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Abstract 10 

 11 

Soil surface roughness is a key factor for our understanding and modelling of 12 

geomorphologic processes related to exchanges of soil, water and gas. It has an impact on 13 

soil properties and tillage outcome. Soil surface roughness can be characterized both 14 

globally and locally. The interest of clod segmentation is to allow for both characterizations. 15 

Segmenting clods on a digital elevation model (DEM) of a soil surface is a complex problem 16 

because soil surfaces are complex surfaces of several level of roughness and because 17 

considering elevations results in smooth and poorly contrasted images. However, a DEM in 3 18 

dimensions gathers more information than a profile of 1 dimension or an image of 2 19 

dimensions.  20 
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Multiresolution analysis has shown interest for roughness analysis of complex surfaces. We 21 

have used it to introduce a new approach for soil roughness analysis and to lay the 22 

foundations for clod segmentation. In this paper, we propose a complete wavelet-based 23 

approach for accurate clod contour delineation. It relies on several steps: detecting clods on 24 

the surface approximations by a supervised detection of local maxima, validating and 25 

merging the detections by shape and overlap tests, delineating the clod contours by 26 

intersecting locally the soil surface elevations with the estimated plane of the clod base and 27 

validating the contours by detecting and correcting the wrong patterns, with statistical pattern 28 

recognition. This segmentation method was evaluated in several roughness conditions, 29 

made in the laboratory, by comparison with other segmentation method. An indicator of 30 

goodness of agreement was introduced for this purpose. 31 

This wavelet-based segmentation method showed robustness to the presence of furrows and 32 

to the smoothing by rainfall and showed ability to retrieve clod diameters.  33 

 34 

Key words: random roughness, 3D digital elevation model, multiresolution analysis, 35 

statistical pattern recognition, clod size 36 

1 Introduction 37 

The soil, being at the interface of the hydrosphere and the atmosphere, plays an important 38 

role in exchanges of soil, water and gas and geomorphologic processes. The role of soil 39 

surface roughness in the geomorphologic processes at small scale is commonly 40 

acknowledged, (for example Garbout et al., 2013, Bretar et al., 2013, Thomsen et al., 2015, 41 

Martinez-Agirre et al., 2016, Gilliot et al., 2017, Vannier et al., 2018 a, Zhao et al., 2018, 42 

Schapel et al., 2019). In agricultural fields, the soil surface roughness is shaped by tillage 43 

operations and is a result of soil and water mechanisms interaction and feedback. It is 44 

related to soil moisture and fertility (Gilliot et al., 2017, Zhao et al., 2018, Schapel et al., 45 
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2019). It is usually characterized by several indices, estimated on profiles or images of the 46 

soil, characterizing the surface as a whole (Kamphorst et al., 2000, Taconet and Ciarletti, 47 

2007, De Oro and Buschiazzo, 2011, Dusséaux et al., 2012, Smith, 2014). Roughness 48 

parameterization is still in question (Martinez-Agirre et al. 2016 and Gilliot et al. 2017). A 49 

second approach of the surface roughness considers the local irregularities such as 50 

aggregates, clods and depressions (Sandri et al., 1998, Darboux et al., 2001, Kamphorst et 51 

al., 2005, Arvidson and Bölenius, 2006, Bogrekci and Godwin, 2007, Vannier et al., 2009, 52 

Wang et al., 2011, Garbout et al., 2013, Taconet et al., 2013, Chimi-Chiadjeu et al., 2014, 53 

Jensen et al., 2016, Ajdadi et al., 2016, Vannier et al., 2018 a and b, Schapel et al., 2019). 54 

The development of stereovision from photogrammetry or laser scanning allows for more and 55 

more studies based on digital elevation models (DEMs). Analysing elevation changes from 56 

DEMs can be interesting at different scales and in various contexts (Takken et al., 2001, 57 

Darboux et al., 2001, Jester and Klick, 2005, Blaes and Defourny, 2008, Haubrock et al., 58 

2009, Ahmad Fadzil et al., 2012, Bretar et al., 2013, Jensen et al., 2016, Gilliot et al., 2017). 59 

However, as some baseline roughness indices were defined from 1D profiles, the potential of 60 

the three dimensions is not always exploited. In our recent studies, we showed that 61 

millimetric DEMs allow for both local and global characterization of soil surface roughness 62 

(Dusséaux et al., 2012, Taconet et al., 2013, Chimi-Chiadjeu et al., 2014, Vannier et al., 63 

2014, Vannier et al., 2018 a and b). 64 

The soil cloddiness can be quantified with the size distribution of the aggregates and clods. It 65 

serves to characterize soil quality produced by tillage and to control microrelief changes due 66 

to rainfall impact (Sandri et al., 1998, Arvidson and Bölenius, 2006, Bogrekci and Godwin, 67 

2007, Wang et al., 2011, Garbout et al., 2013, Jensen et al., 2016, Ajdadi et al., 2016, 68 

