a unique process from slope form. In CAD plots, however, the 680 synthetic crater data show a similar pattern to that of talus slopes on Earth, indicating that at 681 short length-scales this type of slope cannot channelise flow on its own. This interpretation is 682 supported by the wetness index plot (Fig. 11), which shows a slowly coalescing flow, rather 683 than discrete areas of fluid concentration.

684 Site PC – Penticton Crater in Eastern Hellas

685 In slope-area plots the slope turnover is well expressed for both study areas in site 686 PC (Fig. 8a). This suggests a strong diffusive or creep influence on both slopes. Study areas 687 PC1 and PC2 both resemble either poorly developed talus or debris flow in slope-area plots. 688 In the CAD plot (Fig. 9a); however, study area PC2 has the distinctive profile associated with 689 debris flow, whereas study area PC1 more closely resembles talus. Talus processes can only 690 be active in study area PC1 at small drainage areas, where it lies on the dry mass wasting 691 threshold in slope-area plots. Hence the shape of the CAD curve must be explained by 692 another process, which has a slope threshold but does not concentrate drainage. This 693 unknown process must be pore pressure triggered as it is below the slope for dry mass 694 wasting. In addition, the wetness index plot reveals that study areas PC1 and PC2 are very 695 different: study area PC1 has a similar wetness index map to the synthetic crater (Fig. 11h), 696 whereas study area PC2 resembles debris flow areas on Earth (e.g., Fig. 10f) with strongly 697 concentrated high wetness index within alcoves and channels, becoming more diffuse down 698 slope on the debris aprons.

The combined evidence suggests that the west-facing slope, which contains small gullies, has been modified by debris flow, whereas the equator-facing slope is more similar to dry mass wasting deposits. This agrees with the interpretation of Pelletier *et al.* (2008), who, using numerical modelling, concluded that the new bright toned deposits on this slope were more similar in form to deposits of dry granular flows than debris flows.

704 Site GC – Gasa Crater in Terra Cimmeria

705 In the slope-area plot for site GC (Fig. 8b), the slope-turnover occurs at very small 706 drainage areas (one or two pixels) and is thus partly abbreviated. This suggests that creep has 707 not strongly influenced this site. This interpretation is supported by the observation that the 708 gully heads originate at the very top of the slope. Study areas GC1, GC2 and GC3 resemble 709 either poorly developed talus on Earth (study area KA2, Fig. 6a) or debris flows on Earth 710 (Figs. 6b and 6c) in slope-area plots. However, in CAD plots (Fig. 9b) they have a flattened 711 mid-section, resembling debris flow systems on Earth. Their wetness index plots (Figs. 11c 712 and 11d) have strong similarities with debris flow systems on Earth (e.g., Fig. 10g): showing 713 flow concentration in the alcove and channel with more diffuse flow on the debris apron. 714 Study area GC2 (Fig. 11c) shows a similar pattern of wetness index to the alluvial systems on 715 Earth, with focussed flow throughout.

In slope-area plots (Fig. 8b) study area GC4 has a flatter profile than study areas
GC1, GC2 and GC3. The drop in slope at high drainage areas in GC4 is probably an artefact

718 of the low number of pixels included in the slope calculations in the last 5 to 10 points. In the 719 CAD plot (Fig. 9b), study area GC4 has a similar shape to talus systems on Earth (Fig. 7a). 720 The talus interpretation for GC4 is supported by additional evidence: (1) there is no evidence 721 for channels (Fig. 4e), (2) the wetness index plot (Fig. 11e) is similar to talus slopes on Earth 722 and (3) part of the slope-area curve lies on the threshold for dry mass wasting (Fig. 8b). The 723 dip of the slope-area curve away from the threshold for dry mass wasting suggests that 724 another process with a lower slope threshold is acting, either without having an effect on the 725 CAD plot, or with the same CAD plot as talus. We hypothesise that this may be the same 726 unknown process as noted in study area PC1.

The combined evidence suggests that the pole and east facing slopes of the crater have been affected by debris flow processes and the equator-facing slope by mass wasting and an unknown process.

730 Site KC – crater inside Kaiser Crater in Noachis Terra

731 Our ungullied study area (KC4) shows patterns in slope-area (Fig. 8c) and CAD plots (Fig. 732 9c) very similar to the synthetic crater and creep slopes on Earth. The difference between this 733 study area and the gullied study areas (KC1 to KC3) is presumably a result of the process of 734 gully formation. Study areas KC1 to KC3 do not have slope-area plots (Fig. 8c) that fit easily 735 within the framework established so far. However, if we refer to the modelling work of 736 Tucker & Bras (1998) then the patterns in slope-area plots can be explained. At small 737 drainage areas our curves for study areas with gullies have a horizontal or slightly positive 738 trend compared to our ungullied study area, which has a definite positive trend. This suggests 739 the weak influence of diffusive processes (which generate a positive relationship in slope-740 area plots) combined with slope threshold processes (which tend to produce horizontal 741 trends). As all the data are below the dry mass wasting threshold, this threshold process is 742 likely to be a pore pressure triggered process, such as debris flow. At intermediate drainage 743 areas there is a transitional region which occurs at a similar drainage area to the slope-744 turnover in the ungullied section. At high drainage areas the gullied study areas show a 745 slightly decreasing sub-horizontal trend, as opposed to the ungullied study area which has a 746 well defined decrease in slope with drainage area. This also can be attributed to a pore 747 pressure triggered threshold process but at a lower slope threshold than the previous process. 748 In CAD plots (Fig. 9c) study areas KC1 to KC3 are consistent with debris flow processes. 749 The wetness index plots for these study areas (Fig. 11f) are similar to terrestrial debris flow 750 study areas which have been influenced by alluvial processes (e.g., site WF, Figs. 10g and 751 10h). This suggests that the first pore pressure threshold in slope-area plots is due to debris 752 flow and the second lower one due to an unknown process, which again could be the same 753 process affecting sites PC and GC.

754 In slope-area plots, the gully heads on this slope (Fig. 8c) coincide with the drainage 755 area of the slope turnover in study area KC4 and the transitional study areas of KC1 to KC3. 756 This coincident relationship matches the observations made by many authors who have 757 studied gullies on Earth (e.g., Hancock & Evans 2006). Our channel heads lie mainly in the 758 domain attributed to "pore pressure landsliding channel initiation" processes, but some also 759 lie in the "unchanneled" domain (McNamara et al. 2006). Notably the gully heads occur 760 below the dry mass wasting threshold, again suggesting that these martian gullies are initiated 761 by a pore pressure threshold process. The gully heads occur on slope gradients of 0.55 similar 762 to those described by Lanza et al. (2010), but at drainage areas an order of magnitude lower. 763 This is possibly due to the different approach used by Lanza et al. (2010) to measure the 764 contributing area, and possible differences in their interpretation of the location of channel 765 initiation. The co-occurrence of the gully heads with the slope-turnover in slope-area plots 766 suggests that the gullies are a result of whole-slope drainage, as previously found by Lanza et 767 al. (2010), either at the surface or shallow subsurface. Our work provides additional evidence to support the conclusions of Lanza *et al.* (2010) that these gullies originate from a distributed source and hence supports the surface melting model for martian gully formation, rather than an aquifer source model. Further, this observation provides additional evidence that a threshold process, probably debris flow, is forming these gullies, as previously suggested by Lanza *et al.* (2010).

