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S U M M A R Y
Fingering, veining, channelling and focussing of porous fluids are widely observed phenomena
in the Earth’s interior, driving a range of geo-processes across all scales. While observations
suggest fairly localized flow patterns induced by fractures, the classical Darcian model predicts
diffusive behaviour that leads to never-ending spreading and delocalization. We here investi-
gate an alternative physical mechanism without the need to involve fractures. Decompaction
weakening leads to the formation and propagation of localized flow-pathways in fluid-saturated
porous media. We numerically solve the coupled equations using high-resolution 2-D and 3-D
numerical modelling to predict non-linear porous flow in a non-linearly viscously deform-
ing matrix. We show that high-porosity channels may be a dynamic and natural outcome of
sufficiently resolved hydromechanical coupling and decompaction weakening. We propose
an efficient solution strategy that involves an iterative pseudo-transient numerical method to
solve the coupled system of equations in a matrix-free fashion. We discuss benefits and lim-
itations of this approach that performs optimally on hardware accelerators such as graphical
processing units and is well-suited for supercomputing. We benchmark the pseudo-transient
routines against commonly used direct-iterative solving strategies and show convergence to-
wards identical results. Furthermore, we use the fast solver to systematically study in 2-D the
high-porosity channel propagation velocity as a function of bulk and shear viscosity ratios
and report discrepancy between 2-D and 3-D configurations. We conclude that the fluid-flow
rate in the channels is up to three orders of magnitude higher than expected by pure Dar-
cian flow regimes and show that the high-porosity channels occurrence remains with strain
rate dependant shear viscosity. We provide both the 2-D MATLAB-based direct-iterative and
pseudo-transient routines for full reproducibility of the presented results and suggest our
model configuration as a key benchmark case to validate the implementation of hydromechan-
ical coupling in 2-D and 3-D numerical codes. The routines are available from Bitbucket and
the Swiss Geocomputing Centre website, and are also supporting information to this paper.

Key words: Creep and deformation; Permeability and porosity; Geomechanics; Non-linear
differential equations; Numerical modelling.

1 I N T RO D U C T I O N

1.1 Subsurface flow localization

Evidence of localized fluid flow in saturated porous media are ob-
served in various geosystems on Earth. Their expression in the inte-
rior of deep Earth relates to metasomatism and dehydration of aque-
ous minerals in ductile rocks (Connolly & Podladchikov 2000, 1998;

Miller et al. 2003; Ague 2011; Iyer et al. 2013; Skarbek & Rempel
2016; Omlin et al. 2017a) and migration of melt into deforming
partially molten regions of the lithosphere (McKenzie 1984; Scott
& Stevenson 1984; Connolly & Podladchikov 2007; Simpson et al.
2010a,b; Liang et al. 2011; Rudge et al. 2011; Schiemenz et al.
2011; Katz & Weatherley 2012; Cai & Bercovici 2013; Keller et al.
2013, 2017). At shallower levels, vertical chimneys or pipe struc-
tures are populating sedimentary basins in continental shelves (Judd
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& Hovland 2007). These structures are inferred from their distinct
signatures on seismic cross-sections and are often related to pock-
marks on the seafloor. Their presence is especially well documented
in regions of economic interest (Berndt 2005; Cathles et al. 2010;
Räss et al. 2014; Cartwright & Santamarina 2015; Minakov et al.
2017; Elenius et al. 2018). Indications suggest that some vertical
pipes may act as preferential fluid pathways, while other structures
appear to be dormant. The expression of these subseabed pipes is
well reported for instance on the Nigerian continental shelf and
in the Norwegian North Sea (Hustoft et al. 2010; Plaza-Faverola
et al. 2010; Løseth et al. 2011; Plaza-Faverola et al. 2011; Mazzini
et al. 2017; Huq et al. 2017), as well as in lacustrine environments
(Reusch et al. 2015). Understanding the physical process that leads
to the formation and evolution of these pipes is essential to accu-
rately constrain subsurface fluid flow. Most field observations are
qualitatively explained by conceptual models, and only a few recent
studies address the physics of gas-rich and fluid-rich chimneys (e.g.
Cathles et al. 2010; Cartwright & Santamarina 2015, and references
therein); however, they mainly involve capillary forces and fracture
mechanics that lead to a potential blowout scenario. An alternative
mechanism suggests that these subsurface channel-like flow fea-
tures are the result of localized creep of the porous matrix coupled
to non-linear Darcian flow (Räss et al. 2018; Böttner et al. 2019).
The solitary waves limit of hydromechanically coupled model pro-
vides in this case the underlying physical mechanism leading to the
occurrence of flow instability in viscously deforming porous media
(Räss et al. 2018).

1.2 Multiphysics coupling

To date, most porosity wave models (Barcilon & Richter 1986; Ol-
son & Christensen 1986; Scott 1988; Wiggins & Spiegelman 1995;
Connolly & Podladchikov 1998, 2007, 2000; Appold & Nunn 2002;
Tian & Ague 2014; Joshi & Appold 2016; Skarbek & Rempel 2016)
decouple fluid flow from shear deformation by assuming lithostatic
total pressure gradient. The fully coupled model utilizes appropri-
ate geomechanics to predict stresses and pressure distribution in
the porous matrix. The fully coupled approach has two major ben-
efits; first, total pressure no longer needs to be assumed to follow a
lithostatic gradient; secondly, the shear deformation of the porous
matrix is resolved. Most importantly, the dynamics and morphol-
ogy of porosity waves become sensitive to the shear rheology of
the rock matrix. The fully coupled approach’s importance has been
discussed concerning industry-related simulators based on Biot’s
poro-elasticity theory (Settari et al. 2001; Prevost 2013). There, the
standard solution to simulate fluid-flow in porous media relies on
a direct coupling approach, in which fluid pressure is transferred
to the geomechanical module, but the geomechanics often do not
impact the fluid pressure. Such an approach does not include any
non-linear iteration, mainly owing to time constrains, and results in
an explicit coupling strategy. More advanced workflows iteratively
couple a fluid-flow solver to a geomechanical solver (e.g. Minkoff
et al. 2003; Rutqvist 2012, 2011). In such an approach, data must
often be explicitly transferred from one software package to another,
hindering the maximal affordable numerical resolution. Both solu-
tion strategies often do not ensure non-linear convergence, owing to
the large number of iterations needed, resulting in long simulation
times. The computed solutions may not be accurate, and non-linear
features may be under-resolved. An alternative solution is to fully
couple fluid flow and Stokes matrix flow in a single solver (Scott
1988; Stevenson & Scott 1991; Morency et al. 2007; Gradmann

et al. 2012; Gradmann & Beaumont 2012; Dymkova & Gerya 2013;
Keller et al. 2013; Dannberg & Heister 2016; Zheng et al. 2016;
Omlin et al. 2017b). Further, none of the previous studies, with the
exception of Omlin et al. (2017b), have considered decompaction
weakening while coupling Darcian and Stokes flows in 3-D.