Vannier et al., 2018 a and b) or control concentration of organic carbon (Schapel et al., 69 

2019). Segmenting the clods is a complex problem because they can be dimly demarcated 70 

or embedded with each other or in another piece of relief. In (Vannier et al., 2009) we 71 

showed that it is difficult to automatically detect clods of a large size range in natural soil 72 
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surfaces recorded in the field. In the present study, we address the problem of segmenting 73 

clods in DEMs of laboratory made soil surfaces, with or without furrows, with different clod 74 

sizes and spacing, at initial stage and after roughness evolution caused by rainfall events. 75 

Let us underline that contrary to the 2D images usually processed for edge detection or 76 

segmentation, a 3D DEM of a soil surface has a lower contrast. In the gradient-based 77 

method of segmentation introduced in (Taconet et al., 2010), at least 90% of the gradient 78 

values should be retained in order to detect the clods. In (Chimi-Chiadjeu et al., 2014), a 79 

transformation of the image of the surface should be effected before the rough estimation of 80 

the clod contours by watershed segmentation. In this paper, we have chosen a geometrical 81 

approach, in order to take advantage of the three dimensions of the DEMs. Multiresolution 82 

analysis has shown interest for roughness analysis of complex surfaces (Josso et al., 2001 83 

and 2002, Vannier et al., 2006, Fernandez-Diaz et al. 2010, Ahmad Fadzil et al., 2012, 84 

Labarre et al., 2017). This approach enabled us to detect the clods on soil surface DEMs 85 

with satisfactory sensitivity (84%) and specificity (94%) and to localize clods by their summit 86 

and extensions in two directions (Vannier et al., 2009). In this paper, we propose a complete 87 

wavelet-based approach, relying also on statistical pattern recognition, in order to reach an 88 

accurate delineation of the clod contours. The section materials and methods introduces the 89 

data base used in this study, the segmentation method and its evaluation. Then 90 

segmentation results are presented and compared with other segmentation methods in the 91 

result and discussion section.  92 

2 Materials and methods 93 

2.1 Soil preparation and measurement 94 

The database used in the present study is composed of laboratory made soil surfaces 95 

prepared with two different soils and a various range of sieved clods, in order to evaluate the 96 

segmentation method in various roughness conditions. 97 
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In order to do so, two trays of 50 x 50 cm2 were prepared with loose silt loam soil for 10 cm 98 

depth. One of them had a nearly planar surface (P) and the other one was shaped with 99 

gentle furrows every 8 cm (F). Then air-dried clods collected in the field were set upon the 100 

two soil surfaces, with various sizes and spacing to reproduce different roughness conditions 101 

(Figure 1). These trays were subjected to controlled rainfalls with a laboratory rainfall 102 

simulator similar in design to the one presented in (Foster et al., 1979) also described in 103 

(Vannier et al., 2018 a and b). This simulator was equipped with oscillating nozzles 104 

producing raindrops of 1.5 mm mean diameter at an adjustable number of sweeps per 105 

minute to set the desired intensity. For each tray, we retained 3 stages of roughness: the 106 

initial stage, the stage after 2 hours of rainfalls at 33 mm.h-1 intensity, and the stage after 3 107 

additional hours at 42 mm.h-1 intensity. The DEM of each stage of surface roughness was 108 

recorded with the laser scanner described in (Darboux & Huang, 2003, Vannier et al. 2018 a 109 

and b). Summarily, the principle of recording relies on a laser producing a line on the soil 110 

surface and a CCD camera set at an angle to measure the surface geometry along a profile 111 

in the y-z planes. By moving the device along the x-axis, the whole surface elevations are 112 

obtained. The accuracies were 0.5 mm in x and y axes, and 1 mm in z axis. In order to 113 

introduce geometrical criteria for statistical pattern recognition used along with multiresolution 114 

analysis in clod segmentation procedure (see section 2.2.2), the data were resampled at 1 115 

mm resolution in x y z. We also referenced the elevations to be positive. Hereafter, the 6 116 

DEMs are denoted P0, P1, P2 and F0, F1, F2 for the initial stage, the stage after one rainfall 117 

event and the stage after two rainfall events for the planar soil surface and the furrowed soil 118 

surface respectively (Fig. 2).  119 

Then we added a third tray of 50 x 50 cm2 prepared with Lavaur clay loam soil for 10 cm 120 

depth, shaped with an oriented roughness of centimetric ridges and furrows. Air-dried 2-cm-121 

sieved aggregates were thrown upon and formed a thick cloddy structure. Figure 3 shows a 122 

photo and the DEM of this one sieve range soil surface, called SR. 123 
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2.2 Wavelet-based clod segmentation 124 

