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Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data

 . Such a double subduction zone may also better account for the rapid India-Asia convergence before the final collision 8 .

 .

 . This study aims to fill this gap and solve these controversies by providing necessary constraints on the motion of the BT using new palaeomagnetic and 40 Ar/ 39 Ar age data.
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Geology of the Burma Terrane

The present-day BT geodynamic setting is characterized by hyperoblique subduction of the Indian plate below the Burmese margin in the west and by the large-scale, active dextral strike-slip Sagaing Fault in the east, resulting in a northward transcurrent motion of the terrane [START_REF] Socquet | India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS[END_REF] . The western boundary of the BT is delineated by either another strike-slip fault (the Kabaw Fault) or the Naga Hills-Kaleymyo-Andaman Ophiolite (herein called the Western Belt Ophiolite) in the Indo-Burman Ranges (IBR) [START_REF] Barber | Structure of Sumatra and its implications for the tectonic assembly of southeast Asia and the destruction of Paleotethys[END_REF][START_REF] Mitchell | Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[END_REF][START_REF] Liu | Tethyan suturing in southeast Asia: zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites[END_REF][START_REF] Searle | Chapter 12 Tectonic and metamorphic evolution of the Mogok metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar)[END_REF] . The IBR basement has been interpreted as either (1) a separate tectonic block accreted to the BT either in the Early Cretaceous [START_REF] Zhang | Structures, uplift, and magmatism of the western Myanmar arc: constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[END_REF] or in the Late Cretaceous to Palaeogene [START_REF] Gibbons | A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys[END_REF][START_REF] Searle | Chapter 12 Tectonic and metamorphic evolution of the Mogok metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar)[END_REF] or (2) an accretionary-type setting without block collision [START_REF] Licht | Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence[END_REF][START_REF] Fareeduddin | Structure and petrology of the Nagaland-Manipur Hill Ophiolitic Mélange zone, NE India: A fossil Tethyan subduction channel at the India-Burma plate boundary[END_REF][START_REF] Zhang | Multiple alternating forearc-and backarc-ward migration of magmatism in the Indo-Myanmar orogenic belt since the Jurassic: documentation of the orogenic architecture of eastern Neotethys in SE Asia[END_REF] . East of the BT, there is a complex succession of metamorphic rocks (the Mogok-Mandalay-Mergui Belt, or MMMB) that forms the boundary of the BT with the Shan Plateau (Sibumasu Block) alongside the Sagaing Fault and the Jade Belt Ophiolite [START_REF] Searle | Chapter 12 Tectonic and metamorphic evolution of the Mogok metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar)[END_REF] . The complete dextral displacement along this fault system has been estimated to be between 400 and 1,100 km (refs. [START_REF] Mitchell | Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma)-Assam region[END_REF][START_REF] Morley | Syn-kinematic sedimentation at a releasing splay in the northern Minwun Ranges, Sagaing fault zone, Myanmar: significance for fault timing and displacement[END_REF][START_REF] Morley | Dating the onset of motion on the Sagaing Fault: evidence from detrital zircon and titanite U-Pb geochronology from the north Minwun basin, Myanmar[END_REF] ). Before the development of the Sagaing Fault, there is evidence for dextral deformation along the Shan Scarp, directly east of the Sagaing Fault [START_REF] Bertrand | Tectonics of the western margin of the Shan plateau (central Myanmar): implication for the India-Indochina oblique convergence since the Oligocene[END_REF][START_REF] Morley | Chapter 4 Cenozoic rifting, passive margin development and strike-slip faulting in the Andaman Sea: a discussion of established v. new tectonic models[END_REF] , although the tectonic regime of the Sibumasu Block was predominantly sinistral [START_REF] Morley | Nested strike-slip duplexes, and other evidence for Late Cretaceous-Palaeogene transpressional tectonics before and during India-Eurasia collision, in Thailand, Myanmar and Malaysia[END_REF] . Another example of earlier dextral deformation is the late Oligocene West Andaman Fault to the south [START_REF] Morley | Chapter 4 Cenozoic rifting, passive margin development and strike-slip faulting in the Andaman Sea: a discussion of established v. new tectonic models[END_REF] .