From the combination of the slope-area, CAD and wetness index plots we infer that the gullies in this crater are produced by debris flow and were initiated by surface, or near subsurface, flow of water. Creep and an unknown process were likely to have been the dominant processes on the ungullied crater slopes. This is consistent with the setting of these gullies within the ice-rich mantle deposits which is likely to be susceptible to melting, providing a distributed source of water for the gullies.

779 Site TS – crater in Terra Sirenum

780 Unlike the other areas we have studied on Mars, parts of the slope-area data for study area 781 TS1 at lower drainage areas (Fig. 8d) are above the threshold slope for dry mass wasting. 782 This is an indication that rock strength limited dry mass wasting is occurring in the upper 783 parts of the slope. In CAD plots (Fig. 9d) this study area has the classic shape of a talus or 784 creep slope. However, the slope-area trend shown by study area TS1 is very different from 785 that of the synthetic crater (Fig. 8d), which we assume to have been similar to the starting 786 point for study area TS1. This assumption carries the implication that the slope in study area 787 TS1 has evolved over time from concave to linear in profile. Study area TS1 shows a very 788 similar trend in slope-area plots as study area GC4 (Fig. 8b), but originates above the 0.7 789 slope threshold. As discussed previously for study area GC4, in the framework of Tucker & 790 Bras (1998) such a pattern is likely to reflect a gradual transition from the dominance of a dry 791 mass wasting threshold at lower drainage areas to the dominance of a pore pressure triggered 792 slope threshold due to an unknown process at higher drainage areas. However, in the case of TS1 this signal not only includes dry mass wasting of non-cohesive material, but rockwall mass wasting as well. The wetness index map shows that the slope does not concentrate drainage, except for some diffuse linear areas, again resembling talus slopes on Earth. The combination of the slope-area plot, CAD plot and wetness index map suggests a dominantly dry mass wasting evolution of this slope, which fits well with the visual observations.

798 Solifluction on slopes on Mars

799 In many of the Mars study sites we have inferred an unknown process that is 800 responsible for a second, lower-slope pore pressure triggered threshold in the slope-area 801 plots. However, this process seems to produce slopes that yield a CAD plot that is similar to 802 talus on Earth, i.e. it does not concentrate drainage. As suggested by Tucker & Bras (1998) 803 another threshold process which would produce a similar response in slope-area plots to pore 804 pressure induced landsliding is solifluction. Solifluction in frozen landscapes comprises the 805 combined action of gelifluction and frost creep, and describes the slow, down slope 806 movement of water saturated debris or soils. Solifluction requires freezing and thawing to 807 generate elevated pore pressures and occurs at lower slope angles than pore pressure induced 808 failure, which can trigger landslides and debris flow (Harris et al. 2008). This process is 809 consistent with the recent observations of periglacial landform assemblages on Mars (Balme 810 & Gallagher 2009; Balme et al. 2009; Soare & Osinski 2009).

811

Implications for the formation process of martian gullies

Dietrich & Perron (2006) suggested that the lack of biotic processes on Mars would promote erosion by rilling and gullying and stripping of the fine surface materials, given a suitable water source. This would lead to a slope-area plot that lacked a distinct slope turnover, similar to the slope-area plots seen in the Death Valley data (our site DV – Fig. 6d). However, inspecting the trends in the slope-area plots for the Mars systems in Fig. 8, one of 817 the most apparent differences from Earth is the presence of this slope turnover. This indicates 818 that creep is a more dominant process on martian hillslopes than on those we studied on 819 Earth; contradictory to the predictions made by Dietrich & Perron (2006). The creep signal 820 in most published slope-area plots on Earth is induced predominantly by biota, hence on 821 Mars the creep must be facilitated using a different mechanism. Perron et al. (2003) observed 822 using Mars Orbiter Laser Altimeter (MOLA) data that slopes on Mars have average gradients 823 well below 35° and suggested that ice driven creep is the cause. Other potential creep 824 mechanisms include frost heave and shrink-swell in clays and hydrated salts, both of which 825 produce creep on un-vegetated and un-bioturbated slopes on Earth. These mechanisms 826 however would require widespread and relatively large amounts of liquid water, which is 827 considered unlikely under current or geologically recent martian climate. Hence, we believe 828 that ice driven creep provides the best explanation for the signals seen in our slope-area data 829 from Mars. In accordance with their results, most of the slopes we studied on Mars also have 830 average gradients well below 35°, with the exception of slope TS1, whose average gradients 831 are partially above 35°.

832 Virtually every gully that we have studied on Mars has the distinct signal of debris 833 flow as the dominant gully forming process. Lanza et al. (2010) also found visual and 834 morphometric evidence of debris flows in these areas. The notable exception is area PC1, the 835 slope containing the new light-toned deposits. However, this area does not include gullies of 836 a normal form (Fig. 1) as they lack well defined alcoves and channels. Examination of a far 837 greater number of DEMs containing gullies would be needed to confirm debris flow as the 838 main gully forming process on Mars. However, if this is the principal mechanism, brings up 839 the following hypotheses and predictions for the formation of gullies on Mars:

840 (1) The high sediment concentrations and low infiltration rates could protect the water841 from evaporation.

- 842 (2) The energy released by grain interactions within the flow could retard freezing.
- 843 (3) Basal freezing (Conway *et al.* 2010a) or a permafrost layer could facilitate the
 844 saturation of the sediment that is required to generate the high pore water pressures
 845 to trigger debris flow.
- 846 (4) Expected depositional features include levées and lobes.
- 847 (5) Expected erosional features include discrete slip scars.

848 Points 1-3 of are hard to observe or test, but the erosional and depositional features 849 can be detected in the high resolution HiRISE images. Failure scars have been noted by other 850 authors (Dickson & Head 2009) from HiRISE images and are present within our study areas. 851 Depositional lobes have also been noted by other authors (Levy et al. 2009; Lanza et al. 852 2010). Visual observations have been made of debris flow levées (Lanza et al. 2010), but 853 DEMs from HiRISE are not yet of sufficient quality to reliably resolve debris flow levées. 854 High quality DEMs would allow the estimation of individual flow volumes (Conway et al. 855 2010b), which could be used to constrain models of gully formation. This should be a priority 856 for future work, as it would allow more accurate estimates of the amounts of water associated 857 with formation of gully landforms.

A debris flow, once triggered, results in more erosion and deposition with less water than pure water flow. This means that high discharges, invoked by other workers (Heldmann *et al.* 2005; Hart *et al.* 2009), are not required to form martian gullies. Modelling has shown that surface melting produces only small amounts of liquid water (Williams *et al.* 2009). This has been one of the major criticisms of the surface melting model. However, if gullies are formed mainly by debris flow, points (1) and (2) above indicate that relatively small amounts of water are needed.