2.2.1 Multiresolution analysis of the soil surfaces 125 

The detection and approximate localization of clods was performed according to the wavelet-126 

based detection method introduced in (Vannier et al. 2009). This method first processes to a 127 

multiresolution decomposition of the soil surface by wavelet transform. 128 

Let us now recall the basis of the multiresolution analysis theory, (Mallat, 1989, Daubechies, 129 

1992, Choksi, 2018), and introduce the notations. It is possible to decompose the surface 130 

elevations z=S(x,y), into one approximation AN(x, y)  and the sum of N details D1(x, y), …, DN(x, 131 

y), at different levels N: 132 

( ) ( ) ( )∑
=

+=
N

n

nN yxDyxAyxS
1

,,,
   (1) 133 

The approximations and details of the surface are computed by recurrence: 134 

( ) ( )yxAyxS ,, 0=      (2) 135 

( ) ( ) ( )yxDyxAyxA nnn ,,,1 +=−    (3) 136 

Where Dn(x, y) denotes the summation of the horizontal, vertical and diagonal detail surfaces: 137 

( ) ( ) ( ) ( )yxDyxDyxDyxD DnVnHnn ,,,, ++=
  (4) 138 

At each intermediate level n, An(x, y) and Dn(x, y) were computed with the decimated and 139 

undecimated algorithms, which produce sub-images having the same size as the original 140 

image. Indeed, the frequency plan is subdivided into two parts of low and high frequencies 141 

along each dimension x and y. The approximation is the low-low frequency part, the 142 

horizontal detail the high-low frequency part, the vertical detail is the low-high frequency part, 143 

and the diagonal detail is the high-high frequency part. We used the orthogonal wavelet 144 

family selected in (Vannier et al., 2009), with mother wavelet Daubechies of level 9 145 

(Daubechies, 1992). 146 
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Then, a supervised local maxima extraction was performed on the retained surface 147 

approximations and the results of all extractions were merged. As a result, the individual 148 

clods of the soil surface were localized by their summit and extensions in the x y plane. The 149 

whole procedure is detailed in (Vannier et al. 2009). 150 

It was shown that the successive approximations of the soil surface contained most of the 151 

surface energy. Selecting the proper levels of approximations, depending on the roughness 152 

scale of the soil surface, allowed for the detection and localization of the range of clods 153 

present on the soil surface. As an example, for the seedbed considered in (Vannier et al. 154 

2009), containing clods of diameters less than 53 mm, the levels of approximations A3 and 155 

A2 were relevant. Due to clod proximity, level A4 was not suitable. With the present silt loam 156 

surfaces, containing spaced clods of diameters up to 76 mm, it was necessary to include the 157 

levels A4 and A5, in order to detect also the larger clods. And with the Lavaur clay surface, 158 

containing very small and nearby clods, the levels A1 to A3 were selected. 159 

2.2.2 Statistical pattern recognition of clods 160 

The accurate delineation of the clod contours was done by intersecting locally the soil 161 

surface with the estimated plane of the clod base. This process relies on several steps of 162 

validation, based on statistical pattern recognition of a good clod segmentation and improper 163 

object segmentation. The algorithm is shown in Fig. 4. An introduction to statistical pattern 164 

recognition can be found in (Webb, 2002). In the present study, linear discriminant analysis 165 

was sufficient to detect the wrong patterns. 166 

The first test of goodness of intersection of the local surface with its mean plane (Fig. 4, line 167 

5) detected the cases where the contour does not suit the clod due to erroneous inclination 168 

or level of the plane. It resulted in partially squared contour as illustrated in Fig. 5a. This 169 

pattern could be detected using the quantiles of coordinates xc and yc of the data points of 170 

clod contour at minimum, 12.5%, 87.5% and maximum. We had a wrong pattern if two 171 

quantiles were equal for xc or yc. Then, the inclination and height of the mean plane were 172 

refined when needed. 173 
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The second test of goodness of intersection (Fig. 4, line 6) checked for requirement of the 174 

local surface to be extended in one or more than one direction. As illustrated in Fig. 5b, a too 175 

small local surface due to inadequate extensions of detected clod, caused straight borders in 176 

the clod contour. These lines were detected by thresholding the percentage of abscissa (or 177 

ordinates) equal to their minimum or maximum value. The local surface was then extended a 178 

little in the direction given by straight borders and the test repeated until no extension was 179 

required. 180 

The third test (Fig. 4, line 7) aimed at detecting blocks of clods (as in Fig. 5c) when the clods 181 

were very close together. It could occur also due to furrow interference or presence of small 182 

aggregates near a larger clod. At initial stage, we would like to distinguish the individual 183 

clods. A block of clods was characterized by an elevated circularity and a gradient of clod 184 

elevations with more than one mode or one enhanced mode. In that case, the clod contour 185 

was searched as an iso-gradient or an iso-elevation contour. 186 

The last test (Fig. 4, line 10) detected the squared like contours (as in Fig. 5d), where the 187 