The oldest exposed rocks of the BT are the low-grade metamorphic Triassic Shwedaung and Pane Chaung Formations, as well as the higher-grade Kanpetlet Schist. Both a late Mesozoic Gondwanan [START_REF] Yao | Origin and tectonic evolution of Upper Triassic turbidites in the Indo-Burman ranges, West Myanmar[END_REF] or Cathaysian [START_REF] Sevastjanova | Myanmar and Asia united, Australia left behind long ago[END_REF] origin has been suggested for the Pane Chaung Formation on the basis of detrital zircon uranium-lead (U-Pb) age data. The Burmese margin formed as an Andean-type setting during the Cretaceous, as evidenced by Andean-type magmatic activity in the Wuntho-Popa Arc that today crops out in the middle of a wide belt of forearc and back-arc basins, which developed contemporaneously in Central Myanmar (Fig. 2) [START_REF] Licht | Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence[END_REF][START_REF] Zhang | Structures, uplift, and magmatism of the western Myanmar arc: constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[END_REF][START_REF] Pivnik | Polyphase deformation in a fore-arc/back-arc basin, Salin subbasin, Myanmar (Burma)[END_REF] . Published U-Pb data indicate an early Late Cretaceous main phase of magmatism from 110 to 85 Ma, followed by a subordinate stage from 40 to 70 Ma (refs. [START_REF] Mitchell | Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[END_REF][START_REF] Zhang | Structures, uplift, and magmatism of the western Myanmar arc: constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[END_REF][START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF][START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] ). Our new 97 to 87 Ma [START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] Ar/ [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar dates in the Kanza Chaung Batholith, the main unit of the northern Wuntho-Popa Arc (Fig. 2, Supplementary Dataset 1), confirm this major magmatic phase. The Western Belt Ophiolite was probably emplaced during that time as well [START_REF] Licht | Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence[END_REF][START_REF] Zhang | Structures, uplift, and magmatism of the western Myanmar arc: constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[END_REF][START_REF] Fareeduddin | Structure and petrology of the Nagaland-Manipur Hill Ophiolitic Mélange zone, NE India: A fossil Tethyan subduction channel at the India-Burma plate boundary[END_REF][START_REF] Pivnik | Polyphase deformation in a fore-arc/back-arc basin, Salin subbasin, Myanmar (Burma)[END_REF][START_REF] Singh | Evidence of mid-ocean ridge and shallow subduction forearc magmatism in the Nagaland-Manipur ophiolites, northeast India: constraints from mineralogy and geochemistry of gabbros and associated mafic dykes[END_REF] . The Wuntho-Popa Arc has been correlated with the similar Gangdese Arc (Lhasa Terrane) [START_REF] Mitchell | Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[END_REF][START_REF] Zhang | Structures, uplift, and magmatism of the western Myanmar arc: constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[END_REF] . The correlation of (1) the Gangdese Arc with the Wuntho-Popa Arc and (2) the Western Belt Ophiolite with the Tibetan Yarlung-Tsangpo Suture Zone [START_REF] Mitchell | Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[END_REF][START_REF] Liu | Tethyan suturing in southeast Asia: zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites[END_REF] are key arguments for the BT to have been located at a latitude similar to the present day and for its position to have been next to the Lhasa Terrane before the India-Asia collision. However, the Mawgyi Andesite, which is most likely part of the Wuntho-Popa Arc (see Supplementary Information), has been correlated with the intra-oceanic mid-Cretaceous Woyla Arc (Sumatra) [START_REF] Hall | Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[END_REF][START_REF] Barber | Structure of Sumatra and its implications for the tectonic assembly of southeast Asia and the destruction of Paleotethys[END_REF][START_REF] Mitchell | Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma)-Assam region[END_REF] as part of the Incertus Arc (Fig. 1) [START_REF] Hall | Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[END_REF] . Subsequent studies continue the Incertus arc farther west by incorporating the Kohistan Arc (Pakistan) [START_REF] Jagoutz | Anomalously fast convergence of India and Eurasia caused by double subduction[END_REF][START_REF] Zahirovic | The Cretaceous and Cenozoic tectonic evolution of southeast Asia[END_REF] .

Palaeomagnetic study

A palaeomagnetic pole was obtained from a homoclinal sedimentary sequence in the late Eocene (~38 Ma from a dated tuff layer [START_REF] Licht | Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence[END_REF] ) shallow-marine Yaw Formation in the Chindwin Basin, the northernmost forearc basin of Myanmar (Fig. 2). Furthermore, an early Late Cretaceous pole was obtained from five localities (Pinlebu, Shinpa, Banmauk, Kawlin and Kyaung Le) in the Wuntho Range, which is the predominantly Cretaceous (~110 to 85 Ma (refs. [START_REF] Mitchell | Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[END_REF][START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] )) northern segment of the Wuntho-Popa Arc, where the volcanic and sedimentary rocks of the Kondan Chaung Group are intruded by igneous (I-type) intrusions (Kanza Chaung Batholith) and andesitic stocks (Mawgyi Andesite). Detailed information on the geology, palaeomagnetic analysis and [START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] Ar/ [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar dating is provided in the Methods, Supplementary Information and Supplementary Datasets 1-3.