1.3 Previous work

Yarushina & Podladchikov (2015a) presented a general system of
thermodynamically admissible equations (i.e. a system that en-
sures non-negative entropy production) for fluid flow in deformable
viscoelastic porous media. The well-established Biot poro-elastic
model (Wang 2000) is recovered in the linear elastic limit, valid
at low stress levels and negligible viscous relaxation. A number of
numerical studies (e.g. Phillips & Wheeler 2008; Haga et al. 2012;
Wheeler et al. 2014, and references therein), have explored linear
poro-elastic coupling. At higher stress levels or temeprature, rock
deformation deviates significantly from a linear elastic rheology.
The non-linear instantaneous response is typically characterized
using an elasto-plastic rheology (Baud et al. 2000; Vajdova et al.
2012; Wong & Baud 2012). Lewis & Schrefler (1987) and more
recently Cacace & Jacquey (2017) or Wheeler et al. (2014) nu-
merically investigated poro-elasto-plastic deformation coupled to
fluid flow. Pure elastic and elasto-plastic matrix rheologies are be-
yond this study’s scope. We will neither address reactive transport
modelling and thus not investigate chemical or thermal (energetic)
feedbacks. Thermal and chemical couplings to deformation (me-
chanics) represent key processes to integrate in future fully coupled
thermo-hydro-chemico-mechanical (THCM) models; as reported
in well documented studies (Aharonov et al. 1996, Spiegelman &
Kelemen 2003; Liang et al. 2011; Oliveira et al. 2017). For exem-
ple, hydrochemical coupling may trigger the generation of porosity
from an initially non-porous rocks due to reactions that liberate
fluid excesses which turn out to propagate in high-porosity chan-
nels (Malvoisin et al. 2015; Omlin et al. 2017a; Plümper et al.
2017). As a general trend, coupling among processes triggers non-
linear interactions that may result in significant and spontaneous
localization of flow, heat and deformation (e.g. Duretz et al. 2019).

1.4 The proposed approach

In this study, we explore the viscous limit of Yarushina & Podlad-
chikov (2015a) model to quantify the importance of decompaction
weakening while coupling Darcian and Stokes flows (HM coupling).
Viscous rheology is expected to operate in the rock matrix at high
(comparable to melting) temperatures and is usually neglected in
lower-temperature environments. However, even at low (ambient)
temperatures, rock deformation experiments on sandstones, lime-
stones and shales show that major reservoir rock types exhibit non-
negligible time-dependent creep deformation (Spiers et al. 1990;
Brantut et al. 2013; Sone & Zoback 2014; David et al. 2015). Re-
cent studies (Makhnenko & Labuz 2016; Räss et al. 2017b) suggest
that the porosity-dependent bulk viscosity is a non-linear function
of the effective pressure. This strong non-linear interaction may
lead to a drastic decrease in bulk viscosity values for regions of
elevated pore-fluid pressure. Thus, the viscosity drop from the com-
paction to the decompaction regime, the decompaction weakening,
suggested on theoretical grounds (Connolly & Podladchikov 2007;
Yarushina & Podladchikov 2015a) is thus experimentally confirmed
(Makhnenko & Podladchikov 2018).
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We use numerical modelling to resolve prediction, rather than
prescription, of the spontaneous formation and propagation of pipe
structures in viscously deforming porous media (Keller et al. 2013;
Räss et al. 2014, 2017b, 2016; Omlin et al. 2017b). Solitary waves
require non-linear porosity-dependent permeability, here a Carman-
Kozeny relationship (Costa 2006) in order to form blob-shaped
propagating porosity waves, but not yet reproducing the first-order
natural data. Decompaction weakening results in the blobs to chan-
nels transition in better agreement with field observations. Such
numerical models are computationally challenging because (1) the
spatial occurrence of these structures is not known in advance; (2)
the material properties such as permeability and viscosity range
over several orders of magnitude and (3) important contrasts in spa-
tial and temporal scales must be resolved, ranging from channel
spacing down to the decompacting area at the tip of each prop-
agating channel (Räss et al. 2018). Thus, the strong non-linear
coupling among the different physical processes requires appropri-
ate numerical treatment. The computational domain size must be
large enough to resolve spontaneous spacing between the channels,
and the numerical resolution must be sufficiently high to resolve
the channel’s tip areas mandatory for accurate predictions of the
propagation velocity and growth of the channels.

We use the finite-difference method with two different solving
approaches, a direct-iterative (DI) method (Newton and Picard lin-
earizations) and a matrix-free pseudo-transient (PT) approach. We
perform both 2-D and 3-D forward simulations and present a sys-
tematic study based on more than 400 forward 2-D simulations
at various high resolutions and an extremely high-resolution 3-
D simulation involving more than 2 billion gridpoints. We sug-
gest our model result as benchmark for future numerical two-phase
poro-viscous implementations, augmenting the existing poro-elastic
benchmark (Rozhko 2008) and the analytical solution of compact-
ing flow past a sphere (Rudge 2014). We highlight that accurate
convergence may lead to the formation of porosity waves and dis-
cuss the influence of the decompaction over compaction viscosity
and the bulk to shear viscosity ratios in terms of maximal wave
velocities. Furthermore, we report first results that the occurence
of high-porosity channels remains while considering a strain-rate
dependant power-law viscous shear rheology; we share potential
implications those may trigger regarding subsurface processes. We
finally discuss some technical insights that permit to optimally ex-
ploit modern hardware and address some performance-related con-
siderations.