clod was partly squared. Again, the percentages of abscissa or ordinates equal to their 188 

extremum value were computed. They were compensated for the clod perimeter and 189 

diameter and thresholded. In that case, the level of the mean plane was elevated and the 190 

clod contour re-evaluated. If a wrong pattern was obtained again, the contour was discarded 191 

as it is the case in the example in Fig. 5d). 192 

2.3 Evaluation of segmentation method 193 

For the silt loam soil surfaces P0, P1, P2, F0, F1 and F2, we had a reference of contours 194 

drawn by hand on a photo of the surface, with visual check looking at the surface in the 195 

laboratory. This reference was scanned. In order to make a clod by clod survey, the studied 196 

area was reduced to 30 x 30 cm2 and the DEMs were shown in mm. The total number of 197 

clods was near 300 for these silt loam soil surfaces.  198 
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We evaluated the wavelet-based segmentation by comparison with the hand-made 199 

segmentation and two other segmentation methods, the contour-based approach introduced 200 

in (Taconet et al. 2010) and the threshold method used in (Vannier et al. 2018 a and b). The 201 

hand-made segmentation is subjective and has a bias due to contours delineation on 2D 202 

photos of the soil surfaces. The threshold method detects objects having elevations above a 203 

fixed threshold. It therefore requires that the clod support is flat and horizontal, which is not 204 

the case of a furrowed surface. However, it is a solid objective reference for a planar 205 

horizontal surface. The contour-based method researches iso-elevation contours passing 206 

through high gradient data points. It has the advantage to be very close to the threshold 207 

method on a planar surface and to be still applicable on a clod support of variable heights. It 208 

nonetheless reaches its limits if the clod support is too much tilted [Chimi et al., 2013].  209 

The reference index of segmented region similarity is Jaccard index also called Intersection 210 

over Union (IoU) (Shen and Zeng, 2019 and Zhang et al., 2019). It can be interpreted as an 211 

overlap rate between the two segmented regions. These indices were computed with one set 212 

of segmented contours serving as reference. The IoU of regions delimited by contours � and 213 

� was denoted ��,� and defined as in (Chimi et al. 2013): 214 

��,� =
�	∩��

�	∪��
      (5) 215 

where �� is the area delimited by the contour � of the clod in the first set of segmented 216 

contours and �� is the area delimited by the corresponding contour � of the clod in the 217 

second set of segmented contours. The denominator �� ∪ �� makes the overlap rate 218 

stricter than taking just the area of the reference contour ��. However, it is necessary to 219 

prevent the case where �� would be very large including ��, giving an overlap rate of 100% 220 

whereas the contours would be of very different sizes. That is why the regions are 221 

considered similar if the IoU is above 50% and dissimilar otherwise (Wand et al., 2019). The 222 

average IoUs are usually reported. However, the average is limited to characterize the 223 
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segmentation results on a wide number of objects, therefore it is usually associated with 224 

other indices of performance.  225 

The IoU is sensitive to the discretization of the contours due to DEM accuracy and is stricter 226 

for small clods than for large ones. As an example, figure 6 shows two contours of radius 227 

respectively of 3 mm and 6 mm, and the same contours translated by 1 mm. The visual 228 

agreement is quite satisfactory and yet the IoUs are respectively of 58% and 76%. 229 

For the planar surfaces P0, P1 and P2, we used the hand-made segmentation and the 230 

threshold segmentation as references. For the furrowed surfaces F0, F1 and F2, the 231 

references were the hand-made segmentation and the contour-based segmentation applied 232 

on a detrended surface, where the average of the rows has been removed. Let us specify 233 

that both the hand-made and the wavelet-based segmentations were performed on the 234 

original furrowed surfaces. 235 

Then we also used other indices such as the clod coverage, which is the ratio between the 236 

total area delimited by clod contours and the product of DEM horizontal dimensions, and the 237 

mean weighted diameter (MWD) as defined in (Taconet et al. 2010): 238 


�� = ∑ D�. ��                       �
���    (6) 239 

Where N is the total number of clods, Di is the equivalent diameter of clod i (estimated here 240 

from the area of clod, considered as a disk) and ��  is the fraction of the area covered by clod 241 

i : 242 

�� =
��

∑ ��
�
	��

      (7) 243 

 And, we introduce a fourth index based on the weighted cumulative distribution function 244 

(WCDF) of the IoUs of the common segmented clods: 245 

�� �! = ∑ ���" #	,$%#                            (8) 246 

In (Chimi et al. 2013), we computed the cumulated distribution function (CDF) of the IoUs, 247 

called overlap rates, which shows the probability that ��,� < �, for � ∈ (0 1+. In this paper, we 248 
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used rather weighted IoUs and we defined a quantitative index illustrating the low probability 249 

to have a small IoU and the high probability to have a high IoU. 250 

The difference between two segmentation methods is quantified with the help of the area 251 

under curve (,-.) of �� �!. The smaller the ,-., the greater the agreement between the 252 

segmentation methods. The goodness of the agreement can thus be defined as: 253 

/ = 1 − 1 �� �!2�
�

3
                     (9) 254 

The equality G = 100% would reflect the perfect accordance between all contours and G = 0% 255 

the total discrepancy. This index is very strict and reflects the overall distribution of the IoUs. 256 