The late Eocene samples are from mudstones and siderite beds with primary detrital or early-diagenetic magnetizations, mostly carried by magnetite. They yield well-defined antipodal normal and reverse-polarity directions in coherent magnetozones, resulting in a mean with a north-oriented declination and shallow positive inclination in tectonic coordinates (Fig. 3a, Supplementary Dataset 1). This mean palaeomagnetic direction corresponds to a negligible rotation (4.6 ± 3.5°) compared to stable Eurasia [START_REF] Torsvik | Phanerozoic polar wander, palaeogeography and dynamics[END_REF] and a near-equatorial latitude of 2.4 ± 1.5° N. A slightly higher, but not significantly different 4.1 ± 2.3° N palaeolatitude is obtained after inclination-shallowing corrections (see Supplementary Information). This result is corroborated by similarly low inclinations obtained from the siderite beds devoid of shallowing, and it is in general agreement with the low impact of inclination shallowing in sedimentary rocks at low latitudes when compared to middle to high latitudes [START_REF] Arason | Models of inclination shallowing during sediment compaction[END_REF] .
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India India Asia Asia Asia Fig. 1 | Alternative plate reconstructions of India-Asia palaeogeography at 60 Ma. a, Reconstruction with a nearly linear subduction zone and significant extrusion of Indochina Blocks [START_REF] Cogne | A new Late Cretaceous to present APWP for Asia and its implications for paleomagnetic shallow inclinations in central Asia and Cenozoic Eurasian plate deformation[END_REF][START_REF] Replumaz | Amount of Asian lithospheric mantle subducted during the India/Asia collision[END_REF] . b, Reconstruction with a Greater India Basin [START_REF] Van Hinsbergen | Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives[END_REF] . c, Reconstruction with a second Trans-Tethyan subduction zone [START_REF] Zahirovic | The Cretaceous and Cenozoic tectonic evolution of southeast Asia[END_REF] . (See also Methods.) GI(B), Greater India (Basin); IB, Indochina Blocks; KA, Kohistan Arc; LT, Lhasa Terrane; RRF, Red River Fault (accommodating Indochina extrusion); SL, Sundaland Block; TTS, Trans-Tethyan subduction system; WA, Woyla Arc. Figure constructed using Gplates software and adapted dataset from ref. [START_REF] Müller | GPlates: building a virtual Earth through deep time[END_REF] , Wiley.
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In early Late Cretaceous rocks from the Wuntho Range, reliable directions were obtained from samples of (1) the Kanza Chaung Batholith (Pinlebu, Shinpa and Banmauk sites) with characteristic remanent magnetizations (ChRM) carried by magnetite and (2) the Kondan Chaung Group (Kawlin and Kyaung Le sites), both of which were homogeneously magnetized during emplacement of the batholith as shown by our petrologic observations and [START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] Ar/ [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar dates (see Supplementary Information). The blocking temperatures of the ChRMs are similar to the closure temperatures in [START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] Ar/ [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar dating, suggesting the age of magnetization of the Wuntho Range rocks to be ~97 to 87 Ma, in accordance with the existing Wuntho-Popa Arc U-Pb data [START_REF] Mitchell | Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[END_REF][START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] . A systematic trend to east-directed declinations and horizontal to slightly negative inclinations can be inferred from our data (Supplementary Dataset 1), despite significant differences in rock types and magnetic properties. Tilting is recorded by rocks of the Kondan Chaung Group, but occurred before the intrusion of the batholith in most cases. No field evidence for significant tilting of the Kanza Chaung Batholith was observed, which is in agreement with our anisotropy of magnetic susceptibility data (see Supplementary Information). If we omit data from brecciated and non-homogeneously hydrothermally altered sites from the Mawgyi Andesite (Kawlin) and the westernmost sites from the Kondan Chaung Group (Kyaung Le), which were slightly tilted after acquiring their magnetization, we obtain a similar but better defined overall final mean direction for the Wuntho Range from 16 sites (Fig. 3b, Supplementary Dataset 1). The mean corresponds to a slightly southern hemisphere palaeolatitude of 5.0 ± 4.7° S for the BT in the early Late Cretaceous and a significant clockwise rotation (60.4 ± 8.7°) with respect to the expected direction from stable Eurasia [START_REF] Torsvik | Phanerozoic polar wander, palaeogeography and dynamics[END_REF] . Although we cannot discard a component of local rotation associated with dextral shear, the systematic rotation values and the regionally coherent northsouth trends of the batholith and main tectonic structures suggest that the mean declination better reflects a complete rotation of the BT. The different palaeomagnetic results for the Chindwin Basin and the Wuntho Range imply that most rotation of the BT occurred between the early Late Cretaceous and late Eocene with ~800 km of northward motion (Fig. 3c). The near-equatorial early Late Cretaceous to late Eocene palaeolatitudes implied by our data are in stark contrast to previous studies, usually placing the BT close to its present-day location since the early Cenozoic [START_REF] Hall | Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[END_REF][START_REF] Mitchell | Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[END_REF][START_REF] Searle | Chapter 12 Tectonic and metamorphic evolution of the Mogok metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar)[END_REF][START_REF] Zhang | Structures, uplift, and magmatism of the western Myanmar arc: constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[END_REF][START_REF] Morley | Chapter 4 Cenozoic rifting, passive margin development and strike-slip faulting in the Andaman Sea: a discussion of established v. new tectonic models[END_REF] , and these data therefore have major tectonic implications.