865 Implications for the water source of martian gullies

866 The observed relationship in slope-area plots between the slope turnover and the location of 867 gully heads in site KC on Mars is an important observation and indicates that the transition 868 from concave to convex topography is closely linked to gully formation. This would not be 869 expected in an aquifer system, as channel formation would be controlled predominantly by 870 the location of aquifer bodies rather than the shape of the landscape (Fetter 2001). Our work 871 indicates that a widely distributed source of surface or shallow subsurface flow in site KC 872 would be the most satisfactory explanation, in support of the conclusions of Lanza et al. 873 (2010). Because our data do not show a definite trend in slope-area plots this indicates that 874 the channels originate from shallow sub-surface flow (Hattanji et al. 2006; Jaeger et al. 2007; 875 Imaizumi et al. 2010), or more likely surface flow in a soil poor landscape (Larsen et al. 876 2006). A potential source for this near surface water is the mantle deposits, which have been 877 observed on both this slope and in site PC2 and has been linked to gully formation by other 878 authors (Christensen 2003; Aston et al. 2010; van Gasselt et al. 2010).

879 The development of equally spaced incised alcoves in site GC can either be 880 attributed to geological controls (e.g., faulting), or landscape self organisation from an 881 interlinked debris flow-alluvial system (Perron et al. 2009). We argue against a structural 882 control, because there is a lack of these organised alcoves on the equator-facing slope. Hence, 883 considering that we conclude debris flow to be the dominant gully forming process on this 884 crater slope, it would seem most likely that these self-organised alcoves are a result of this 885 process. This kind of self organisation requires a landscape that responds to a distributed 886 water source as on Earth rather than an aquifer source.

Kreslavsky & Head (2003) and Kreslavsky *et al.* (2008) found that pole-facing slopes between 40-50° latitude in both hemispheres were systematically gentler than equatorfacing slopes. They suggest that this is due to insolation asymmetry and melting of ice on 890 pole-facing slopes during periods of high obliquity, similar to the model proposed by Costard 891 et al. (2002) for gully formation on pole-facing slopes. Our study sites also show this 892 asymmetry: pole-facing slopes are longer and have a greater variety of slope angles and are 893 more concave, whereas the equator-facing slopes are shorter and have a more uniform 894 distribution of slopes and are more linear. There is a marked difference in geomorphological 895 process between crater walls with different aspects in the two craters that we studied (sites 896 PC and GC). The observed asymmetry of process and form supports the model of a climatic 897 influence on gully formation and general slope development of the craters. However, many 898 more sites would have to be studied to verify this for gullies in general.

899 **Conclusions**

900 We have shown the potential of applying quantitative geomorphological analysis techniques 901 commonly used on Earth for discriminating between different active processes on Mars. 902 Specifically we have validated the use of slope-area plots, cumulative area distribution 903 (CAD) plots, and wetness index maps on small slope sections of less than one square 904 kilometre. We have shown that pure water (alluvial) flow, debris flow and dry mass wasting 905 dominated slopes can be satisfactory discriminated on Earth. By applying these techniques to 906 four areas of Mars containing recent gullies we have inferred that debris flow is the dominant 907 gully forming process. However, we have also inferred that, as on Earth, gully formation on 908 Mars is a complex process: slopes on Mars are likely to have been affected by a variety of 909 processes that lead to a mixture of signals from our geomorphological analyses. Despite this, 910 we have not found the distinctive geomorphological fingerprint of pure water flow on slopes 911 that host gullies. Its absence, however, does not prove the absence of the process. Our results 912 are consistent with the possibility that ice driven creep and solifluction are, or have recently 913 been, active in modifying crater slopes on Mars.

914 From the location of gully heads within the landscape, and by studying the form of 915 alcoves, it is apparent that at least two of the sites examined contain gullies which have been 916 formed from a widely distributed source of water. This is most easily explained by a surface 917 melting source for the water. The model of Costard et al. (2002) provides a mechanism by 918 which the cause of this melting was increased insolation during past high obliquity 919 excursions. Our preliminary observations of an asymmetry in process and form around the 920 impact craters provides additional support for this model, but we cannot rule out surface 921 melting at present day, or during other epochs.

922 Our geomorphological evidence for debris flow as an active process in forming 923 gullies is reinforced by visual observations. Debris flow as a process leaves distinct 924 geomorphological features, such as failure scars and lobate deposits, which have been 925 observed both here and in previous studies (Dickson & Head 2009; Levy et al. 2009; Lanza 926 et al. 2010). Unfortunately the topographic data on Mars are not yet sufficient for the 927 discrimination of these features and flanking levées in DEMs, which would allow accurate 928 estimation of individual flow volumes and thus estimation of the volumes of water needed to 929 form the gullies (Conway et al. 2010b).

930 Appendix 1

931 The derivation of the shear stress erosion model relies on the assumption that erosion rate (*E*) 932 is a power law of bed shear stress (τ_b):

- 933
- $E = k \tau_b^a \tag{2}$
- 935

936 where k and a are positive constants. Following Snyder (2000), Whipple & Tucker 937 (1999) we use the assumptions of conservation of mass (water) and steady uniform flow to 938 obtain the following expression of basal shear stress:

939

940
$$\tau_b = \rho C_f^{1/3} \left(\frac{gSQ}{W} \right)^{2/3}$$
(3)

941

942 where ρ is the density of water, C_f is a dimensionless friction factor, g is the acceleration due 943 to gravity, S is the local channel slope, Q is the stream discharge and W is the stream width. 944 We then include a relationship for basin hydrology and hydraulic geometry given by:

945

$$946 Q = k_q A^c (4)$$

$$W = k_w Q^b \tag{5}$$

948

where k_q and k_w are constants, A is the drainage area and b and c are positive dimensionless 949 950 constants. Combining 2-5, leads to: 951 952 $E = k_e A^m S^n$ (6) 953 954 where: 955 $k_e = k_b k_w^{-2a/3} k_q^{2a(1-b)/3} \rho^a g^{2a/3}$ 956 (7) m = (2ac/3)(1-b)957 (8) n = 2a/3958 (9)

959

960 Given this, if we now define a constant k_m for Mars, based on the assumption that gravitation 961 acceleration is approximately one third that on Earth:

963
$$k_m = (1/3)^{2a/3} k_e = (1/3)^n k_e$$
(7)

To derive (1), in the main text, we have to include the expectation that over long timescales,uplift rate (U) and erosion rate compete to change the landscape elevation (z):

968
$$\frac{\partial z}{\partial t} = U - E = U - k_e A^m S^n$$
(8)

970 where *t* is a given time-step. Now if we assume that the system is in equilibrium in which 971 erosion is balanced by uplift rate, $\partial z / \partial t = 0$, then:

973
$$S = (U/k_e)^{1/n} A^{-m/n}$$
(9)

975 Comparing this to equation (1), in the main text, we have:

977
$$k = (U/k_e)^{1/n}$$
 (10)

$$\theta = -m/n \tag{11}$$

980 If we then include our k_m constant (7) for Mars in (9) we get:

982
$$S = (U/k_m)^{1/n} A^{-m/n}$$
(12)