For reproducibility purpose, we provide the 2-D MATLAB PT
and DI hydromechanical numerical codes. These MATLAB routines
are part of M2Di (Räss et al. 2017a) and are available for download
from Bitbucket at https://bitbucket.org/lraess/m2di and from the
Swiss Geocomputing Centre website http://www.unil.ch/geocom
puting/sof tware/. The PT routines (HM2Dpt) are located in the
HM2Dpt folder and the DI routines (HM2Di) are located in the
M2Di2 folder. The GPU (CUDA C + MPI) routines are available
upon request to the authors.

2 M AT H E M AT I C A L M O D E L A N D
H Y D RO M E C H A N I C A L C O U P L I N G

We utilize a set of two-phase equations to model the formation and
evolution of high-porosity channels over time as a natural outcome
of the coupling of fluid flow and the deformation of a viscous porous
matrix (Räss et al. 2014, 2018; Yarushina et al. 2015b). The mass
balance for fluid and solid phases assuming constant fluid and solid

densities as well as no fluid sources are:

∇kv
s
k = − D log (1 − φ)

Dt
,

∇k

[
φ
(
v

f
k − vs

k

)]
= D log (1 − φ)

Dt
, (1)

where D
Dt = ∂

∂t + vs
k∇k is the material derivative with respect to the

solid.
The momentum balance equations for the matrix (Stokes) and

the pore-fluid (Darcy) are:

∇ j

(
τ̄i j − p̄δi j

) − ρ̄gi = 0,

φ
(
v

f
i − vs

i

)
+ kφ

μ f

(∇i p f + ρ f gi

) = 0, (2)

where τ̄i j are the components of the stress deviator, δij is the Kro-
necker delta, gi are the components of downward-pointing gravity

acceleration vector, φ
(
v

f
i − vs

i

)
= v

Darcy
i is the Darcy flux vector

(the relative flux of the fluid velocity v
f

i relative to the solid velocity
vs

i ), μf is the pore-fluid viscosity and p̄, pf are the total and fluid
pressures, respectively. The total porosity-averaged density:

ρ̄ = (1 − φ) ρs + φρ f , (3)

includes constant solid and fluid densities ρs and ρ f, respectively.
The Carman–Kozeny relationship (Costa 2006) defines the porosity
φ dependent permeability kφ :

kφ = k0

(
φ

φ0

)nk

, (4)

where k0 is the reference permeability, φ0 the reference porosity
and nk the permeability power law exponent.

The strain rate tensor and the viscous creep shear rheology of the
solid are expressed as:

ε̇i j = 1

2

(∇iv
s
j + ∇ jv

s
i

) − 1

3
δi j∇kv

s
k = 1

2μs
τ̄i j , (5)

where ε̇i j is the strain rate tensor, δij is the Kronecker-delta, μs is
the solid shear viscosity and τ̄i j is the deviatoric stress tensor.

The system is closed by a final constitutive equation that accounts
for viscous (de)compaction:

∇kv
s
k = − pe

ηφ (1 − φ)
, (6)

where pe = p̄ − p f is the effective pressure and ηφ is the bulk
viscosity. The reference bulk compaction viscosity, ηc, at reference
porosity φ0 and p̄ >> p f , is:

ηc = μs

Cφ0
(7)

where C is a rheological constant quantifying the ratio of shear
viscosity over the reference bulk compaction viscosity. The rhe-
ological parameter C may depend on the pore geometry and the
effective pressure (Yarushina & Podladchikov 2015a), but is as-
sumed constant in this study as an approximation to more realistic
compaction rheology.

At other porosity and fluid pressure values, the bulk viscosity ηφ

is inversely proportional to the porosity and drops with the decrease
of the effective pressure pe to account for decompaction weakening,
here parametrized by a hyperbolic tangent function:

ηφ = ηc
φ0

φ

[
1 + 1

2

(
1

R
− 1

)(
1 + tanh

[
− pe

λp

])]
, (8)

where λp is the transition zone sharpness between the compacting
and decompacting regime and R = ηc/ηd is a rheological constant

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/218/3/1591/5497299 by G

EO
SC

IEN
C

ES-R
EN

N
ES C

N
R

S user on 12 Septem
ber 2019

https://bitbucket.org/lraess/m2di
http://www.unil.ch/geocomputing/tools/software/
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(Connolly & Podladchikov 1998, 2007) quantifying the ratio of
compaction (ηc) bulk viscosity (at pe > >λp) over decompaction
(ηd) bulk viscosity (at pe < < − λp).

Within this study, we systematically vary the rheological con-
stants C and R and investigate their impact on the flow morphol-
ogy and velocity. We restrict our investigations to flow channelling
cases where R ≥ 1 and compare it to blob-like porosity waves at R
= 1. The flow focussing mechanism we investigate here assumes a
non-zero background porosity and saturates at some higher poros-
ity << 100 per cent. We will thus not tackle the 0 per cent neither
the 100 per cent porosity limits and stay below the suspension flow
limit. This is in accordance with the two-phase flow mathemati-
cal model we rely on (Yarushina & Podladchikov 2015a). Towards
the 0 per cent porosity limit, effective permeability kφ /μf → 0 and
bulk viscosity ηφ → ∞ leading to stagnation of the porosity waves.
Wave trapping in the pure viscous limit can be avoided by includ-
ing poro-elasticity (Connolly & Podladchikov 1998) or chemical
reactions (Malvoisin et al. 2015). Towards the 100 per cent porosity
limit, the permeability and bulk viscosity models need modification
in order to handle suspension flow regime. Both limits are beyond
the scope of the current study. We also do not consider turbulent
and other forms of non-Darcian porous fluid flow regimes (Skjetne
& Auriault 1999; Liu et al. 2015; Hawkins et al. 2016). Keller et al.
(2013) further discuss details on two-phase flow model limits and
their potential numerical treatments.