Tectonic implications

The southern hemisphere shallow latitude at ~95 Ma for the Wuntho-Popa Arc was distant from the southern Asian margin and Indochina and is therefore best explained as having been formed above a near-equatorial Trans-Tethyan subduction system, as part of the Incertus Arc, with northward-subducting Neo-Tethyan oceanic lithosphere (Fig. 4) [START_REF] Jagoutz | Anomalously fast convergence of India and Eurasia caused by double subduction[END_REF] . This interpretation is further supported by the development of the Burmese margin as an Andean-type setting around that time (Late Cretaceous) and coeval emplacement of the Western Belt Ophiolite [START_REF] Licht | Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence[END_REF][START_REF] Mitchell | Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[END_REF][START_REF] Zhang | Structures, uplift, and magmatism of the western Myanmar arc: constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[END_REF][START_REF] Fareeduddin | Structure and petrology of the Nagaland-Manipur Hill Ophiolitic Mélange zone, NE India: A fossil Tethyan subduction channel at the India-Burma plate boundary[END_REF][START_REF] Pivnik | Polyphase deformation in a fore-arc/back-arc basin, Salin subbasin, Myanmar (Burma)[END_REF][START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF][START_REF] Singh | Evidence of mid-ocean ridge and shallow subduction forearc magmatism in the Nagaland-Manipur ophiolites, northeast India: constraints from mineralogy and geochemistry of gabbros and associated mafic dykes[END_REF] . The Trans-Tethyan subduction system could have been partly intra-oceanic, possibly incorporating the Kohistan Arc, which also formed at a near-equatorial latitude [START_REF] Jagoutz | Anomalously fast convergence of India and Eurasia caused by double subduction[END_REF][START_REF] Zaman | Palaeomagnetic study of Cretaceous red beds from the eastern Hindukush Ranges, northern Pakistan: palaeoreconstruction of the Kohistan-Karakoram composite unit before the India-Asia collision[END_REF] . Because the Indonesian Woyla Arc is interpreted as having been already accreted at ~90 Ma (refs. [START_REF] Hall | Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[END_REF][START_REF] Barber | Structure of Sumatra and its implications for the tectonic assembly of southeast Asia and the destruction of Paleotethys[END_REF] ), we reconstructed a transform fault east of the BT, accommodating an earlier collision between the Woyla Arc and the Sundaland Block.

The major clockwise rotation of the BT between 95 and 40 Ma (Fig. 4) may have been linked either to the accretion of the BT to the margin of the southern Sibumasu and northern Sundaland Blocks or to the collision of India with the Trans-Tethyan subduction system. In support of the latter possibility is that in most models with Trans-Tethyan subduction [START_REF] Jagoutz | Anomalously fast convergence of India and Eurasia caused by double subduction[END_REF][START_REF] Zahirovic | The Cretaceous and Cenozoic tectonic evolution of southeast Asia[END_REF][START_REF] Gibbons | A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys[END_REF] , decreasing convergence rates between India and Asia at ~60 to 50 Ma are associated with a collision of the (Greater) Indian continent with the arc. At the eastern end of this collision, the thin Indian continental crust may thus have interacted with the BT, causing its clockwise rotation [START_REF] Rangin | Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma[END_REF] . However, the exact timing and mechanism of this rotation needs to be refined with future research.

Since the late Eocene (~38 Ma (ref. [START_REF] Licht | Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence[END_REF] )), our results indicate a significant ~2,000 km northward motion, coeval with the motion of India (Fig. 4), during a period when Indochina was extruded towards the southeast [START_REF] Leloup | Discussion on the role of the Red River shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia[END_REF][START_REF] Li | Paleomagnetic constraints from the Baoshan area on the deformation of the Qiangtang-Sibumasu terrane around the eastern Himalayan syntaxis[END_REF][START_REF] Tong | Internal crustal deformation in the northern part of Shan-Thai block: new evidence from paleomagnetic results of Cretaceous and Paleogene redbeds[END_REF][START_REF] Wang | Kinematics and 40 Ar/ 39 Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: implications for early Oligocene tectonic extrusion of SE Asia[END_REF] . The results suggest that the northward motion of the BT was coupled with the Indian Plate. Our palaeo- Localities: 1, Kawlin; 2, Pinlebu; 3, Banmauk; 4, Kyaung Le; 5, Shinpa; 6, Kalewa; 7, Burmese amber [START_REF] Poinar | Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion[END_REF][START_REF] Grimaldi | Fossiliferous Cretaceous Amber from Myanmar (Burma): Its Rediscovery, Biotic Diversity, and Paleontological Significance American Museum Novitates[END_REF] 
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Nature GeoscieNce magnetic data indicate that the Burmese subduction margin was already oriented approximately north-south in the late Eocene, such that subduction of the Indian Plate beneath the BT was already hyper-oblique. This hyper-obliquity provided a mechanism for the full partitioning of the Burmese subduction margin relative to Indochina and its coupling with the Indian motion; it is also consistent with the inferred onset of pull-apart subsidence in the Chindwin Basin [START_REF] Licht | Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence[END_REF] and a significant decrease in Wuntho-Popa Arc magmatism at ~38 Ma (refs. [START_REF] Zhang | Structures, uplift, and magmatism of the western Myanmar arc: constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[END_REF][START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] ). Furthermore, the coeval motion of the BT and India suggests that dextral wrenching within the IBR was not important until the Neogene.