983
$$S = 3(U/k_e)^{1/n} A^{-m/n}$$
(13)

985 Thus for a given drainage area on Earth we would expect the slope on Mars to be three times986 smaller. Or, in log-log terms:

987

988

$$Log S = log 3 + 1/n log(U/ke) - m/n log A$$
(14)

989

990 Acknowledgements

991 Thanks go to Grant Meyer and one anonymous reviewer for their constructive comments 992 which greatly improved this manuscript. This work would not have been possible without a 993 postgraduate studentship grant from the U.K. Natural Environment Research Council 994 (NERC). We thank the NERC ARSF for obtaining the LiDAR data on which part of this 995 paper relies. We thank the UK NASA RPIF-3D Facility at UCL for enabling the production 996 of one of the HiRISE DEMs. Additional funding was awarded to S.J.C. by Earth and Space 997 Awards, the Geological Society's W.G. Fearnsides Award, The Dudley Stamp Fund and the 998 British Society for Geomorphology's postgraduate funds. P.M.G. is funded by an STFC 999 Aurora Fellowship (ST/F011830/1). Thanks to Jon Yearsley for creation of spatialPattern 1000 script to create pink noise in MatLab.

1002 **References**

1003

1004 Akca, D. 2007a. Least Squares 3D Surface Matching. PhD thesis, Eidgenössische Technische 1005 Hochschule, Zürich. 1006 Akca, D. 2007b. Matching of 3D surfaces and their intensities. ISPRS Journal of 1007 Photogrammetry and Remote Sensing, 62, 2, 112-121. 1008 Aston, A. H., Conway, S. J. & Balme, M. R. 2010. Identifying Martian gully evolution. In: 1009 Balme, M., Bargery, A. S., Gallagher, C. & Gupta, S. (eds), Geomorphology on Mars 1010 and Other Planets. The Geological Society of London, accepted. 1011 Balme, M., Mangold, N., Baratoux, D., Costard, F., Gosselin, M., Masson, P., Pinet, P. & 1012 Neukum, G. 2006. Orientation and distribution of recent gullies in the southern 1013 hemisphere of mars: Observations from High Resolution Stereo Camera/Mars 1014 Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) 1015 data. Journal of Geophysical Research - Planets; , 111, E5, 1016 doi:10.1029/2005JE002607 1017 Balme, M. R. & Gallagher, C. 2009. An equatorial periglacial landscape on Mars. Earth and 1018 Planetary Science Letters, 285, 1-2, 1-15. 1019 Balme, M. R., Gallagher, C. J., Page, D. P., Murray, J. B. & Muller, J. P. 2009. Sorted stone 1020 circles in Elysium Planitia, Mars: Implications for recent martian climate. *Icarus*, 200, 1021 1, 30-38. 1022 Ben David-Novak, H., Morin, E. & Enzel, Y. 2004. Modern extreme storms and the rainfall 1023 thresholds for initiating debris flows on the hyperarid western escarpment of the Dead 1024 Sea, Israel. Geological Society of America Bulletin, 116, 5-6, 718-728. 1025 Blair, T. C. 1999. Cause of dominance by sheetflood vs. debris-flow processes on two 1026 adjoining alluvial fans, Death Valley, California. Sedimentology, 46, 6, 1015-1028. 1027 Blair, T. C. 2000. Sedimentology and progressive tectonic unconformities of the sheetflood-1028 dominated Hell's Gate alluvial fan, Death Valley, California. Sedimentary Geology, 1029 132, 3-4, 233-262. 1030 Borga, M., Tonelli, F. & Selleroni, J. 2004. A physically based model of the effects of forest 1031 roads on slope stability. Water Resources Research, 40, 12, 1-9. 1032 Bourke, M. C. 2005. Alluvial Fans on Dunes in Kaiser Crater Suggest Niveo-Aeolian and 1033 Denivation Processes on Mars. Lunar and Planetary Science Conference, 36, no. 1034 2373. 1035 Brardinoni, F. & Hassan, M. A. 2006. Glacial erosion, evolution of river long profiles, and 1036 the organization of process domains in mountain drainage basins of coastal British 1037 Columbia. Journal of Geophysical Research - Earth Surface, 111, 1, 1038 doi:10.1029/2005JF000358. 1039 Brook, M. S., Kirkbride, M. P. & Brock, B. W. 2008. Temporal constraints on glacial valley 1040 cross-profile evolution: Two Thumb Range, central Southern Alps, New Zealand. 1041 Geomorphology, 97, 1-2, 24-34. 1042 Chandler, R. J. 1973. The Inclination of Talus, Artic Talus terraces, and Other Slopes 1043 Composed of Granular Materials. Journal of Geology, 81, 1-14. 1044 Chevrier, V. & Altheide, T. S. 2008. Low temperature aqueous ferric sulfate solutions on the surface of Mars. Geophysical Research Letters, 35, L22101, L22101 1045 1046 Christensen, P. R. 2003. Formation of recent martian gullies through melting of extensive 1047 water-rich snow deposits. *Nature*, **422**, 6927, 45-48.