We use three independent scales:

δc =
√

k0
ηc

μ f
,

pc = (
ρs − ρ f

)
gδc,

τc = ηc

pc
, (9)

and their dependent combinations such as the characteristic velocity
vc = δc/τ c to normalize all the variables, resulting in a dimensionless
form of the governing equations. The characteristic length scale δc is
also referred to as the compaction length (McKenzie 1984; Connolly
& Podladchikov 2014). τ c is the characteristic time and pc is the
characteristic pressure or stress.

Several non-linearities arise from the set of equations described
above, both owing to coupling and porosity-dependent parameters.
These non-linearities will require proper treatment in the solving
procedure.

3 M O D E L C O N F I G U R AT I O N

The initial conditions we used in this study consist of a column
of saturated porous media with an initial normalized background
porosity value φ/φ0 = 1. An elliptical region of φ/φ0 = 3 is located
at the first one-quarter above the computational domain’s base.
The computational 2-D or 3-D domain dimensions (x, h or x, y, h,
respectively) are normalized by the characteristic length scale δc

(Fig. 1). We report the main parameters used in this study, and not
subject to change, in Table 1.

We apply free-slip boundary conditions for the Stokes problem
(no shear stress and zero normal velocity on the boundaries). For the
fluid flow part (i.e. the Darcy problem), we assign fixed flux bound-
ary conditions; fluxes in x and y directions are set to 0 on all sides of
the computational domain. Vertical inflow and outflow values (bot-
tom and top boundaries) are chosen to satisfy the condition pe =
0, leading to no compaction or decompaction of the porous matrix.

Figure 1. Schematic initial model configuration for (a) the 3-D and (b) the 2-
D calculations. The high-porosity anomaly is located at the first one-quarter
of the model depth and the values are three times higher than background
normalized porosity (φ/φ0).

Similar boundary condition types are used and further discussed in
Rhebergen et al. (2015).

The viscous medium undergoes progressive compaction in re-
sponse to the downward-pointing gravity acceleration. Since the
fluid density is twice as low as the solid density, the fluid excess
in the high-porosity anomaly tends to travel upwards as buoyancy-
driven flow. As further discussed in this study, the flow tends to focus
in high-porosity channels if the decompaction weakening is signifi-
cant, ηc/ηd > >1. The resulting flow rate and propagation velocities
are therefore significantly enhanced. Fig. 2 shows three stages of
a reference 2-D simulation of buoyancy-driven propagating poros-
ity waves in a low-porosity region. For significant decompaction
weakening, ηc/ηd > >1, the coupling of fluid flow and solid matrix
deformation naturally rearranges into high-porosity channels. In
this case, the resulting vertical fluid transfer rates are significantly
higher than diffusive Darcian flow (Figs 2a–c). The corresponding
effective pressure pe values show, at each stage, which part of the do-
main is in the compaction (pe > 0) or decompaction (pe < 0) regime
(Figs 2d–f). The high-porosity channels evolve and propagate up-
wards in a self-sustained mechanism, collecting the surrounding
fluid via lower fluid pressure inside compared to outside the chan-
nels. Since mass is conserved, the regions surrounding the vertical
channels compact owing to fluid depletion. The resulting increased
bulk viscosity values in low-porosity regions turn out to freeze the
channel wall geometry and potentially provide preferential flow-
paths for future fluid release.

4 N U M E R I C A L I M P L E M E N TAT I O N
A N D S O LV I N G S T R AT E G I E S

The system of partial differential equations (Section 2) that de-
scribes the two-phase poro-viscous flow is discretized using the
finite difference method on a regular Cartesian staggered grid. This
staggering is inherently devoid of oscillatory pressure modes (Shin
& Strikwerda 1997) and relies on second-order conservative finite
differences (Patankar 1980; Virieux 1986; McKee et al. 2008). The
standard Stokes staggered grid is augmented with fluid pressure
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Table 1. Non-dimensional simulation parameters. Notably, the 3-D configuration, y is the second horizontal axis and
is equal to the x-axis, which represents the domain width in 2-D and 3-D. Also, values identical for both 2-D and 3-D
configurations are not repeated in the 3-D column.

Description Symbol Value

2-D 3-D

Domain size x, (y), h 20 × 40 20 × 20 × 40
Ellipsoid axis length x, (y), h 2 × 8 2 × 2 × 8
Reference porosity φ0 10−2

Reference permeability k0 1
Fluid shear viscosity μf 1
Permeability power law exponent nk 3
Compaction bulk viscosity ηc 1
Gravity acceleration g (0,1) (0,0,1)
Solid density ρs 2
Fluid density ρf 1
Rheological cst. (bulk to shear viscosity) C 10−1 to 10 10−1

Rheological cst. (compaction versus
decompaction)

R 1 to 103 500

Effective pressure transition zone λp 10−2

nodes that are located in the cell centres, like total pressure. Addi-
tional material properties, namely porosity and bulk viscosity, also
reside in this location.

We utilize an iterative process to obtain a numerical solution that
satisfies the non-linear discrete hydromechanical equations. We rely
on an implicit solution procedure to progressively reduce the imbal-
ance caused by the iterative pressures (fluid and total) and velocity
fields. The iterative process is stopped once the hydromechanical
equations are satisfied to a defined accuracy. We reformulate the
hydromechanical eqs (1) and (2) as:

∇ j

(
τ̄i j − p̄δi j

) − ρ̄gi = fvi ,

−∇kv
s
k − p̄ − p f

ηφ (1 − φ)
= fp̄,

−∇k

[
φ
(
v

f
k − vs

k

)]
+ p̄ − p f

ηφ (1 − φ)
= fpf . (10)

The right-hand side terms ( fvi , fp̄, fpf ) are non-linear momentum,
total continuity and fluid pressure residuals. They quantify the mag-
nitude of imbalance of the hydromechanical equations. In this study,
we focus primarily on the porosity wave regime as limit of two-phase
flow. Since the matrix deformation experiences small strains only,
we do not consider changes in the porosity field owing to advection
(thus dropping the advective term from eq. 1). We approximate the
porosity time derivative either by a backward Euler or a Crank–
Nicolson (CN) scheme and formulate it as:

∂φ

∂t
= (1 − φ) ∇kv

s
k . (11)

We investigate two approaches to solve the coupled system of
non-linear equations, thus minimize the magnitude the non-linear
residuals; a direct-iterative (DI) solver workflow and a matrix-free
pseudo-transient (PT) alternative. The DI method is based on ex-
tending the M2Di single-phase Stokes flow routines (Räss et al.
2017a) for two-phase flow. The Stokes equations are here coupled
to a non-linear Darcy flow in order to compute the additional fluid
pressure. To achieve this, we collect the coefficient matrix for the
linearized operator and perform a direct-iterative solve. We rely on
Newton linearization to converge the non-linearities in this DI pro-
cedure. In contrast, the alternative PT solving strategy relies on a
matrix-free approach that does not require a matrix assembly for

the linear operator. Thus, the memory requirements scale linearly
with increasing problem size. Minimizing the residuals to reach the
solution is performed iteratively using a numerical time-stepping
(relaxation) strategy within a pseudo-time loop.

