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Abstract. This paper presents analytical solutions to esti-
mate at any scale the fracture density variability associated
to stochastic Discrete Fracture Networks. These analytical
solutions are based upon the assumption that each fracture in
the network is an independent event. Analytical solutions are
developed for any kind of fracture density indicators. Those
analytical solutions are verified by numerical computing of
the fracture density variability in three-dimensional stochas-
tic Discrete Fracture Network (DFN) models following var-
ious orientation and size distributions, including the heavy-
tailed power-law fracture size distribution. We show that this
variability is dependent on the fracture size distribution and
the measurement scale, but not on the orientation distribu-
tion. We also show that for networks following power-law
size distribution, the scaling of the three-dimensional frac-
ture density variability clearly depends on the power-law ex-
ponent.

1 Introduction

Characterizing fracture networks in geosciences is a key
challenge for many industrial projects such as deep waste
disposal, hydrogeology or petroleum resources, because it
may change the mechanical (Davy et al., 2018; Grechka and
Kachanov, 2006) and hydrological (Bogdanov et al., 2007;
De Dreuzy et al., 2001a, b) behaviour of the rock mass. Frac-
tures being ubiquitous and at all scales, the description of
these physical properties is often far beyond the reach of
a continuum approach (Jing, 2003). Discrete Fracture Net-
works are computational models explicitly representing the
geometry of fractures in a network, and can be used as a
basis for physical simulations (mechanical strength, flow,

transport. . . ) (see Jing, 2003; Lei et al., 2017, for a review).
Considering the scarce nature of geological data, statistical
methods have been widely used to generate DFN models,
where all fracture geometrical attributes are treated as inde-
pendent variables from probability distribution derived from
the field. Indeed, fracture networks are often described from
size distribution, sets of orientations, location, and densities
(Dershowitz and Einstein, 1988). Unfortunately, the diffi-
culty of access and resolution to volumetric data makes it
difficult to directly measure three-dimensional fracture den-
sities. Stereological analysis proposes theoretical relation-
ship to calculate the 3-D density from 1-D or 2-D measure-
ments under some assumptions (Berkowitz and Adler, 1998;
Darcel et al., 2003a; Warburton, 1980). For example, the to-
tal fracture surface per unit volume p32 can be calculated
from one-dimensional fracture intersections along scanlines
or boreholes using some conversion factor (Mauldon, 1994;
Terzaghi, 1965; Wang, 2005). Most of these studies focus
on characterizing the mean density of a fractured system
with poor interest to the underlying variability. However,
fracture density variability is an indicator for fracture clus-
tering, which may have dramatical impact on connectivity
(Darcel et al., 2003b; La Pointe, 1988; Manzocchi, 2002).
Darcel et al. (2013) proposed an analytical solution to quan-
tify at any scale, the standard deviation associated to frac-
ture frequency p10, considering fracture-borehole crossing
as a one-dimensional Poisson point process (random posi-
tions with fixed density). They show that the standard devia-
tion associated to the number of intersections per unit length
p10 is inversely proportional to the square root of the mea-
surement scale. This solution was also demonstrated by Lu
et al. (2017), who validated it numerically computing p10
values on boreholes crossing three-dimensional Poissonian
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DFN models of fixed fracture density. In this paper, we aim
to develop analytical solutions for three-dimensional Pois-
sonian DFN models to quantify the range of variability of
any kind of fracture density, of any dimension. Particularly,
we propose solutions for three-dimensional density variabil-
ity that cannot be obtained directly from the field. We show
that this variability depends on the measurement scale and
the fracture size distribution, but not on the orientation dis-
tribution. These solutions are validated by numerical simula-
tions, computing the associated fracture densities mean and
variance at various scales for three-dimensional Poissonian
Discrete Fracture Networks.