1048	Coe, J. A., Godt, J. W. & Henceroth, A. J. 2002. Debris Flows along the Interstate 70							
1049	Corridor, Floyd Hill to the Arapahoe Basin Ski Area, Central Colorado – A Field							
1050	<i>Trip Guidebook.</i> U.S. Geological Survey Open-File Report, USGS, Open-File Report							
1051	02-398.							
1052	Conway, S. J., Balme, M. R., Lamb, M. P., Towner, M. C. & Murray, J. B. 2010a. Enhanced							
1053	runout and erosion by overland flow under subfreezing and low pressure conditions:							
1054	experiments and application to Mars. <i>Icarus</i> , in review.							
1055	Conway, S. J., Decaulne, A., Balme, M. R., Murray, J. B. & Towner, M. C. 2010b. A new							
1056	Approach to Estimating Hazard posed by Debris Flows in the Westfjords of Iceland.							
1057	Geomorphology, 114 , 4, 556-572.							
1058	Costard, F., Forget, F., Mangold, N. & Peulvast, J. P. 2002. Formation of recent Martian							
1059	debris flows by melting of near-surface ground ice at high obliquity. <i>Science</i> , 295 .							
1060	5552, 110-113.							
1061	Crippen, J. R. 1979. Potential hazards from floodflows and debris movement in the Furnace							
1062	Creek area, Death Valley National Monument, California-Nevada, U.S. Geological							
1063	Survey Open-File Report 79-991 USGS							
1064	Crosta G B & Frattini P 2008 Rainfall-induced landslides and debris flows <i>Hydrological</i>							
1065	Processes 22 4 473-477							
1066	Decaulne A Sæmundsson & Pétursson O 2005 Debris flow triggered by rapid snowmelt							
1067	A case study in the Gleiðarhialli area northwestern Iceland <i>Geografiska Annaler</i>							
1068	Series A Physical Geography 87A 4 487-500							
1069	Decaulne A & Sæmundsson 2007 Spatial and temporal diversity for debris-flow							
1070	meteorological control in subarctic oceanic periglacial environments in Iceland <i>Earth</i>							
1071	Surface Processes and Landforms 32 , 1971-1983							
1072	Dickson J L Head J W & Kreslavsky M 2007 Martian gullies in the southern mid-							
1073	latitudes of Mars: Evidence for climate-controlled formation of young fluvial features							
1074	based upon local and global topography. <i>Icarus</i> , 188 , 315-323.							
1075	Dickson J L & Head J W 2009 The formation and evolution of vouthful gullies on Mars:							
1076	Gullies as the late-stage phase of Mars' most recent ice age <i>Icarus</i> 204 1 63-86							
1077	Dietrich W E & Perron I T 2006 The search for a topographic signature of life <i>Nature</i>							
1078	439 7075 411-418							
1079	Fetter C W 2001 Applied Hydrogeology Prentice Hall New Jersey 598 pp							
1080	Gaidos E. J. 2001. Cryovolcanism and the recent flow of liquid water on Mars. <i>Icarus</i> 153							
1081	1 218-223							
1082	Garvin I B Sakimoto S E H Schnetzler C & Frawley I I 1999 Global Geometric							
1083	Properties of Martian Impact Craters: A Preliminary Assessment Using Mars Orbiter							
1084	Laser Altimeter (MOLA) The Fifth International Conference on Mars July 19-24							
1085	1999 Pasadena California abstract no 6163							
1086	Godt I W & Coe I A 2007 Alpine debris flows triggered by a 28 July 1999 thunderstorm							
1087	in the central Front Range Colorado Geomorphology 84 1-2 80-97							
1088	Hack I T 1957 Studies of longitudinal stream profiles in Virginia and Maryland US							
1089	Geological Survey Professional Paper 294-B 45-97							
1090	Hancock G R & Evans K G 2006 Channel head location and characteristics using digital							
1091	elevation models <i>Earth Surface Processes and Landforms</i> 31 7 809-824							
1091	Harris C Smith I S Davies M C R & Rea B 2008 An investigation of periglacial							
1092	slope stability in relation to soil properties based on physical modelling in the							
1094	geotechnical centrifuge. Geomorphology 93 3-4 437-459							
1095	Harris S A & Gustafson C A 1993 Debris flow characteristics in an area of continuous							
1096	nermafrost St Elias Range Yukon Territory <i>Zeitschrift für Geomorphologie</i> 37 1							
1097	41-56.							

1098 Hart, S. D., Gulick, V. C., Parsons, R. A. & Barnhart, C. J. 2009. Gully Slopes and 1099 Discharges on Lyot Crater's Central Peak. Lunar and Planetary Science Conference, 1100 **40**. no. 2349. 1101 Hattanji, T., Onda, Y. & Matsukura, Y. 2006. Thresholds for bed load transport and channel 1102 initiation in a chert area in Ashio Mountains, Japan: An empirical approach from 1103 hydrogeomorphic observations. Journal of Geophysical Research - Earth Surface, 1104 111, 2, doi:10.1029/2004JF000206. 1105 Hecht, M. H. 2002. Metastability of liquid water on Mars. Icarus, 156, 2, 373-386. 1106 Heldmann, J. L. & Mellon, M. T. 2004. Observations of martian gullies and constraints on 1107 potential formation mechanisms. Icarus, 168, 2, 285-304. 1108 Heldmann, J. L., Toon, O. B., Pollard, W. H., Mellon, M. T., Pitlick, J., McKay, C. P. & 1109 Andersen, D. T. 2005. Formation of Martian gullies by the action of liquid water 1110 flowing under current Martian environmental conditions. Journal of Geophysical 1111 Research - Planets, 110, E5, doi:10.1029/2004JE002261. 1112 Heldmann, J. L., Carlsson, E., Johansson, H., Mellon, M. T. & Toon, O. B. 2007. 1113 Observations of martian gullies and constraints on potential formation mechanisms II. 1114 The northern hemisphere. Icarus, 188, 324-344. 1115 Heldmann, J. L., Conley, C., Brown, A. J., Fletcher, L., Bishop, J. L. & McKay, C. P. 2010. 1116 Possible Liquid Water Origin for Atacama Desert Mudflow and Recent Gully 1117 Deposits on Mars. Icarus, 206, 2, 685-690. 1118 Imaizumi, F., Hattanji, T. & Hayakawa, Y. S. 2010. Channel initiation by surface and 1119 subsurface flows in a steep catchment of the Akaishi Mountains, Japan. 1120 Geomorphology, 115, 1-2, 32-42. 1121 Innes, J. L. 1983. Debris Flows. Progress in Physical Geography, 7, 469-501. 1122 Iverson, R. M. 1997. The physics of debris flows. *Reviews of Geophysics*, 35, 3, 245-296. 1123 Jack, J. L. 2000. Red-shifts and red herrings in geographical ecology. *Ecography*, 23, 1, 101-1124 113. 1125 Jaeger, K. L., Montgomery, D. R. & Bolton, S. M. 2007. Channel and perennial flow 1126 initiation in headwater streams: Management implications of variability in source-area 1127 size. Environmental Management, 40, 5, 775-786. 1128 Kirk, R. L., Howington-Kraus, E., Rosiek, M. R., Anderson, J. A., Archinal, B. A., Becker, 1129 K. J., Cook, D. A., Galuszka, D. M., Geissler, P. E., Hare, T. M., Holmberg, I. M., 1130 Keszthelyi, L. P., Redding, B. L., Delamere, W. A., Gallagher, D., Chapel, J. D., 1131 Eliason, E. M., King, R. & McEwen, A. S. 2008. Ultrahigh resolution topographic 1132 mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate 1133 Phoenix landing sites. Journal of Geophysical Research - Planets, 113, 1134 doi:10.1029/2007JE003000. 1135 Kirkby, M. J., Bull, L. J., Poesen, J., Nachtergaele, J. & Vandekerckhove, L. 2003. Observed 1136 and modelled distributions of channel and gully heads - with examples from SE Spain 1137 and Belgium. Catena, 50, 2-4, 415-434. 1138 Kneissl, T., Reiss, D., van Gasselt, S. & Neukum, G. 2009. Distribution and orientation of 1139 northern-hemisphere gullies on Mars from the evaluation of HRSC and MOC-NA 1140 data. Earth and Planetary Science Letters, In Press, Corrected Proof. 1141 Kobor, J. S. & Roering, J. J. 2004. Systematic variation of bedrock channel gradients in the 1142 central Oregon Coast Range: Implications for rock uplift and shallow landsliding. 1143 Geomorphology, 62, 3-4, 239-256. 1144 Kolb, K. J., Pelletier, J. D. & McEwen, A. S. 2010. Modeling the formation of bright slope 1145 deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid 1146 water. Icarus, 205, 1, 113-137.