In a classical approach, solving the set of time-dependent non-
linear equations described above requires a five-step procedure
(Fig. 3a) that includes: (1) an update of the non-linearly depen-
dent parameters (listed in Section 2), (2) the evaluation of the non-
linear residual, (3) the assembly of the linear matrix operator, 4)
a solve of the linearized system, (5) updating the solution and re-
peating (1) to (5) until convergence is reached. This procedure is
then applied in a time-loop. We will follow such an approach in the
direct-iterative solver, using a decoupled linear solving strategy for
the linear system (4), and a Picard scheme for the non-linear itera-
tions. Alternatively, the five-step procedure is rearranged in a single
iteration loop that combines steps (3) to (5) in the pseudo-transient
solver type (Fig. 3b), thus simultaneously converging both the linear
and the non-linear problem for each time-step. We will demonstrate
that both PT and DI methods allow us to obtain an implicit solution
of the two-way coupled system of equations in balance at physical
time (t + 
t).

We propose three different but complementary benchmark cases
for validation of hydromechanical coupling in numerical codes: (1)
a comparison of the DI against the PT results in 2-D, (2) a benchmark
comparing numerical and exact analytical 1-D solutions of solitary
waves and (3) a convergence study of 2-D numerical solutions with
varying spatial and temporal resolutions. We provide additional
technical information regarding the DI and the PT implementations
within the Appendix A and the Appendix B, respectively. We report
the DI versus PT comparison (1) within the Section 4.3, includ-
ing a 2-D versus 3-D comparison. The two further benchmarks (2)
and (3) are reported within the Appendix C. Readers interested
in performance considerations of the various routines are directed
to the Appendix D for further details. There we utilize the effec-
tive memory throughput as metric to evaluate how efficiently the
memory-bounded PT routines perform in comparison to memory
copy. We additionally time the convergence of one non-linear time-
step of the 2-D PT and DI solvers using the wall-time metric. We
finally report the parallel efficiency of the MPI-based mutli-GPU
implementation of the 3-D PT solver.
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1596 L. Räss, T. Duretz & Y.Y. Podladchikov

Figure 2. Evolution in a 2-D configuration of the formation and propagation of high-porosity channels for three snapshots in dimensionless time. (a) to (c)
The log10 of the normalized porosity log10(φ/φ0) distribution. (d) to (f) The corresponding distribution of effective pressure pe. The initial condition used for
this simulation is the one presented in Fig. 1(b), and we used following parameters: R = ηc/ηd = 500, C = μs/(ηcφ0) = 10−1. The simulation runs until the
high-porosity channels reaches 85 per cent of the domain depth (h). The grid resolution is of 2047 × 4095 gridpoints and a few days were needed to perform
the close to 2000 time-steps on a Nvidia Titan Xp GPU. The related movie is available as supplementary material.

4.1 The direct-iterative solver

We use an analytical Newton scheme together with a DI method
which permits us to obtain accurate non-linear solutions performing
a limited number of non-linear iterations (see Appendix A1).
The numerical solution, x = [v, p̄, pf ]T , combining velocity v, total
pressure p̄ and fluid pressure pf , are iteratively corrected with the
update:

xk+1 = xk + αδxk+1, (12)

where the δ operator stands for the correction of x, α is an opti-
mization scalar and k is the non-linear iteration index. The Newton
corrections, δx = [δv, δp̄, δpf ]T , are obtained by application of the
inverse of the Jacobian matrix JHM to the current non-linear residual

f = [fv, fp̄, fpf ]T :

δxk+1 = (
JHM

k
)−1

fk . (13)

We run a line search procedure to find the optimal optimization
parameter α (0 < α ≤ 1) satisfying:

min
∣∣∣∣f(xk + αδxk+1)

∣∣∣∣
L2

(14)

In the DI context, we have to formulate and assemble the Jacobian
matrix that describes the gradients of the residuals with respect to
the solutions:

JHM = ∂fi

∂x j
=

⎡⎣Jvv Jvp 0
Jpv Jpp Jppf

Jpfv Jpfp Jpf

⎤⎦. (15)
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Hydromechanical coupling 1597

Figure 3. Algorithmic flowchart for both solving methods investigated in this study: (a) the direct-iterative solver (HM2Di code) and (b) the pseudo-transient
solver (HM2Dpt code).

The Jvv block represents the mechanical Jacobian matrix which
adresses the porosity dependence of the density in the total force
balance. The Jpp block contains information about the sensitivity
of the total pressure on the effective bulk viscosity. The Jpf block
is the Jacobian block associated with the fluid pressure Laplacian.
Jppf and Jpfp include coupling terms between p̄ and pf. The Jpv and
Jpfv blocks respectively contain information about the sensitivity
of p̄ and pf with regard to the total velocity. The Jvp block finally
represent the gradient operator.

The Newton corrections for the hydromechanical system (eq. 10)
are formulated as

δx =
⎡⎣ δv

δp̄
δpf

⎤⎦ =
⎡⎣Jvv Jvp 0

Jpv Jpp Jppf

Jpfv Jpfp Jpf

⎤⎦−1⎡⎣ fv

fp̄

fpf

⎤⎦, (16)

and are obtained via the DI method (see Appendix A2). We
abort the non-linear iteration cycle once

∣∣∣∣f∣∣∣∣
L2

< tolabs
nonlin or∣∣∣∣f∣∣∣∣

L2
/
∣∣∣∣f∣∣∣∣initial

L2
< tolrel

nonlin is satisfied. At this stage, the hydrome-
chanical equations are satisfied to the desired accuracy. We sum-
marize the main steps of this DI procedure in Fig. 3(a). We
provide the MATLAB source code as part of the M2Di rou-
tines (Räss et al. 2017a) under the name HM2Di Newton GJI.m
(https://bitbucket.org/lraess/m2di).