2 Theoretical development

In the following, we will calculate the variability of the
fracture densities pDd such as defined by Dershowitz and
Herda (1992) and Mauldon and Dershowitz (2000). D and
d refers to the dimensions of the embedding system 6 and
of the fracture trace in 6, respectively, so that d ≤D. For in-
stance, p10 is the number of intersection points (d = 0) along
a line (D = 1) per unit line size. We denote by µf the contri-
bution of a fracture f to pDd (µf is a d-dimension measure)
and s the scale at which pDd and µf are calculated so that:

pDd =

∑
fµf (s)

sD
, (1)

First, we calculate the spatial variability of the measure
µf (s) calculated in aD-sphere of size s embedded in a larger
space 6 of volume V . In D-dimension, a fracture is repre-
sented by an object of dimensionD−1 (a point in a scanline,
a line in a 2-D outcrop, or a surface in the 3-D space) with a
size Sf . The proportion of the total volume occupied by the
fracture – i.e., the volume where the measure µf (s) is not nil
– is:

Pf (s)=

{
Sf ·s

V
, Sf > s

D−1

sD

V
, Sf < s

D−1
, (2)

We then assume that, when it is not nil, the measure µf (s)
derives from a distribution with a mean µf,s and a standard
deviation σµf,s . For the total system, we can calculate the first
and second order moment of µf (s):

〈µf 〉 = Pf (s) ·µf,s, (3a)

〈µ2
f 〉 = Pf (s) ·

(
µf,s

2
+ σ 2

µf,s

)
, (3b)

The variance σ 2(µf ) is written as:

σ 2 (µf )= 〈µ2
f 〉− 〈µf 〉

2

= Pf (s)
(
1−Pf (s)

)
·µf

2
+Pf (s)σ

2
µf,s

, (4)

We now sum the contribution of all fractures to calculate
µ(s)=

∑
fµf (s). With the Poisson’s hypothesis, all frac-

tures are independent events and the variance σ 2 (µ) is the

sum of the variance of each fracture:

σ 2 (µ)= σ 2
(∑

f
µf

)
=

∑
f
σ 2(µf ), (5)

And finally, the variability of the density measure pDd is
σ 2 (pDd)= σ

2(µ)/s2D . In the following, we compute the
dimensionless ratio between the variance σ 2 (pDd) and the
square of the mean pDd :

λ(pDd)=

[
σ (pDd)

pDd

]2

, (6)

In the fractal theory, λ(·) is called lacunarity (Plotnick et
al., 1996). This is a scale dependent measure, whose analysis
gives an idea of the scaling of fracture network textural het-
erogeneity and potentially on different regimes (Plotnick et
al., 1996; Roy et al., 2014).

For geological environments, fracture networks are char-
acterized by a wide distribution of fracture sizes. We denote
by n(l) the density distribution of fracture sizes, and n(l)dl
is the number of fractures of size in the range [l, l+ dl] per
system volume (Davy, 1993). The total number of fractures
in a system of volume V isN = V

∫
n(l)dl . We then assume

that the measure µf (s) and the occupied volume ratio Pf (s)
only depends on the fracture size l so that µf (s)= µ(l,s)
and Pf (s)= P(l,s). Equation (6) can now be written as a
function of the fracture size distribution:

λ(pDd)=

V

pDd
2

∫ (
P(l,s)·[1−P(l,s)]·µ(l,s)

2

+P(l,s)·σ 2(µ(l,s))

)
· n(l)dl

s2D , (7)

In the following, we especially focus on the power-law size
distribution, which have been found to adequately fit natural
systems (Bonnet et al., 2001; Bour, 2002; Bour and Davy,
1999; Odling, 1997):

n(l)= α · l−a, (8)

with a the power-law exponent, α the density term.

2.1 1-D measurements

Fracture abundance is often quantified on boreholes using the
one-dimensional fracture frequency p10 measurement, de-
fined as the numberN of crossing fractures per unit borehole
length L. If a fracture intersecting this borehole is also part
of a subsample of size s, the associated measure µ(l,s)=
1. The ratio of subsamples intersected by this fracture is
P (l,s)= s/L. Considering that s� L, then P (l,s)� 1,
and the lacunarity of such measurement is the one of a one-
dimensional Poisson point process (Darcel et al., 2013; Lu et
al., 2017):

λp10 (s)=
1

p10
2
N(s/L)

s2 =
1
p10

s−1, (9)
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Table 1. Scaling of parameters
(
5(l,s)

)2
+ σ 2 (5(l,s)) and

P(l,s).