Hence, the northward motion of the BT since the late Eocene required a major dextral strike-slip system east of the BT. However, the ~2,000 km of northward motion indicated by our palaeomagnetic data is much more than the ~400 km of motion estimated along the active dextral Sagaing Fault at the eastern margin of the BT [START_REF] Morley | Syn-kinematic sedimentation at a releasing splay in the northern Minwun Ranges, Sagaing fault zone, Myanmar: significance for fault timing and displacement[END_REF] . Furthermore, the age of the Sagaing Fault (Quaternary, Neogene or older) remains debated [START_REF] Mitchell | Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma)-Assam region[END_REF][START_REF] Morley | Syn-kinematic sedimentation at a releasing splay in the northern Minwun Ranges, Sagaing fault zone, Myanmar: significance for fault timing and displacement[END_REF][START_REF] Morley | Dating the onset of motion on the Sagaing Fault: evidence from detrital zircon and titanite U-Pb geochronology from the north Minwun basin, Myanmar[END_REF] . A precursor dextral strike-slip system is thus required by our data, the pathway and location of which remains enigmatic and has probably been obscured by posterior activity of the Sagaing Fault and the opening of the Andaman Sea. The potential remnants of this precursor strike-slip system are an early segment of the Sagaing Fault [START_REF] Bertrand | Tectonics of the western margin of the Shan plateau (central Myanmar): implication for the India-Indochina oblique convergence since the Oligocene[END_REF][START_REF] Morley | Chapter 4 Cenozoic rifting, passive margin development and strike-slip faulting in the Andaman Sea: a discussion of established v. new tectonic models[END_REF] or the Oligocene West Andaman Fault [START_REF] Morley | Chapter 4 Cenozoic rifting, passive margin development and strike-slip faulting in the Andaman Sea: a discussion of established v. new tectonic models[END_REF] . The latter could have effectively separated the BT to its west from the developing Eastern Andaman Basins and the predominantly sinistral tectonic regime of the Sibumasu Block to its east as the BT moved northward and passed west of these features (Fig. 4) [START_REF] Morley | Dating the onset of motion on the Sagaing Fault: evidence from detrital zircon and titanite U-Pb geochronology from the north Minwun basin, Myanmar[END_REF][START_REF] Morley | Chapter 4 Cenozoic rifting, passive margin development and strike-slip faulting in the Andaman Sea: a discussion of established v. new tectonic models[END_REF][START_REF] Morley | Nested strike-slip duplexes, and other evidence for Late Cretaceous-Palaeogene transpressional tectonics before and during India-Eurasia collision, in Thailand, Myanmar and Malaysia[END_REF] . This separation potentially explains why the late Eocene sedimentary infill of the Central Myanmar Basins was predominantly derived from an Andean-type arc, probably the Wuntho-Popa Arc, with an increasing contribution of older metamorphic detritus in the Oligocene and Miocene [START_REF] Licht | Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence[END_REF] as the BT moved closer to Sibumasu Block and the eastern Himalayan syntaxis.

Additionally, the low late Eocene palaeolatitude for the BT demonstrates that an India-BT collision next to the Lhasa Terrane 2 was impossible. Instead, the near-equatorial latitude of the BT provided the space and free border for the lateral extrusion of the Tengshong and Baoshan Blocks, which rotated clockwise by ~40° to 70° (refs. [START_REF] Li | Paleomagnetic constraints from the Baoshan area on the deformation of the Qiangtang-Sibumasu terrane around the eastern Himalayan syntaxis[END_REF][START_REF] Tong | Internal crustal deformation in the northern part of Shan-Thai block: new evidence from paleomagnetic results of Cretaceous and Paleogene redbeds[END_REF] ) and, to a minor extent, the Indochina Block, which rotated ~15° to 20°, all of which occurred mainly during the Oligocene and Miocene. The Oligocene and Miocene included periods of major sinistral deformation along the main shear zones separating these blocks [START_REF] Leloup | Discussion on the role of the Red River shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia[END_REF][START_REF] Wang | Kinematics and 40 Ar/ 39 Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: implications for early Oligocene tectonic extrusion of SE Asia[END_REF] . The northward motion and later emplacement without rotation of the BT also accounts for the striking difference between the linear northsouth orientation of the Sagaing Fault and, directly to the west, the curvilinear sinistral faults (Gaoligong, Wanding, Nanting) associated with the clockwise rotations in the Tengshong and Baoshan Blocks.