It can be considered satisfactory if greater than 0.5. 257 

For the Lavaur clay loam soil surface SR, the clods are numerous, very small and very close 258 

together, which hinders a clod by clod survey. A smaller area of 20 x 20 cm2 was used to run 259 

the wavelet-based segmentation and retrieve the clod equivalent diameters and an even 260 

smaller part of the surface was segmented manually. We compared the MWD obtained by 261 

segmentation to the one measured with a sample of this soil in the laboratory. The number of 262 

clods was near 170 on the studied area. 263 

3 Results and discussion 264 

 First of all, there is an overall good agreement between the segmentation methods for the 265 

silt loam soil surfaces. The mean IoUs range from 54.7%, for F2 to 85.5%, for P0 (see Table 266 

1). As the hand-made segmentation had its own bias, the IoUs were also estimated with an 267 

automatic method serving as reference when possible. In average, for the wavelet-based 268 

method, with all possible references, the mean IoU amounts 71.1%, which is in the order of 269 

magnitude of encountered mean IoUs in the literature (Shen and Zeng, 2019 and Zhang et 270 

al., 2019). The variations of mean IoUs from one surface to another will be explained with the 271 

help of the other indices later on. Let us now look at segmentation results in more detail. 272 
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The segmentation results for the surface P0 can be seen in Figure 7. The three automatic 273 

segmentation methods are quite close to the hand-made segmentation. We notice that the 274 

contour-based approach (in blue) is very close to the threshold method (in green). Indeed, 275 

the contour-based method captures contours defined as level lines passing through high 276 

gradient points. If the clods are set upon a horizontal surface, the level lines are of very low 277 

elevation. There is an exception for clod 31 (x=175, y=225), which is a two-summit clod that 278 

have been captured by the contour-based approach instead of the clod base. Only the larger 279 

summit contour was kept for the evaluation. The wavelet-based method (in magenta) is 280 

closer to the hand-made segmentation than to the threshold one and tends to detect little 281 

more clods.  282 

For the surfaces F0, F1 and F2, the presence of furrows does not allow for thresholding at 283 

constant elevation. The compared automatic method is the contour-based approach applied 284 

on a detrended DEM, where the ridges and furrows were estimated as an average of the 285 

DEM along the lines and removed. The effect of this detrending is strengthening the contour-286 

based approach (Fig. 8, in blue). We can see a few contours (in black) on the ridges between 287 

the furrows that are not clod contours, for example numbers 7 (x=240, y=60) and 40 (x=160, 288 

y=160), which are rather grapes of large aggregates melted with the ridge, or 2 (x= 170, y= 289 

225) that exceeds true clod border. However, the true clod 44 (x=45, y=150) in a furrow, was 290 

no more detected after detrending. Two clods (i.e. 19 (x=45, y=230) and 37 (x=50, y=290)) 291 

are difficult to segment by the contour-based approach, with or without detrending. We can 292 

discuss the meaning of the large aggregates more or less captured or not. For a visual 293 

survey, we can say that the minimum diameter of an aggregate should be at least 6 or 7 mm. 294 

Figure 9 shows the contours obtained with the wavelet-based method on the raw DEM 295 

(magenta) and with the contour-based approach on the detrended DEM (blue). The hand-296 

made segmentation is in yellow dotted line. We can see that most of the contours of large 297 

clods are in good agreement. Some small clods or large aggregates were detected by one 298 

automatic method and not the other. The contour-based method captured some large 299 
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aggregates located in the furrows, on the border of the ridges or on the ridges. The wavelet-300 

based method was able to capture the clod numbered 44 (x=45, y=150) in Figure 8, captured 301 

some other large aggregates on the ridges, but captured also two mentioned grapes of 302 

aggregates melt with the ridge (x=160, y=160, and x=90, y=260) numbered 40 and 47 on 303 

Figure 8. 304 

The clod coverages, estimated with the different segmentation methods, are shown in Table 305 