1147	Kreslavsky, M. A. & Head, J. W. 2003. North-south topographic slope asymmetry on Mars:
1148	Evidence for insolation-related erosion at high obliquity. Geophysical Research
1149	Letters, 30 , 15, doi:10.1029/2003GL017795.
1150	Kreslavsky, M. A., Head, J. W. & Marchant, D. R. 2008. Periods of active permafrost layer
1151	formation during the geological history of Mars: Implications for circum-polar and
1152	mid-latitude surface processes. <i>Planetary and Space Science</i> , 56, 2, 289-302.
1153	Lague, D. & Davy, P. 2003. Constraints on the long-term colluvial erosion law by analyzing
1154	slope-area relationships at various uplift rates in the Siwaliks Hills (Nepal). Journal of
1155	Geophysical Research - Solid Earth, 108, 2, doi:10.1029/2002JB001893.
1156	Lanza, N. L., Meyer, G. A., Okubo, C. H., Newsom, H. E. & Wiens, R. C. 2010. Evidence
1157	for debris flow gully formation initiated by shallow subsurface water on Mars. <i>Icarus</i> ,
1158	205 , 1, 103-112.
1159	Larsen, I. J., Pederson, J. L. & Schmidt, J. C. 2006. Geologic versus wildfire controls on
1160	hillslope processes and debris flow initiation in the Green River canyons of Dinosaur
1161	National Monument. Geomorphology, 81, 1-2, 114-127.
1162	Levy, J. S., Head, J. W., Dickson, J. L., Fassett, C. I., Morgan, G. A. & Schon, S. C. 2009.
1163	Identification of gully debris flow deposits in Protonilus Mensae, Mars:
1164	Characterization of a water-bearing, energetic gully-forming process. Earth and
1165	Planetary Science Letters, In Press, Corrected Proof.
1166	Malin, M. C. & Edgett, K. S. 2000. Evidence for recent groundwater seepage and surface
1167	runoff on Mars. Science, 288, 5475, 2330-2335.
1168	Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M. & Dobrea, E. Z. N. 2006.
1169	Present-day impact cratering rate and contemporary gully activity on Mars. Science,
1170	314 , 5805, 1573-1577.
1171	Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J. P. & Bristeau, M. O. 2007. Numerical
1172	modeling of self-channeling granular flows and of their levee-channel deposits.
1173	Journal of Geophysical Research - Earth Surface, 112 , 2, doi:10.1029/2006JF000469.
1174	Mangold, N. 2005. High latitude patterned grounds on Mars: Classification, distribution and
1175	climatic control. <i>Icarus</i> , 174 , 336-359.
1176	Mao, L., Cavalli, M., Comiti, F., Marchi, L., Lenzi, M. A. & Arattano, M. 2009. Sediment
1177	transfer processes in two Alpine catchments of contrasting morphological settings.
1178	Journal of Hydrology, 364 , 1-2, 88-98.
1179	Marchi, L., Dalla Fontana, G., Cavalli, M. & Tagliavini, F. 2008. Rocky headwaters in the
1180	Dolomites, Italy: Field observations and topographic analysis. Arctic Antarctic and
1181	<i>Alpine Research</i> , 40 , 4, 685-694.
1182	McEwen, A. S., Hansen, C. J., Delamere, W. A., Eliason, E. M., Herkenhoff, K. E.,
1183	Keszthelyi, L., Gulick, V. C., Kirk, R. L., Mellon, M. T., Grant, J. A., Thomas, N.,
1184	Weitz, C. M., Squyres, S. W., Bridges, N. T., Murchie, S. L., Seelos, F., Seelos, K.,
1185	Okubo, C. H., Milazzo, M. P., Tornabene, L. L., Jaeger, W. L., Byrne, S., Russell, P.
1186	S., Griffes, J. L., MartA-nez-Alonso, S., Davatzes, A., Chuang, F. C., Thomson, B. J.,
1187	Fishbaugh, K. E., Dundas, C. M., Kolb, K. J., Banks, M. E. & Wray, J. J. 2007. A
1188	closer look at water-related geologic activity on Mars. <i>Science</i> , 317 , 5845, 1706-1709.
1189	McNamara, J. P., Ziegler, A. D., Wood, S. H. & Vogler, J. B. 2006. Channel head locations
1190	with respect to geomorphologic thresholds derived from a digital elevation model: A
1191	case study in northern Thailand. <i>Forest Ecology and Management</i> , 224 , 1-2, 147-156.
1192	Miller, D. J. 1961. Geology of the Katalla district, Gulf of Alaska Tertiary province, Alaska.
1193	U.S. Geological Survey Open-File Report.
1194	Montgomery, D. R. & Foufoula-Georgiou, E. 1993. Channel network source representation
1195	using digital elevation models. <i>Water Resources Research</i> , 29 , 12, 3925-3934.

1196 Moore, H. J. & Jakosky, B. M. 1989. Viking landing sites, remote-sensing observations, and 1197 physical properties of Martian surface materials. *Icarus*, **81**, 164-184. 1198 Morton, D. M., Alvarez, R. M., Ruppert, K. R. & Goforth, B. 2008. Contrasting rainfall 1199 generated debris flows from adjacent watersheds at Forest Falls, southern California, 1200 USA. Geomorphology, 96, 3-4, 322-338. 1201 Moyle, W. R. 1982. Water Resources of Borrego Valley and Vicinity, California: Phase 1 -1202 Definition of Geologic and Hydrologic Characteristics of a Basin. U.S. Geological 1203 Survey Open-File Report, 82-855, USGS. 1204 Musselwhite, D. S., Swindle, T. D. & Lunine, J. I. 2001. Liquid CO₂ breakout and the 1205 formation of recent small gullies on Mars. Geophysical Research Letters, 28, 7, 1283-1206 1285. 1207 Mustard, J. F., Cooper, C. D. & Rifkin, M. K. 2001. Evidence for recent climate change on 1208 Mars from the identification of youthful near-surface ground ice. Nature, 412, 6845, 1209 411-414. 1210 Norðdalh, H. 1990. Late Weichselian and early Holocene deglaciation history of Iceland. 1211 Jökull, 40, 27-50. 1212 Pelletier, J. D., Kolb, K. J., McEwen, A. S. & Kirk, R. L. 2008. Recent bright gully deposits 1213 on Mars: Wet or dry flow? *Geology*, **36**, 3, 211-214. 1214 Perera, H. & Willgoose, G. 1998. A physical explanation of the cumulative area distribution 1215 curve. Water Resources Research, 34, 5, 1335-1343. 1216 Perron, J. T., Dietrich, W. E., Howard, A. D., McKean, J. A. & Pettinga, J. R. 2003. Ice-1217 driven creep on Martian debris slopes. Geophysical Research Letters, 30, 14, 1218 doi:10.1029/2003GL017603. 1219 Perron, J. T., Kirchner, J. W. & Dietrich, W. E. 2009. Formation of evenly spaced ridges and 1220 valleys. Nature, 460, 7254, 502-505. 1221 Peters, G. H., Abbey, W., Bearman, G. H., Mungas, G. S., Smith, J. A., Anderson, R. C., 1222 Douglas, S. & Beegle, L. W. 2008. Mojave Mars simulant--Characterization of a new 1223 geologic Mars analog. *Icarus*, **197**, 2, 470-479. 1224 Reiss, D., van Gasselt, S., Neukum, G. & Jaumann, R. 2004. Absolute dune ages and 1225 implications for the time of formation of gullies in Nirgal Vallis, Mars. Journal of 1226 Geophysical Research - Planets, 109, E6, doi:10.1029/2004JE002251. 1227 Schon, S. C., Head, J. W. & Fassett, C. I. 2009. Unique chronostratigraphic marker in 1228 depositional fan stratigraphy on Mars: Evidence for ca. 1.25 Ma gully activity and 1229 surficial meltwater origin. Geology, 37, 3, 207-210. 1230 Selby, M. J., 1993. Hillslope Materials and Processes. Oxford University Press, Oxford, 451 1231 pp. 1232 Shinbrot, T., Duong, N. H., Kwan, L. & Alvarez, M. M. 2004. Dry granular flows can 1233 generate surface features resembling those seen in Martian gullies. Proceedings of the 1234 National Academy of Sciences of the United States of America, 101, 23, 8542-8546. 1235 Sirkin, L. & Tuthill, S. J. 1987. Late Pleistocene and Holocene deglaciation and 1236 environments of the southern Chugach Mountains, Alaska. Geological Society of 1237 America Bulletin, 99, 376-384. 1238 Snyder, N. P., Whipple, K. X., Tucker, G. E. & Merritts, D. J. 2000. Landscape response to 1239 tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino 1240 triple junction region, Northern California. Bulletin of the Geological Society of 1241 America, 112, 8, 1250-1263. 1242 Soare, R. J. & Osinski, G. R. 2009. Stratigraphical evidence of late Amazonian periglaciation 1243 and glaciation in the Astapus Colles region of Mars. *Icarus*, 202, 17-21. 1244 Stock, J. & Dietrich, W. E. 2003. Valley incision by debris flows: Evidence of a topographic 1245 signature. Water Resources Research, 39, 4, doi:10.1029/2001WR001057.