Beyond geodynamics, our results suggest that the BT was isolated as part of the Incertus Arc at the time of deposition of the prolific Cretaceous Burmese fossil ambers, which raises questions about the potential endemic character of the amber biota and their connection with species from India, Gondwana and southeastern Asia [START_REF] Poinar | Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion[END_REF][START_REF] Grimaldi | Fossiliferous Cretaceous Amber from Myanmar (Burma): Its Rediscovery, Biotic Diversity, and Paleontological Significance American Museum Novitates[END_REF] . From a palaeoenvironmental perspective, our near-equatorial palaeolatitudes for the BT are surprising, considering the evidence for a strongly seasonal climate in Myanmar in the Eocene [START_REF] Licht | Asian monsoons in a late Eocene greenhouse world[END_REF] . Strong seasonality at Eocene equatorial latitudes in southeastern Asia is corroborated by independent evidence from palaeoclimatic data from Java [START_REF] Evans | Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera[END_REF] . Palaeomagnetic and palaeoenvironmental data can only be reconciled with a massive seasonal migration of the Intertropical Convergence Zone over southeastern Asia, confirming well-marked South Asian monsoons during the Eocene 20 ; however, future climate models incorporating our new reconstructions will be needed to verify the migration. Fig. 3 | equal-area projections of interpretable palaeomagnetic results. a, Tilt-corrected characteristic directions (squares) of samples from late Eocene sediments from Kalewa and mean direction (blue). b, Early Late Cretaceous Wuntho Range site means with 95% confidence angles in in-situ coordinates, coloured by locality: Pinlebu (purple), Shinpa (dark green), Banmauk (blue), Kawlin (black) and Kyaung Le (green); mean direction shown in red. c, Early Late Cretaceous to late Eocene (red and blue circles) final mean directions compared with the stable Eurasia apparent polar wander path in the early Late Cretaceous to late Eocene (red and blue diamonds) [START_REF] Torsvik | Phanerozoic polar wander, palaeogeography and dynamics[END_REF] . λ, palaeolatitudes calculated from the mean inclinations and R, rotation magnitude are indicated with 95% confidence angles. Open and closed symbols denote negative and positive inclinations, respectively.
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The foremost conclusion from our palaeomagnetic results is that they are incompatible with both continental and oceanic Greater India models and are best interpreted in a geodynamic framework with a Trans-Tethyan subduction system accommodating India-Asia convergence. As part of this system, the BT was a segment of the Incertus Arc when Neo-Tethyan subduction began in the Late Cretaceous. In the period that included the early Palaeogene collision of India with the Trans-Tethyan subduction system, the BT rotated ~60° clockwise and then moved northward at least 2,000 km since ~38 Ma as part of the Indian Plate along a dextral strike-slip system until it reached its present-day position. Hence, our findings provide much-needed evidence to settle a longstanding geodynamic debate on the India-Asia collision and the existence of a Trans-Tethyan subduction system. Furthermore, they pave the way to a reinterpretation of regional structural and palaeogeographic data by taking into account the near-equatorial position of the BT during the Late Cretaceous to Eocene as part of this system.
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 2 Fig. 2 | Generalized geologic map of Myanmar and neighbouring countries.Localities: 1, Kawlin; 2, Pinlebu; 3, Banmauk; 4, Kyaung Le; 5, Shinpa; 6, Kalewa; 7, Burmese amber[START_REF] Poinar | Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion[END_REF][START_REF] Grimaldi | Fossiliferous Cretaceous Amber from Myanmar (Burma): Its Rediscovery, Biotic Diversity, and Paleontological Significance American Museum Novitates[END_REF] . AI, Cretaceous to Palaeogene Asian intrusive rocks; CB, Chindwin Basin; GA, Cretaceous Gangdese Arc; IBRB, Indo-Burman Ranges basement; KF, Kabaw Fault; MMMB, Mogok-Mandalay-Mergui Belt (including Jurassic Eastern Belt Ophiolites and Jade Belt Ophiolite); SF, Sagaing Fault; SPG, Songpan Ganze and Yangtze complexes; WBO, Cretaceous Western Belt Ophiolite; WPA, Wuntho-Popa Arc; YTSZ, Yarlung-Tsangpo Suture Zone. Dashed black lines, boundaries of Central Myanmar Basins. Figure adapted from from ref. 21 , GSA.
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Methods

Palaeomagnetic sampling. Conventional palaeomagnetic core plug samples were obtained from two localities in the BT in northern Myanmar. Sampling and determining the orientation of the samples were done using standard palaeomagnetic field equipment and procedures with both magnetic and sun compasses. The first locality covers the early Late Cretaceous intrusive, extrusive, volcaniclastic and sedimentary rocks of the Wuntho Range near the towns of Kawlin, Pinlebu, Shinpa, Banmauk and Kyaung Le. The second locality includes the late Eocene sedimentary rocks of the Chindwin forearc basin near the town of Kalewa. A detailed geologic setting, including regional maps, is described in the Supplementary Information.