2, and the MWDs in Table 3. We can see the overall agreement of the methods. The effect of 306 

rainfall impact is first an increase of clod coverage and MWD (from P0 to P1 and F0 to F1) 307 

and then a decrease of clod coverage due to disappearance or erosion of the smaller clods, 308 

and a stabilization of MWD (from P1 to P2 and F1 to F2), which give more weight to the 309 

larger clods. We can notice than the wavelet-based method tends to underestimate the MWD 310 

due to difficulty to capture the borders of the very large clods (see Figure 6). The higher clod 311 

coverage for P0 is due to the detection of more small clods. The lower MWD of contour-312 

based method for P0 can be explained by the mis-segmentation of a very large two-summit 313 

clod. For P2, MWD is overestimated by threshold method because it captured three blocks of 314 

nearby clods (8, 15, 18) while the other segmentation methods segmented them as single 315 

clods by (see Fig. 10). For the different stages of furrowed surface F0, F1 and F2, we have 316 

comparable MWDs for contour-based and wavelet-based segmentations but slightly higher 317 

clod coverage by wavelet-based method. This can be explained by the fact that contour-318 

based method detects generally less clods than wavelet-based method. In particular, after 319 

two rainfall events, the number of segmented clods decreased a lot due to erosion, resulting 320 

in poorly shaped residual clods (see Fig. 11). Therefore, the MWD computed with contour-321 

based method for F2 is likely overestimated, due to deficit of middle-size clods. 322 

Table 4 gathers the estimated goodness of agreements (eq. 9) between the segmentation 323 

methods for the 6 roughness conditions. The three automatic segmentation overlap rates 324 

rank at good level of goodness when compared to hand-made segmentation. The higher 325 

score appears to be that of the threshold method, which is in agreement with the hand-made 326 
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method at 88.2% for planar surface at initial stage P0. When the threshold method is the 327 

reference for the three stages of the planar surface, we can see the robustness of the 328 

wavelet-based method, which has comparable or even better goodness of overlap rates.  For 329 

both references, we notice a low decrease of goodness with the roughness smoothing and 330 

lowering due to rainfall. An explanation parameter is the size reduction of some clods. The 331 

mean IoU is more sensitive to clod size than G, however if the larger clods are not suitably 332 

segmented, the stabilizing property of G is lessened. It is the case, for P2, with the wavelet-333 

based segmentation, leading to lower values of G. When considering the furrowed surfaces 334 

F0 to F2, G has less variations than mean IoU and the increase followed by a decrease of 335 

these parameters can be explained by the proportion of small clods in the surface.  336 

When the contour-based method is the reference for the three stages of both planar and 337 

furrowed surfaces, a noticeable point is that the wavelet-based method performed well, 338 

segmenting clods on the raw DEMs while the contour-based method needed a detrending of 339 

the furrowed surfaces. Comparing the wavelet-based method to the contour-based method 340 

leaded to globally better goodness of agreement than comparing the wavelet-based method 341 

to the threshold method, because these two segmentation methods are sensitive to the slope 342 

of the clod shape from the summit to the border. For P0, the agreement score is lower, 343 

possibly due to the sensitivity of the segmentations to the small grains of the surface and to 344 

the difference of contours on a large two-summit clod. For P1 and F1 the smoothing action of 345 

rainfall enhanced the agreement score because the borders are less rough but still well 346 

defined and because some small clods have disappeared. At final stage, there were less 347 

common clods segmented because the residual clods are poorly shaped (see Fig. 11). The 348 

clods segmented by the wavelet-based method on F2 were present at an earlier stage, 349 

except one (x=95, y=80) forming a bump on a ridge. That means that the contours are 350 

meaningful. The interest of the wavelet-based method relies in its ability to keep on 351 

segmenting clods whatever the roughness conditions, with or without furrows, at initial stage 352 

or after rainfall events. This method performs better for clods than for large aggregates. In 353 
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average, for the wavelet-based method, with all possible references, the mean value of G is 354 

77.5 % whereas the mean IoU amounts 71.1%. This higher score suits well to the visual 355 

agreement seen in the figures 7, 9, 10 and 11, and to the small root mean squared error 356 

(RMSE) of MWDs of 4 mm when comparing the wavelet-based to the hand-made derived 357 

diameters (see table 3). Therefore, it is a more robust performance indicator when changing 358 

the roughness condition by adding furrows or subjecting the surfaces to rainfall (see tables 1 359 

and 4). It reflects more the segmentation performance than the DEM resolution and the clod 360 

size effect as the mean IoU. 361 

Let us now focus on the ability of wavelet-based segmentation  to derive suitably the clod 362 

diameters. We already mentioned the low RMSE of 4 mm in estimating MWDs of the 6 silt 363 

loam DEMs. As a comparison, in Bogrekci and Godwin, 2007, the lowest RMSE between 364 

sieve-derived and 2D image-derived MWDs was 14 mm. In our study, for the Lavaur clay 365 

loam surface, the sieve range was 2 cm. Unfortunately, the sieved-derived MWD was not 366 

measured for this soil.  With hand-made segmentation, the minimum diameter is 7.0 mm, the 367 

maximum diameter 24.3 mm, and the MWD 15.9 mm. With the wavelet-based segmentation, 368 

some clods were missed or were segmented as a block of clods instead of single clods (see 369 