The employed DI method relies on the use of direct factorization
methods (e.g. Cholesky), whose time-to-solution and memory re-
quirements do not scale linearly with an increase in the number of
degrees of freedom (DoF). Further, DI solvers may be complex to
develop when the physical problem requires one to include several
non-linearities and may not be an optimal solution approach when
investigating 3-D configurations. However, the DI solution method
is rather non-sensitive to large variations of material properties.

4.2 The pseudo-transient solver

To overcome the aforementioned limitations, we propose an al-
ternative solving approach to the DI method, namely a pseudo-
transient or relaxation method. Resolving 3-D configurations on
high spatial resolution including complex non-linearities are the
main motivations to utilize pseudo-transient-based solvers, since
they are capable of addressing limitations inherent to DI type of
solvers. The relaxation method is a classical numerical technique
to solve stationary (elliptic) problems (Frankel 1950). The method
was extended in the 1960s to elastic problems (Otter et al. 1966)

and more recently to elasto-plastic (Cundall 1982) and viscoelas-
tic problems (Poliakov et al. 1993). The essence of the PT method
consists to introduce physical transient terms into steady-state equa-
tions and integrating the equations forward in pseudo-time τ . At this
point, steady-state is attained, that is the pseudo-time derivatives
vanish.

We show that the PT iterative solving strategy allows one to
avoid an expensive assembly of a matrix for the linearized oper-
ator, resulting in a matrix-free approach. The combination of PT
solvers with a matrix-free implementation of the finite-difference
method shows by construction a linear scaling between memory
usage and computed problem size (DoF). Such an approach is also
well suited for parallel execution on modern hardware accelera-
tors such as graphical processing units (GPUs), since the same
instruction set is performed at every gridpoint in the numerical do-
main. The addition of message passing interface (MPI) protocols to
the PT routines permits a non-expensive internal boundary values
exchange by point-to-point MPI communication. Thus, a close-to-
linear scaling of the routines on distributed-memory machines is
expected.

Further, a PT-based iterative solver can be designed to simul-
taneously minimize both the linear and the non-linear problem
in a single iteration loop. This is achieved by the relaxation of
the non-linearities during the iterative procedure used to converge
the linearized problem. Such an approach may significantly reduce
the overall number of iterations needed to converge one physi-
cal time-step, once optimal relaxation parameters are found. We
summarize the main steps of the PT method (Fig. 3b) and addi-
tional details regarding the PT continuation method with appli-
cation to a generic example appear in the Appendix B. We pro-
vide the MATLAB source code under the name HM2Dpt GJI.m
(https://bitbucket.org/lraess/m2di).

4.2.1 Application of the pseudo-transient continuation

The system of non-linear coupled two-phase eqs (10) can thus be
augmented with right-hand side time derivatives for momentum
(ρ∂vi/∂t), mass (β∂ p̄/∂t) and transient Darcian flow (∂pf/∂t). These
terms represent acceleration (with ρ as the inertial density), the elas-
tic bulk rheology (with β as the compressibility) and the transient
fluid pressure diffusion, respectively. A solution to the incompress-
ible two-phase flow problem requires all these transient terms to
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vanish. We express eq. (10) as:

∇ j

(
τ̄i j − p̄δi j

) − ρ̄gi = ρ
∂vi

∂τvi

,

−∇kv
s
k − p̄ − p f

ηφ (1 − φ)
= β

∂ p̄

∂τp̄
,

−∇k

[
φ
(
v

f
k − vs

k

)]
+ p̄ − p f

ηφ (1 − φ)
= ∂p f

∂τpf
, (17)

where we substitute the physical time derivatives ∂/∂t with pseudo-
transient (PT) or numerical ones ∂/∂τ . The introduced right-hand
side PT terms are equivalent to residuals; one can thus iteratively
reduce them as in the DI method.

The non-linear fields such as the effective permeability kφ /μf

appearing in the Darcy flux (eq. 10) and the bulk viscosity ηφ

(eq. 10) are evaluated at each pseudo-transient iteration k using the
current porosity, total pressure, fluid pressure solution fields. These
quantities ξ = [kφ /μf, ηφ] can be expressed as effective ξ eff and
updated using the following relaxation:

ξeff
k = exp

[(
1 − θξ

)
ln
(
ξeff

k−1
) + θξ ln

(
ξ k
)]

, (18)

where θξ (0 ≤ θξ ≤ 1) is a relaxation factor. This continuation
method progressively relaxes the effective quantities towards the
physical ones (ξ eff → ξ ) during the PT iterations.

The momentum, total pressure and fluid pressure evolution equa-
tions necessitate appropriate pseudo-time steps, 
τvi ,
τp̄ and

τpf . As we seek for the steady-state (i.e. the pseudo-time deriva-
tives vanish) one can freely define the pseudo-time steps in order to
achieve the fastest convergence rates:


τvi = min(
xi )2

2.1 ndim μs(1 + ηb)
,


τp̄ = 2.1 ndim μs(1 + ηb)

max(ni )
,


τpf = min(
xi )2

2.1 ndim kφ/μ f
, (19)

where μs stands for the scalar shear viscosity, ηb is a scalar and con-
stant numerical bulk viscosity analogy, ndim stands for the number
of spatial dimensions, 
xi and ni are the grid step sizes and number
of gridpoints in the i direction (i = x in 1-D, x, y in 2-D and x, y, z
in 3-D), respectively. In order to reduce the number of parameter,
we assume from here that ρ and β are equal to 1.0. 
τvi is the
pseudo-time step used to integrate the momentum equation. It is
constructed by multiplying the explicit Courant−Friedrichs−Lewy
condition (CFL) for viscous flow time step min(
xi )2/(2.1 ndim μs)
by 1/(1 + ηb), which includes a numerical analogy of the bulk
viscosity ηb. We use the denominator of 
τvi as numerator in the
definition of 
τp̄ leading to an empirically defined pseudo-time step
for the continuity equation. Thus, the iteration strategy is less sen-
sitive ot the physical shear viscosity μs which allows for optimal
convergence of the mechanical problem. 
τpf stands for the explicit
fluid pressure diffusion pseudo-time step satisfying the CFL condi-
tion. All three time step definition may be in addition multiplied by
a reduction factor (≤1.0), mainly due to the presence of significant
non-linearities.