We sampled 19 sites in intrusive rocks, 13 sites in extrusive rocks and 9 sites in sedimentary rocks of early Late Cretaceous age in the Wuntho Range; most samples were obtained by drilling into recently exposed quarries or rivers, providing fresh samples with almost no weathering. Most samples from the intrusive rocks were obtained around Pinlebu, Shinpa and Banmauk in the western and northern part of the study area. These samples were taken from the regional I-type Kanza Chaung Batholith, which constitutes the main component of the Wuntho Range. Near Kawlin in the southern part of the study area, 11 sites were taken from extrusive rocks of the Mawgyi Andesite Formation. The volcanic rocks were often massive or brecciated; hence, they did not yield clear bedding orientations. Apart from these andesites, two sites were obtained near Kawlin from sandstones of the volcanic-sedimentary Kondan Chaung Group, which was characterized by clearly observable bedding, and one undefined stock. At Kyaung Le in the northernmost part of the study area, all sites were obtained from the Kondan Chaung Group and consisted of nine sedimentary and volcaniclastic rocks, one rhyodacitic rock, and one undefined extrusive rock.

In the Chindwin Basin, 520 samples were collected from the late Eocene shallow-marine Yaw Formation in a continuous homoclinal Cenozoic sedimentary section near Kalewa, as well as from two additional sites. Most of these samples were mudstones and sandstones, and we also collected several samples in sideriterich carbonate beds intercalated in the mudstones.

Palaeomagnetic analysis.

Natural remanent magnetizations were measured on a 2G cryogenic magnetometer hosted in a magnetically shielded room at the University of Rennes 1. Stepwise demagnetization was used to isolate their ChRM components using either (1) thermal demagnetization, with increments of 20° to 50 °C up to 680 °C or (2) 3-axis alternating field demagnetization, with increments of 2.5 to 10 mT up to 120 mT. During the alternating field demagnetization, the gyroremanent magnetizations were cancelled by measuring the magnetization after each axis of alternating field demagnetization [START_REF] Roperch | The importance of gyromagnetic remanence in alternating field demagnetization. Some new data and experiments on GRM and RRM[END_REF] . Samples with interpretable components were grouped by site after isolating their ChRM using principal component analysis [START_REF] Kirschvink | The least-squares line and plane and the analysis of palaeomagnetic data[END_REF] and, when necessary, a great-circle approach [START_REF] Mcfadden | The combined analysis of remagnetisation circles and direct observation in palaeomagnetism[END_REF] . Subsequently, mean directions and corresponding statistical parameters were calculated by site and finally by locality using Fisher statistics [START_REF] Butler | Paleomagnetism: Magnetic Domains to Geologic Terranes[END_REF][START_REF] Fisher | Dispersion on a sphere[END_REF] . Whenever possible, the fold test [START_REF] Tauxe | The fold test: an eigen analysis approach[END_REF] was used to investigate whether the magnetization was pre-or post-tectonic in origin. To check whether normal and reverse polarities from the same locality were antiparallel, the classic coordinate bootstrap reversal test was used [START_REF] Tauxe | Essentials of Paleomagnetism[END_REF] . Finally, due to the lack of volcanic rocks in the late Eocene sedimentary section, we checked for inclination shallowing in the results from this area by using several approaches, including (1) the classic elongation versus inclination method [START_REF] King | The remanent magnetism of artificially deposited sediments[END_REF][START_REF] Tauxe | Timescales of the Geophysical Field[END_REF][START_REF] Tauxe | Testing corrections for paleomagnetic inclination error in sedimentary rocks: a comparative approach[END_REF] and (2) an assumption that the sedimentary package consists of uniform rigid particles, which rotate during burial and attending compaction [START_REF] Cogné | Contribution a l'Étude Paléomagnétique des Roches Déformées[END_REF] .

In addition to obtaining mean directions, the magnetic properties of the samples were investigated using several methods. After each thermal demagnetization step, the bulk magnetic susceptibility of the samples was measured. To investigate the mineralogy and magnetic properties for a selection of samples, we measured mass-normalized bulk magnetic susceptibility curves with increasing temperature steps up to 580 °C on a KLY3-CS3 AGICO Kappabridge, as well as magnetic hysteresis loops on an alternating gradient magnetometer (AGM 2900). To further identify the possible effect of a magnetic fabric on the remanent magnetization for the different rocks, the anisotropy of magnetic susceptibility was determined for most samples on a KLY3S AGICO Kappabridge. In highly anisotropic intrusive igneous rocks, thermal remanent magnetization vectors may be deflected from the direction of the field upon cooling below the Curie point of magnetite, which was the main magnetic carrier in those rocks. However, most of the anisotropy of magnetic susceptibility was probably dictated by multidomain magnetite, yet the magnetic carriers of the remanent magnetization (the finest grained magnetite) may have had a different magnetic fabric. For this reason, we investigated the anisotropy of remanent magnetization in selected samples of intrusive rocks. The thermal remanent magnetization anisotropy correction is common in palaeomagnetism, but we did not attempt this because it requires heating the samples above 580 °C (the general natural remanent magnetization unblocking temperature) and alteration is likely to occur after heating to higher temperatures. The anisotropy of isothermal remanent magnetization was performed on selected samples instead. The isothermal remanent magnetization acquisition was done on x,-x,y,-y,z,-z at 600 mT, well above the saturation field of magnetite (250 mT). After each measurement, the sample was alternating field demagnetized at 20 mT to remove the lowest magnetic coercivity fraction. In most cases, 90% of the full isothermal remanent magnetization was randomized at 20 mT.