Figure 12). The minimum diameter is 7.2 mm and the maximum diameter 23.3 mm, which is 370 

very good agreement with the hand-made segmentation. The overall estimated MWD is 14.2 371 

mm, which is in good agreement with hand-made estimation with a relative deviation of 10.7 372 

%. We assume that hand-made segmentation is difficult with such small and nearby clods so 373 

that it was performed on a small area where the clods were well defined and likely larger 374 

than in other areas. So, the hand-made derived MWD was likely slightly over-estimated. The 375 

wavelet-based derived MWD was nevertheless a little under-estimated as it was already the 376 

case for the silt loam surfaces in table 3. 377 

The silt loam surfaces present a wider range of clod diameters. In order to compare our 378 

results with other methods available in the literature, we considered the total of 113 clods 379 

from surfaces P0 and F0 at initial stage. Figure 13 shows the equivalent diameters derived 380 
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from wavelet-based and hand-made segmentations. We can see that they are close to the 381 

diagonal. The linear fit gave 4 = 0.867 + 3.8, with R2 = 96%. That is to say that the derived 382 

diameters are highly correlated, with a slope quite close to 1 and an intercept quite close to 383 

0. In Sandri et al. 1998, the linear regression of MWDs derived from 2D image segmentation 384 

and from sieves gave 4 = 1.027 + 3.9, with R2 = 81%. The slope is closer to one but R2 is 385 

lower than in present study. In  Bogrekci and Godwin, 2007 , the linear regression of MWDs 386 

derived from 2D image segmentation and from sieves gave 4 = 1.217, with R2 = 96%. Here, 387 

the intercept is exactly 0 but the slope is higher than in present study. On the whole, our 388 

results are comparable to that of the literature, and the main advantage, is having the 389 

individual clod diameters instead of MWDs. Let us notice that in the cited papers of the 390 

literature, the linear regressions were estimated along fractions of clod size, which introduced 391 

an average effect enhancing the accuracy of the fit. So, we also gathered the clods in ten 392 

groups of clod size, with medians of fractions: 9.0, 12.5, 13.9, 15.7, 18.2, 20.0, 22.8, 26.3, 393 

28.8, and 36.1 mm. The linear regression on these fractions of clods leaded to 4 = 0.937 +394 

1.9, with R2 = 99%, which is globally better than the cited results. 395 

Segmenting soil clods on a DEM is a complex problem because 1) soil surfaces are complex 396 

surfaces of several levels of roughness and 2) considering elevations results in less contrast 397 

than pixel brightness in a 2D image. However, a 2D image can have some bias due to the 398 

projection of a 3D volume onto a plane with a given lighting and does not allow to estimate 399 

clod volume. That is why different approaches taking benefit of the three dimensions of a 400 

DEM have to be developed. In the present paper, we adopted a geometrical point of view 401 

relying on multiresolution analysis and statistical pattern recognition. The segmentation was 402 

based on geometrical properties of the objects to be detected. The evaluation of its 403 

performance is linked to DEM accuracy and to clod size. When the size of clods decreases, 404 

the proposed approach reaches its limits. Indeed, the properties of clods and aggregates are 405 

quite different and the approaches performing well for small aggregates as in (Ajdadi et al., 406 

2016), reach their limits when considering larger aggregates or clods and conversely.  407 
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4 Conclusion 408 

In this paper, we developed a wavelet-based method to segment the contours of clods on 409 

DEMs of seedbed-like surfaces made in the laboratory with two different loams. The 410 

presence or absence of furrows, different sizes and spacing of clods and the use of a rainfall 411 

simulator allowed us to create different roughness conditions. We introduced a goodness of 412 

agreement index in order to compare the proposed method with other segmentation methods 413 

and computed also the mean IoU, clod coverage and mean weighted diameter. When the 414 

size of clods decreases, the proposed approach reaches its limits. Nevertheless, the 415 

wavelet-based method showed ability to keep on segmenting clods whatever the roughness 416 

conditions, with or without furrows, at initial stage or after rainfall events. It also showed 417 

ability to retrieve clod diameters with very good accuracy. It is therefore an efficient method 418 

that allows in particular to detect the contours of clods deposited on furrows. 419 

Soil roughness is a key factor for understanding and modelling soil water-interactions and 420 

soil erosion. It can be estimated by several parameters, and characterized both locally and 421 

globally. Estimating the soil cloddiness is one way of evaluating the soil surface roughness. It 422 

is especially important for evaluating the soil quality after tillage operations, and for soil 423 

conservation decisions. A reliable automatic clod segmentation on a DEM opens 424 

perspectives for clod size distribution estimation and for numerical soil surface generation. 425 

 426 

 427 
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Figure 1: Laboratory made planar and furrowed surfaces with a wide range of clod 
size P0 and F0.
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Figure 2: DEMs of planar and furrowed surfaces of wide range of clod size at initial and successive 
stages after rainfall; a) P0, b) P1, c) P2, d) F0, e) F1, f) F2.
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Figure 3: Laboratory made and DEM of surface composed of one sieve range of clods SR.