Using a dimensional analysis, we confirm that the product of
ρ−1
τvi [m2 Pa−1 m−1] by the momentum balance terms [Pa m−1]
permits to retrieve increments of solid velocity [m s−1]. We apply
similar reasoning to the total continuity equation, where β−1
τp̄

[Pa.s] multiplies ∇kv
s
k [s−1] to produce dynamic pressure incre-

ments in [Pa]. We additionally highlight that kφ /μf refers to entire

field (defined for every gridpoint) and so the application of 
τpf

is analogous to rely on a diagonal preconditioner in matrix-based
solvers.

The velocity, total pressure and fluid pressure fields are updated
at each PT iteration using current values of pseudo-time steps and
residuals:

vk
i = vk−1

i + 
τvi f k
vi
,

p̄k = p̄k−1 + 
τp̄ f k
p̄ ,

p f k = p f k−1 + 
τpf f k
pf . (20)

The PT iterations are performed as for the DI method, until one of the

following criteria
∣∣∣∣f∣∣∣∣

L2
< tolabs

nonlin or
∣∣∣∣f∣∣∣∣

L2
/
∣∣∣∣f∣∣∣∣initial

L2
< tolrel

nonlin.

4.2.2 Accelerating the convergence

Unfortunately, in 1-D, the most straightforward update algorithm
(eq. 20) based on a first order scheme (∂/∂τ ) requires order of
n2 iterations to converge to the stationary solution, where n is the
total number of unknowns or gridpoints. Interestingly, a second
order scheme (α∂2/∂τ 2 + ∂/∂τ ) permits to reach enhanced con-
vergence rates when selecting the appropriate damping parameter α

(Frankel 1950). Damping acts like successive over-relaxation within
the pseudo-time iterations loop (Yang & Mittal 2014). Adding to
the current residual (f k) a significant fraction of the previous update
(gk − 1) strongly impacts the overall convergence rate. We apply
damping or over-relaxation on both the momentum and the fluid
pressure equations (eq. 20):

vk
i = vk−1

i + 
τvi gk
vi
,

p f k = p f k−1 + 
τpf gk
pf , (21)

reformulating both velocity and fluid pressure residuals as updates
g:

gk
vi

= f k
vi

+
(

1 − νv

ni

)
gk−1

vi
,

gk
pf = f k

pf + νpf gk−1
pf , (22)

where α can be expanded to (1 − νv/ni) in the velocity update gk
vi

and to νpf in the fluid pressure update gk
pf . Optimal values of νv

reside within the range (1 ≤ νv ≤ 10), where ni is the spatial grid
resolution in the direction i. Values of νpf vary between 0.7 and
0.92 depending on ni. See Tables (B1) and (B2) in the Appendix B
for further information. Such damping or over-relaxation strategy
significantly accelerate the residuals convergence rates (Cundall
1982; 1987; Poliakov et al. 1993). Notably, the elastic analogy of
this approach (Cundall & Strack 1979) is successfully used in the
FLAC geotechnical software (Cundall et al. 1993). The described
implementation refers to the code (HM2Dpt) appended to this work
as supplementary material.

4.2.3 Parallel implementation on GPUs

One underlying reason to explore iterative and matrix-free solving
approaches is such methods’ ability to deliver the best performance
in parallel implementation. Since no global matrix needs to be as-
sembled at any point in the solving procedure, all operations are
identical on each gridpoint in the computational domain. Finite-
difference derivatives are constructed by stencil operation, where
only neighbouring values accesses are mandatory. We successfully
implemented the PT solver to perform the computation on GPUs,
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using the CUDA extension to C language. GPUs are many-core
processors, initially designed to refresh screen pixels at high frame-
rates. In the CUDA framework, each small GPU core can con-
currently execute several threads. Thus, we assign to each thread
one single cell of the computational domain, making it possible to
perform in parallel the same operation simultaneously on the en-
tire domain. A careful implementation of synchronization barriers
avoids race conditions and prevents reading from an array that is
not yet fully updated.

Further parallelism can be achieved by porting the single-GPU-
based routines to run on several GPUs simultaneously, using the
message-passing interface (MPI) library. Thus, we enable the rou-
tines to be executed on distributed-memory machines, multiple-
GPU workstations and the largest GPU-based supercomputers. Such
an approach is particularly relevant for high resolution 3-D compu-
tations involving more than 1 billion gridpoints (e.g. Omlin et al.
2017b; Räss et al. 2018). Further performance considerations are
reported within the Appendix D.

4.3 Comparison of the DI and PT solvers

To validate the two solving strategies, we propose a set of benchmark
simulations. We aim to evaluate the solution’s sensitivity on both
the non-linear residual threshold and the spatial resolution. The
results we report in this section use the configuration described in
Section 3 as initial conditions. The simulation runs until the high-
porosity channel, also called porosity wave, reaches 85 per cent of
the domain depth. In this study, we report results for the PT solver
using single-precision arithmetic performed on a Nvidia GTX Titan
Xp (Pascal) GPU. The DI solver is an extension to the M2Di routines
and is implemented in MATLAB, running on an Intel i5 processor
using double-precision arithmetic.