A detailed description of the various ChRM characteristics, mean calculations, tests and magnetic properties is given by locality in the Supplementary Information. The palaeomagnetic results by site and locality are given in Supplementary Dataset 1 the results from all samples are listed in Supplementary Dataset 2.

Petrology. Polished thin sections were made from selected samples from different lithologies for observation under an optical microscope in transmitted light and reflected light. The samples were then analysed with a scanning electron microscope (JEOL JSM 7100F with Oxford energy dispersive X-ray spectroscopy and electron backscatter diffraction) at the Centre de Microscopie Électronique à Balayage et Microanalyse-ScanMAT platform (University of Rennes 1). Our petrologic observations are described in the Supplementary Information.

40 Ar/ [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar dating. There are only a few available U-Pb age data available for the Wuntho Range volcanic complex [START_REF] Mitchell | Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[END_REF][START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] . Therefore, we carried out [START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] Ar/ [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar dating on 14 samples from our palaeomagnetic sites in order to better understand the ages of these rocks and their resulting ChRMs.

The samples were analysed with an [START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] Ar/ [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar laser probe and a Map 215 mass spectrometer. Analyses were performed on millimeter-sized grains of single biotite or amphibole crystals, carefully handpicked under a binocular microscope from crushed rocks. For samples with a fine-grained matrix from which it was not possible to extract biotites or amphiboles, experiments were performed on wholerock samples.

The irradiation of the samples was performed at the McMaster Nuclear Reactor (Hamilton, Ontario, Canada) in the 8F facility and lasted 66.667 h with a global efficiency (J h -1 ) of 9.767 × 10 -5 h -1 . The irradiation standard was sanidine from the Taylor Creek Rhyolite (28.608 ± 0.033 Ma (refs. [START_REF] Renne | Intercalibration of standards, absolute ages and uncertainties in 40 Ar/ 39 Ar dating[END_REF][START_REF] Renne | Joint determination of 40 K decay constants and 40 Ar * / 40 K for the Fish Canyon sanidine standard, and improved accuracy for 40 Ar/ 39 Ar geochronology[END_REF][START_REF] Renne | Joint determination of 40 K decay constants and 40 Ar * / 40 K for the Fish Canyon sanidine standard, and improved accuracy for 40 Ar/ 39 Ar geochronology[END_REF] )).

Apparent age errors were plotted at the 1σ level and do not include the errors on the [START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] Ar * / [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar K ratio and age of the monitor and decay constant. Plateau ages were calculated if 70% or more of the [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar K was released in at least three or more contiguous steps where the apparent ages agreed to within 1σ of the integrated age of the plateau segment. Pseudo-plateau ages can be defined with less than 70% of the [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar K released and in possibly less than three contiguous steps. The errors on the [START_REF] Wang | Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon[END_REF] Ar * / [START_REF] Gardiner | Contrasting granite metallogeny through the zircon record: a case study from Myanmar[END_REF] Ar K ratio and age of the monitor and decay constant are included in the final calculation of the error margins on the pseudo-plateau ages.

The analytical data and parameters used for calculations (for example, isotopic ratios measured on potassium, calcium and chlorine pure salts; mass discrimination; atmospheric argon ratios; J parameter; decay constants) and reference sources are available in Supplementary Dataset 3.

Plate model.

For our final geodynamic model, we used the global rotations and continental polygons from the Matthews GPlates model [START_REF] Müller | GPlates: building a virtual Earth through deep time[END_REF][START_REF] Matthews | Global plate boundary evolution and kinematics since the late Paleozoic[END_REF] as a template. From this template, we modified the tectonic history of the BT to reflect our palaeomagnetic results. Furthermore, the positions and palaeogeography of Greater India, Indochina, the Kohistan Arc, the Lhasa Terrane, Sumatra and the Woyla Arc were configured to better reflect more recent studies [START_REF] Jagoutz | Anomalously fast convergence of India and Eurasia caused by double subduction[END_REF][START_REF] Advokaat | Cenozoic rotation history of Borneo and Sundaland, SE asia revealed by paleomagnetism, seismic tomography, and kinematic reconstruction[END_REF][START_REF] Li | Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China: review and updated kinematic reconstruction[END_REF] . In Fig. 1b, the global reconstruction with the Greater India basin hypothesis is based on a different set of poles of rotations [START_REF] Van Hinsbergen | Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives[END_REF] . All plate tectonic reconstructions were made in the combined hotspot (0-70 Ma) and palaeomagnetic (70-250 Ma) reference frame that is also used in the Matthews GPlates model [START_REF] Matthews | Global plate boundary evolution and kinematics since the late Paleozoic[END_REF][START_REF] Torsvik | Global plate motion frames: toward a unified model[END_REF] . See Supplementary Information for a detailed discussion on the choice for this reference frame.