Figure 4: Algorithm of wavelet-based clod segmentation method. [bx ex by ey] 
represent the extents of the local surface in the directions x and y.
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Figure 5: Rectification of wrong patterns encountered during clod contours automatic 
delineation. Initial contour is in black (a, b, c) or white (d), final contour in red (a) and 
regularized contour in bold magenta (a, b, c, d).
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Figure 6: Dependence on clod size and DEM accuracy of goodness of agreement 
indicator. Discretized circles of 3 mm and 6 mm of radius (solid line) and translated 
circles by 1 mm (dotted line).
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Figure 7: Clod contours obtained with hand-made segmentation (dotted yellow), 
thresholding (green), contour-based segmentation (blue) and wavelet-based 
segmentation (magenta) for planar surface at initial stage (P0).
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Figure 8: Clod contours obtained with contour-based segmentation without 
detrending (black) and after detrending (bold blue) for furrowed surface at 
initial stage (F0).
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Figure 9: Clod contours obtained with hand-made segmentation (dotted yellow), contour-
based segmentation after detrending (blue) and with wavelet-based segmentation (magenta) 
for furrowed surface at initial stage (F0).
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Figure 10: Clod contours obtained with hand-made segmentation (dotted yellow), 
thresholding (green), contour-based segmentation (blue) and wavelet-based 
segmentation (magenta) for planar surface after two rainfall events (P2).
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Figure 11: Clod contours obtained with hand-made segmentation (dotted yellow), 
contour-based segmentation after detrending (blue) and with wavelet-based 
segmentation (magenta) for furrowed surface after two rainfall events (F2).
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Figure 12: Results of wavelet-based segmentation (in magenta) on small size 
clod surface SR, with hand-made contours in dotted yellow.
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Figure 13: Clod diameters estimated from wavelet-based and 
hand-made segmentations on laboratory surfaces at initial 
stage P0 and F0. 



 

  Compared method 

Reference           Surface Threshold Contour-Based Wavelet-Based 

Hand-made              P0 

                               P1 

                                   P2 

81.7 

82.0 

71.2 

74.8 

70.4 

61.5 

78.0 

73.5 

61.5 

                                   F0 

                               F1 

                                   F2 

   68.8* 

  74.6* 

  54.7* 

70.2 

75.5 

66.1 

Threshold                 P0 

                               P1 

                               P2 

 85.5 

73.4 

64.4 

74.5 

74.6 

65.8 

Contour-Based*      P0 

                               P1 

                               P2 

  69.4 

79.9 

73.5 

                                   F0 

                               F1 

                                   F2 

  69.6 

79.4 

55.1 

 

Table 1: Mean IoU in %, for three stages of planar surface P0 to P2 and furrowed surface F0 to F2. 

*from a detrended surface. 

 

 

 

            Segmentation method 

Surface Hand-made Threshold Contour-Based Wavelet-Based 

P0 29.5 27.9 26.4 30.5 

P1 36.7 34.4 37.7 36.8 

P2 28.4 30.7 30.9 26.7 

F0 24.0    23.3* 25.6 

F1 27.9    26.3* 28.2 

F2 16.5    16.5* 19.7 

 

Table 2: Clod coverage in %, for three stages of planar surface P0 to P2 and furrowed surface F0 to 

F2. *from a detrended surface. 

 

  



 

             Segmentation method 

 Surface Hand-made Threshold Contour-Based Wavelet-Based 

P0 37.5 37.4 31.4 33.0 

P1 39.9 41.4 41.6 36.9 

P2 41.9 44.9 42.8 34.7 

F0 26.6    25.9* 26.4 

F1 30.8    30.1* 30.1 

F2 30.5    31.8* 29.1 

 

Table 3: Mean weighted diameter (MWD) in mm, for three stages of planar surface P0 to P2 and 

furrowed surface F0 to F2. *from a detrended surface. 

 

 

 

  Compared method 

Reference           Surface Threshold Contour-Based Wavelet-Based 

Hand-made              P0 

                               P1 

                                   P2 

88.2 

87.8 

79.7 

83.8 

77.4 

69.9 

83.9 

77.6 

65.1 

                                   F0 

                               F1 

                                   F2 

   78.3* 

  81.1* 

  62.2* 

81.6 

81.9 

78.2 

Threshold                 P0 

                               P1 

                               P2 

 91.7 

78.9 

72.0 

80.7 

78.3 

66.7 

Contour-Based*      P0 

                               P1 

                               P2 

  77.2 

81.9 

72.5 

                                   F0 

                               F1 

                                   F2 

  80.0 

86.1 

70.8 

 

Table 4: Goodness of agreement (in %) between segmentation methods, for three stages of planar 

surface P0 to P2 and furrowed surface F0 to F2. *from a detrended surface. 

 

 