1246 Stock, J. D. & Dietrich, W. E. 2006. Erosion of steepland valleys by debris flows. Bulletin of 1247 the Geological Society of America, 118, 9-10, 1125-1148. 1248 Tarboton, D. G., Bras, R. L. & Rodriguez-Iturbe, I. 1991. On the extraction of channel 1249 networks from digital elevation data. *Hydrological Processes*, 5, 1, 81-100. 1250 Tarboton, D. G. 1997. A new method for the determination of flow directions and upslope 1251 areas in grid digital elevation models. *Water Resources Research*, **33**, 2, 309-319. 1252 Tarolli, P. & Fontana, G. D. 2009. Hillslope-to-valley transition morphology: New 1253 opportunities from high resolution DTMs. Geomorphology, 113, 1-2, 47-56. 1254 Treiman, A. H. 2003. Geologic settings of Martian gullies: Implications for their origins. 1255 Journal of Geophysical Research - Planets; , 108, E4, doi:10.1029/2002JE001900. 1256 Tucker, G. E. & Bras, R. L. 1998. Hillslope processes, drainage density, and landscape 1257 morphology. Water Resources Research, 34, 10, 2751-2764. 1258 van Gasselt, S., Hauber, E., Pio Rossi, A., Dumke, A., Orosei, R. & Neukum, G. 2010. 1259 Periglaical Geomorphology of Tempe Terra, Mars: role of mantling deposits in lobate 1260 debris apron formation and evolution. In: Balme, M., Bargery, A. S., Gallagher, C. & 1261 Gupta, S. (eds), Geomorphology on Mars and Other Planets. The Geological Society 1262 of London, in review. 1263 Whipple, K. X. & Tucker, G. E. 1999. Dynamics of the stream-power river incision model: 1264 Implications for height limits of mountain ranges, landscape response timescales, and 1265 research needs. Journal of Geophysical Research - Solid Earth, 104, B8, 17661-1266 17674. 1267 Williams, K. E., Toon, O. B., Heldmann, J. L. & Mellon, M. T. 2009. Ancient melting of 1268 mid-latitude snowpacks on Mars as a water source for gullies. *Icarus*, **200**, 2, 418-1269 425. 1270 Woods, R. A. & Sivapalan, M. 1997. A connection between topographically driven runoff 1271 generation and channel network structure. Water Resources Research, 33, 12, 2939-1272 2950. 1273 Workman, J. B., Menges, C. M., Page, W. R., Taylor, E. M., Ekren, E. B., Rowley, P. D., 1274 Dixon, G. L., Thompson, R. A. & Wright, L. A. 2002. Geologic map of the Death 1275 Valley ground-water model area, Nevada and California, Miscellaneous Field Studies 1276 Map 2381-A. USGS. 1277 Yetemen, O., Istanbulluoglu, E. & Vivoni, E. R. 2010. The implications of geology, soils, 1278 and vegetation on landscape morphology: Inferences from semi-arid basins with 1279 complex vegetation patterns in Central New Mexico, USA. Geomorphology, 116, 3-4, 1280 246-263. 1281 1282 1283

1284 **Figure Captions**

1285

1286 Fig. 1. HiRISE images of a variety of gullies on Mars. Image credits: NASA/JPL/UofA. (a) 1287 Gullies on the wall of a small impact crater within Kaiser Crater, site KC in this study, image 1288 number: PSP_003418_1335, at 18.8°E, 54.3°S. (b) Gullies within a polar pit, image number: 1289 PSP 003498 1090 at 1.6°E, 70.6°S. (c) Gullies on the wall of Galap Crater, near Sirenum 1290 Fossae, image number: PSP_003939_1420, at 192.9°E, 37.7°S. (d) Gullies on the wall of 1291 Wirtz Crater, a large impact crater to the east of Argyre basin, image number: 1292 PSP_002457_1310, at 335.3°E, 48.2°S. (e) Gullies on the slip face of dunes in Russell Crater, 1293 located in Noachis Terra, image number: PSP 001440 1255, at 12.9°E, 54.2°S. (f) Gullies on 1294 the wall of an impact crater to the west of Newton Crater in Terra Sirenum, image number: 1295 PSP 005930 1395, at 196.8°E, 40.3°S.

1296

1297 Fig. 2. Slope-area and Cumulative Area Distribution (CAD) plots, showing typical process 1298 domains on Earth. (a) Slope-area plot from Montgomery & Foufoula-Georgiou (1993) with 1299 the additional domain of Brardinoni & Hassan (2006) indicated with a dashed line. The 1300 arrows and dotted line indicate the adjustment to the alluvial domain boundary considering 1301 the gravitational acceleration of Mars. (b) CAD plot from McNamara et al. (2006). P(A>A*) 1302 represents the probability of a point in the landscape having a drainage area greater than the 1303 given drainage area, A*, on the x-axis. Region 1a represents hillslopes that diverge and do 1304 not gather drainage. Region 1b represents hillslopes with convergent topography. Region 1c 1305 represents pore-pressure triggered landsliding or debris flow. Region 2 represents incision, or 1306 channel formation. Region 3 has large steps where large tributaries join the channel.

Fig. 3. Hillshade representations made from digital elevation models of the study site locations on Earth. Areas included in this study are outlined and labelled in the Figure. (a) and (b) Site SJ, San Jacinto, California. (c) Site DV, Death Valley, California. (d) Site KA, St Elias Mountains, Alaska. (e) and (f) Site FR, Front Range, Colorado. (g) and (h) Site WF, Westfjords, NW Iceland.