(
5(l,s)

)2
+ σ 2 (5(l,s)) P (l, s)

s� l βss
2/βf l

2 βf l
2s/V

s� l 1 s3/V

2.2 3-D measurements

In three-dimensional systems, the fractures d-measures µf
are either their occurrence (d = 0), surface (d = 2) or sur-
rounded sphere (d = 3). µf (s) such as defined in the pre-
vious section is the part of the measure µf that is included
into a domain S of size s, that is the product of µf by the
occurrence probability of the fracture to be included into
the domain S, 5f,s (also noted 5(l,s) following the no-
tation of the previous section). We define 5f,s as the ra-
tio between the fracture surface included into the domain
S to the total fracture surface. If the fracture size is larger
than s, both the average value of 5f,s and its standard de-
viation are proportional to the surface s2. If P (l,s)� 1,
that is for large systems, Eqs. (4) and (7) requires to know
the expression of

(
5(l,s)

)2
+ σ 2 (5(l,s)). The scaling of(

5(l,s)
)2
+ σ 2 (5(l,s)) and P(l,s) are given in Table 1,

with βs and βf shape factors depending on domain S and
fractures geometries respectively. This binary model will al-
low us to simplify the analytical solutions, although we may
have significant errors when l ∼ s.

2.2.1 Fracture number density p30

The p30 measure counts the number of fractures N per unit
volume V . Fracture occurrence can be measured as µ(l,s)=
5(l,s). The corresponding lacunarity λp30 under our hy-
pothesis is then given by:

λp30 (s)=

V

p30
2

∫
P (l,s) ·

[(
5(l,s)

)2
+ σ 2 (5(l,s))

]
· n(l)dl

s6 , (10)

If we consider that fractures have all the same size lf , then:

λp30 (s)=

{
(β2
s /p32) · s

−1, s� lf
(1/p30) · s

−3, s� lf
(11)

If we consider now that the network follows a power-law
size distribution with minimum and maximum fracture size
lmin and lmax, the p30 lacunarity equation is defined by three
regimes:

λp30 (s)=



(
α

p30
2
β2
s

βf

∫ lmax
lmin

l−(a+2)dl
)
s−1, s� lmin

α

p30
2

(
s−3∫ s

lmin
l−adl

+
β2
s

βf
s−1∫ lmax

s
l−(a+2)dl

)
, s ∈ [lmin, lmax]

(1/p30) · s
−3, s� lmax

(12)

2.2.2 Fracture intensity p32

Fracture intensity p32 measures the total fracture surface per
unit volume. The contribution of each fracture of size l in
the domain S is µ(l,s)=5(l,s)βf l2. The corresponding
lacunarity λp32 is then given by:

λp32 (s)=

β2
f

p32
2

∫
P (l,s) ·

[(
5(l,s)

)2
+ σ 2 (5(l,s))

]
· l4 · n(l,L)dl

s6 , (13)

Following the same reasoning as for p30 density, if we con-
sider that all fractures have the same size lf , we find that the
p32 lacunarity λp32 follows Eq. (11). If we consider now that
the network follows a power-law size distribution, the p32
lacunarity equation is defined by three regimes:

λp32 (s)=


(β2
s /p32) · s

−1, s� lmin
α

p32
2

(
β2
f s
−3∫ s

lmin
l4−adl

+βf β
2
s s
−1∫ lmax

s
l2−adl

)
, s ∈ [lmin, lmax]

(1/p30) · s
−3 s� lmax

(14)

2.2.3 Percolation parameter p

The percolation parameter gives an idea of the connectiv-
ity of the network (Bour and Davy, 1997, 1998; Robinson,
1983). Fundamentally, it is total excluded volume around
fractures per unit volume so that for disk-shaped fractures the
associated measure µ(l,s)= (π2/8) ·5(l,s) l3 (De Dreuzy
et al., 2000). The corresponding lacunarity λp is then given
by:
λp (s)=

π4

64
V

p2

∫
P (l,s) ·

[(
5(l,s)

)2
+ σ 2 (5(l,s))

]
· l6 · n(l)dl

s6 , (15)

If we consider that all fractures have the same size lf , then:

λp (s)=

 (1/p30) · s
−3, s� lf

π2

8 .
p32

2

p·p30
·
β4
s

β3
f

· s−1, s� lf
(16)

If fracture size distribution follows a power-law size distri-
bution, the percolation parameter lacunarity becomes:

λp (s)=



(
α

p2 ·
π4

64 ·
β2
s

βf

∫ lmax
lmin

l4−adl
)
· s−1, s� lmin

π2

8
α

p2

(
s−3∫ s

lmin
l6−adl+

β4
s

β3
f

s−1∫ lmax
s

l4−adl
)
, s ∈ [lmin, lmax](

α

p2 ·
π4

64

∫ lmax
lmin

l6−adl
)
· s−3, s� lmax

(17)
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Figure 1. (a) Fracture size distribution of generated networks sets (3–6) following power-law size distribution with a bulk density p32 = 0.5
and different power-law exponent a indicated in the legend box (a = 3 in blue, a = 5 in green), and (b)–(c) stereonets for the two defined
orientation distributions.

Figure 2. Theoretical (dash) and experimental (dots) p10 lacunar-
ity curves for fracture network sets (3–6) following power-law size
distribution at bulk density p32 = 0.5.

3 Density variability of DFN with power-law size
distributions and various orientation distribution

In this section, we aim at validating the analytical solutions
developed in Sect. 2, with numerical experiments on Discrete
Fracture Networks (DFN). We generate some very simple
Poissonian DFN models where the position of each fracture
is set randomly within a cubic system of size L= 400, and
other fracture parameters (orientations, size. . . ) are picked
up in the corresponding distribution independently of each
other. The fracture shapes are disks, and the diameters l are
either constant or power-law distributed. In order to mini-
mize finite-size effects, fracture centers are generated in a
cubic box system of size (L+ lmax) with lmax the largest

Figure 3. Fracture intensity lacunarity curves λp32 for networks
with constant fracture size and bulk density p32 = 0.5.

fracture. We here define two fracture network sets with con-
stant size: (1) lf = 20� L and (2) lf = L= 400. We also
define four fracture network sets (3, 4, 5, 6) following power-
law size distribution with lmin = 1, lmax = 100, and where
the power-law exponent a is within the range [2,5]. All
network sets are simulated for different fracture intensities
p32 ∈ {0.1,0.2,0.3,0.4,0.5}. We test two different fracture
orientation distributions: (a) uniform, all orientations are
equally represented, (b) Fisher distribution f (θ,κ) (Fisher,
1953) with a mean pole θ defined by a strike and dip angle
both of 45◦, and a dispersion factor κ = 15. For statistical
analysis, we perform 50 realizations of each fracture sets.
Figure 1 shows examples of generated networks and their as-
sociated size distributions.

Adv. Geosci., 49, 77–83, 2019 www.adv-geosci.net/49/77/2019/
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Figure 4. Fracture densities lacunarity curves (a) λp30(s), (b) λp32 (s), (c) λp(s) for networks following power-law fracture size distributions
with total fracture intensity p32 = 0.5, and (d) evolution of fracture intensity lacunarity λp32 at fixed scale (s = 20) with fracture bulk intensity
p32.

3.1 1-D measurements

We compute the p10 lacunarity curves on 81 boreholes cross-
ing the whole domain, equally spaced and parallel to the z di-
rection, divided in subsamples of size s ∈ [0.02L,L] with no
overlap. The general p10 lacunarity curve of the system is ob-
tained by stacking the contribution of each borehole. Figure 2
shows that the lacunarity curves associated to the generated
Poissonian DFN models with power-law size distribution and
mean density p32 follow Eq. (9) as predicted by Darcel et al.
(2013) and Lu et al. (2017). When s ∼ L, the lacunarity curve
drops down because of finite-size effects. Lacunarity curves
are not the same for the uniform and the Fisher orientation
distributions, because the p10 densities are not the same. In-
deed, for the same p32 density, the p10 value measured on
a borehole depends of the relative orientation between frac-
tures and the borehole. For uniform orientation p10 = p32/2,
and for the defined Fisher orientation p10 = 0.75p32 which
can be found from Wang (2005) formulae.

3.2 3-D measurements

To construct the experimental three-dimensional density la-
cunarity curves, we divide the cubic domain of size L in
L3/s3 subdomains with no overlap at different scales s. On

each subdomain, the three-dimensional fracture densities de-
fined in Sect. 2.2 (p30, p32, p) are computed numerically in
order to obtain the associated mean and standard deviation
over the whole domain at scale s, giving access to the cor-
responding lacunarities. For the analytical analysis, we con-
sider that the fracture disk shape factor is βf = π/4, and that
the subdomain shape factor is βs = 1. Figure 3 focuses on the
p32 lacunarity of constant size fracture networks with total
fracture intensity p32 = 0.5. For the case where the fracture
size lf = 20, Eq. (10) shows two asymptotes for the experi-
mental lacunarity curves for s� lf and for s� lf , respec-
tively. When s ∼ lf , the equations overpredict the lacunarity
by a factor of at most 3.

Figure 4 focuses on various 3-D density lacunarity curves
for networks following power-law size distributions. When
the study scale s is larger than the minimum fracture size
lmin, the p30 lacunarity curves (Fig. 4a) evolves as a three-
dimensional binomial process (∼ s−3), which is coherent
with the fact that fractures are positioned randomly in space.
The fracture intensity lacunarity λp32 and percolation param-
eter lacunarity λp (Fig. 4b and c respectively), are divided in
three different regimes. When we investigate the dependence
upon the scale s ∈ [lmin, lmax], their scaling clearly depends
of the power-law size distribution exponent a. For large a
values (a ≥ 5), the p32 lacunarity curve scales as ∼ s−3 be-

www.adv-geosci.net/49/77/2019/ Adv. Geosci., 49, 77–83, 2019
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cause small fractures are dominant. For this range of study
scale, we can notice a slight discrepancy between the ana-
lytical solutions and the numerical experiments. The lower
a the larger this discrepancy. This can be explained by the
fact that for low a values, the number of fractures whose size
l ∼ s is always significant. Nevertheless, these analytical so-
lutions reproduce well the observed scaling of fracture den-
sities lacunarity. At scale s ∼ lmax, the difference of p32 la-
cunarity between networks following either a power-law size
distribution of exponent a = 2 or a = 5 vary up to a factor
103. Finally, Fig. 4d analyses λp32 at fixed scale s = 20 for
different bulk p32 values, highlighting that fracture density
lacunarity is inversely proportional to the total fracture den-
sity. Finally, for any fracture density, all lacunarity curves are
identical whatever the fracture orientation distribution (uni-
form or Fisher), which proves the orientation independency.

4 Conclusion

We propose here analytical solutions to quantify the density
variability associated to Poissonian fracture networks, using
the dimensionless variance parameter λ that we call lacu-
narity. Solutions are demonstrated for any kind of fracture
density of any dimension, with application to uniform and
power-law size distribution. The application to other frac-
ture size distribution (exponential, log-normal. . . ) is straight-
forward. These analytical solutions were validated numer-
ically by computing the density variability on Poissonian
DFN models for different bulk density values, fracture size
and orientation distributions. We show that the variability of
three-dimensional densities is dependent on the study scale
and the fracture size distribution, but not on the orientation
distribution. Moreover, we show that for networks following
power-law size distributions, the scaling of the variability of
the fracture intensity p32 is strongly dependent of this power-
law exponent. This suggest that the variability of p32 den-
sity cannot be estimated from borehole p10 measurements,
as it is done to quantify the mean p32 density over the whole
network using simple stereological rules. These solutions,
which are developed for purely stochastic networks, can thus
be used as a reference to estimate three-dimensional fracture
density variability on the field, which is out of reach of our
investigation technics. Further work is ongoing to quantify
the fracture density variability for networks showing fractal
correlations (Darcel et al., 2003b), which may also be quanti-
fied from the field. We expect the clustering effect associated
to such networks to increase significantly the variability of
fracture densities and its scaling.

Code availability. The Python script used for generation and anal-
ysis of Discrete Fracture Networks in this paper can be found
at https://github.com/elavoine/DFNDensityVariability (last access:
30 May 2019).
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