1313

Fig. 4. Hillshade representations made from digital elevation models of the study site locations on Mars. Areas included in this study are outlined and labelled in the Figure. (a) and (b) Site PC, Penticton Crater in Eastern Hellas. (c), (d) and (e) Site GC, Gasa Crater in Terra Cimmeria.(f) Site KC, a crater inside Kaiser Crater in Noachis Terra. (g) Site TS, a crater in Terra Sirenum. (h) The 10 km diameter synthetic crater, in which the square area is where the pink noise has been applied.

1320

Fig. 5. Close-up views of gullies in Kaiser Crater (site KC), subset of HiRISE image PSP_003418_1335. Image credits: NASA/JPL/UofA. (a) Examples of gullyheads identified for individual slope-area analysis, marked by circles containing white crosses. (b) Levées interior to a channel, arrows point to levées within the channel on each side. (c) Single leveed channel, arrows point to the more obvious levee on the right, but there is an indication that there is another on the left as well.

1327

Fig. 6. Slope-area plots for the study areas on Earth. Marked with solid grey lines are the domains of Montgomery & Foufoula-Georgiou (1993) and Brardinoni & Hassan (2006), as shown in Fig. 2a. Labels are included in (a), but omitted for clarity in the other plots and are as follows: (i) hillslopes domain, (ii) debris flow dominated channels, (iii) unchanneled valleys, (iv) alluvial channels and (v) debris flow deposition domain. The horizontal dotted

line represents the threshold for unconsolidated dry mass wasting at 0.7 gradient, which is
equivalent to 35° slope.

(a) Plots for those areas dominated by talus and creep processes. (b) Plots for those areas
dominated by debris flow, with some influence from talus processes. (c) Plots for those areas
dominated by debris flow, with influence from alluvial processes. (d) Plots for those areas
dominated by ephemeral water flow, or alluvial processes.

1339

Fig. 7. Cumulative Area Distribution plots for the study areas on Earth. (a) Plots for those areas dominated by talus and creep processes. (b) Plots for those areas dominated by debris flow, with some influence from talus processes. (c) Plots for those areas dominated by debris flow, with influence from alluvial processes. (d) Plots for those areas dominated by ephemeral water flow, or alluvial processes.

1345

1346 Fig. 8. Slope-area plots for the study areas on Mars. Marked with solid grey lines are the 1347 domains of Montgomery & Foufoula-Georgiou (1993) and Brardinoni & Hassan (2006), as 1348 shown in Fig. 2a. Labels are included in (a), but omitted for clarity in the other plots and are 1349 as follows: (i) hillslopes domain, (ii) debris flow dominated channels, (iii) unchanneled 1350 valleys, (iv) alluvial channels and (v) debris flow deposition domain. The horizontal dotted 1351 line represents the threshold for unconsolidated dry mass wasting at 0.7 gradient, which is 1352 equivalent to 35° slope. The dash-dot line represents the adjustment of the alluvial domain 1353 when taking into account Mars' gravitational acceleration. (a) Plots for Site PC, Penticton 1354 Crater in Eastern Hellas. (b) Plots for Site GC, Gasa Crater in Terra Cimmeria. (b) Plots for 1355 Site KC, a crater inside Kaiser Crater in Noachis Terra. (d) Plots for Site TS, a crater in Terra 1356 Sirenum and the 10 km diameter synthetic crater.

1358 Fig. 9. Cumulative Area Distribution plots for the study areas on Mars. (a) Plots for Site PC,

1359 Penticton Crater in Eastern Hellas. (b) Plots for Site GC, Gasa Crater in Terra Cimmeria. (b)

1360 Plots for Site KC, a crater inside Kaiser Crater in Noachis Terra. (d) Plots for Site TS, a crater

1361 in Terra Sirenum and the 10 km diameter synthetic crater.

1362

Fig. 10. Wetness index maps made from digital elevation models of the study site locations
on Earth. Areas included in this study are outlined and labelled in the Figure. Wetness index
values are represented by the same colours in Fig. 11 to allow direct comparison. (a) and (b)

1366 Site SJ, San Jacinto, California. (c) Site DV, Death Valley, California. (d) Site KA, St Elias

- 1367 Mountains, Alaska. (e) and (f) Site FR, Front Range, Colorado. (g) and (h) Site WF,
- 1368 Westfjords, NW Iceland.

1369

Fig. 11. Wetness index maps made from digital elevation models of the study site locations on Mars. Areas included in this study are outlined and labelled in the Figure. Wetness index values are represented by the same colours in Fig. 10 to allow direct comparison. (a) and (b) Site PC, Penticton Crater in Eastern Hellas. (c), (d) and (e) Site GC, Gasa Crater in Terra Cimmeria.(f) Site KC, a crater inside Kaiser Crater in Noachis Terra. (g) Site TS, a crater in Terra Sirenum. (h) 10 km diameter synthetic crater.

1376

Table 1. Summary table for the study sites on East	rth
--	-----

Site	Location	Date Flown	Data Source	Approx. precipitation (mm/year)	Landscape-type	Latitude	Longitude	Average elevation (m)	Relief (m)
A	San Jacinto Fault (SJF Segment 3) - Santa Rosa Mountains	mid 2005	NCALM B4 Project	150	desert	33° 25' 58.55" N	116° 28' 57.55" W	597	677
В	Death Valley California	28/02/2005	NCALM	<85	desert	39° 38' 01.77" N	105° 49' 13.88" W	3664	134 5
С	St. Elias, Alaska	02-15/9/2005	NCALM	2000	periglacial	60° 18' 18.59" N	144° 32' 14.98" W	490	831
D	Front Range, Colorado	30/09/2005	NCALM	600	periglacial	37° 04' 28.50" N	117° 26' 37.60" W	258	854
Е	Westfjords, Iceland	05/08/2007	ARSF	700	periglacial	66° 04' 13.20'' N	023° 07' 14.19" W	271	807

Average elevation is given relative to datum, for A-D this is NAD 1983 and for Site E this is WGS 1984, in both cases the difference between the datum and sea level is approximately 60 m. Abbreviations: NCALM - National Center for Airborne Laser Mapping supported by the USA's National Science Foundation, ARSF – Airborne Research and Survey Facility supported by the UK Natural Environment Research Council.

Site	HiRISE image pair	Latitide	Longitude	Average elevation (m)	Relief (m)
F	PSP_001714_1415 PSP_001846_1415	-38.4°	96.8°	-2648	1124
G	PSP_004060_1440 PSP_005550_1440	-35.7°	129.4°	300	1205
Н	PSP_003418_1335 PSP_003708_1335	-46.1°	18.8°	595	687
J	PSP_003674_1425 PSP_005942_1425	-37.4°	229.0°	1904	961

Table 2. Summary table for the study sites on Mars

.

Average elevation is given relative to the Mars datum, as defined from the MOLA dataset. The average elevation has been estimated from the MOLA dataset and relief from the HiRISE DEMs.