4.3.1 The influences of non-linear iterations

The influences of the non-linear threshold are more pronounced in
the PT than in the DI approach (Fig. 4). Both the linear and the
non-linear residuals are considered in the PT approach, while in
the DI solving procedure, each non-linear step encounters an accu-
rate solve of the linearized problem. The reported end-members of
tested absolute non-linear tolerance (tolnonlin) start at tolnonlin = 10−3

and spread over five orders of magnitude for the DI solver, and over
two for the PT solver. Since the PT simulations are performed on a
GPU using single-precision arithmetic, the lowest achievable value
is tolnonlin = 10−5 (Fig. 4c). The double-precision arithmetic used
in the MATLAB framework for the DI solve allows the absolute
non-linear tolerance tolnonlin = 10−8 (Fig. 4f). At values of tolnonlin

= 10−3, both PT and DI solvers show deviations from converged
solutions, even though the DI solver shows less dramatic deviation
than the PT solver (Figs 4b and e, respectively). The line plots show
the evolution over dimensionless time of the maximum normalized
porosity values (Fig. 4a) and for the vertical location of the max-
imal porosity region (Fig. 4d). The PT results (continuous lines)
show important discrepancy as a function of tolnonlin, while the DI
results (square and triangular markers) are less affected. The major
outcome of this sensitivity analysis reports single-precision (tolnonlin

= 10−5) PT results that match the best-converged double-precision
DI (tolnonlin = 10−8) results. Discrepancy in the non-converged runs
(tolnonlin = 10−3) arises from the fact that the DI solver type re-
lies on a converged linearized problem for each non-linear step. In

contrast, both linear and non-linear residuals are converged simul-
taneously in the PT workflow, resulting in different realizations for
non-converged simulations.

4.3.2 The influence of spatial resolution

The continuous increase in computing power allows high spatial res-
olution simulations to become feasible within reasonable execution
times. Investigating the impacts of resolution increase on a given
problem allows us to assess whether such high resolution is required
and allows us to find the optimal resolution, leading to a physically
converged solution. Here, we report the influences of variations in
grid resolution for two-phase flow using both PT and DI solver
types. The three tested resolutions show different results, but tend
to converge towards a stable solution while increasing the number of
gridpoints (Figs 5). Both the PT (Figs 5b–e) and DI (Figs 5g–i) runs
clearly confirm that high spatial resolution is mandatory in order to
accurately converge towards a stable solution. The line plots show
the evolution over dimensionless time of the maximum values of
normalized porosity (Fig. 5a) and the vertical location of the maxi-
mal porosity region (Fig. 5f). In contrast to the non-linear tolerance
benchmark, the spatial resolution test shows identical behaviour for
both DI and PT solving approaches; thus, the markers (DI solver)
are located on top of the lines (PT solver) for all tested resolutions
(Figs 5a and f).

We confirm the convergence of the numerical results towards a
stable two-channels morphology by providing a very high resolu-
tion simulation involving 2048 × 4096 gridpoints (Fig. 5e). While
the two-channel morphology survives, some second order features
differ between the two highest reported grid resolutions (Figs 5d and
e), such as the secondary channels sourcing at the lower bound of the
initial elliptic porosity perturbation. The very high resolution run
(Figs 5e) features four times more gridpoints within both the hori-
zontal and vertical directions (in comparison to runs from Figs 5d
and i), increasing by the same factor 4 the number of gridpoints per
compaction length, the latter governing the channel width. The high-
est reported numerical grid resolution (Figs 5e) cannot be achieved
using the DI approach, due to the non available RAM requirements.

4.3.3 A comparison of 2-D and 3-D runs

We extended the two-phase flow-solver to compute the coupled
physics in three spatial dimensions. Thus, the resulting 3-D rou-
tines are based on the PT matrix-free implementation and combine
CUDA C to MPI running in parallel on GPU-based distributed-
memory supercomputers. The resulting final stages are reported
(Fig. 6) for three different resolutions for both the 2-D and 3-D com-
parative resolutions. The 3-D configuration is identical to the 2-D
initial configuration, with an additional y dimension being equiva-
lent to the x dimension (as described in Fig. 1). The 2-D ellipse is
converted to a 3-D ellipsoid, with an identical major/minor axis ra-
tio. A cross-section in the middle of the y-axis (at Ly/2) is extracted
from the 3-D cube in order to be compared to the 2-D configuration.
The results clearly show a significant yet systematic discrepancy be-
tween the 2-D and the 3-D simulations. While the 2-D simulation
results (Figs 6b–d) tend towards a stable solution that shows two thin
distinct channels, the 3-D analogous runs (Figs 6f–h) organize high-
porosity regions into one single and larger channel. This systematic
difference in shape mainly result from the 3-D nature of the inves-
tigated process, as discussed in Omlin et al. (2017b). In contrast to
other strain localization mechanisms such as viscous shear-heating
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Figure 4. Non-linear accuracy of the DI (HM2Di code) and PT (GPU-based) solving approaches for two sets of non-linear tolerances (tolnonlin). (a) The
normalized maximal values of porosity (φmax/φ0) and (d) the vertical distance from initial perturbation (
h(φmax)), both plotted against dimensionless time
(t/τ c). The lines represent the PT solver and the markers the DI solver. The corresponding 2-D final steps are reported for the PT solver for the poorly (b)
and accurately (c) converged results, and by analogy (e) and (f) for the DI method, respectively. Since the PT implementation is computed on GPUs using
single-precision arithmetic, the lowest achievable non-linear tolerance is tolnonlin = 10−5. The colour axis represents the log10 of the normalized porosity
(φ/φ0).

or folding and necking, porosity waves cannot be assumed infinite
in the third (out-of-plane) dimension when computed in 2-D. The
resulting drainage area and available fluid fluxes in 3-D are much
more important. Thus, the increased availability of fluid already
in the initial condition impacts the overall dynamic. The results’
dependence on the number of spatial dimensions must be carefully
assessed, since implications in terms of transported volume of fluids
and propagation speeds are not negligible.

5 R E S U LT S

5.1 Hydromechanical fluid focussing in 2-D: a systematic
study

We performed a systematic investigation to understand the param-
eters that influence key properties of the two-phase flow channels,
such as their propagation velocity and their shape. We performed
more than 400 high-resolution forward 2-D runs, varying the bulk
viscosity decompaction over compaction ratio ηd/ηc and the bulk to

shear viscosity ratio μs/(ηcφ0). For each simulation, the computa-
tional domain size was discretized in 512 × 1024 gridpoints, and the
simulation lasted until the channel reached 85 per cent of the domain
depth. We performed single-precision computations on a Nvidia
Titan Xp GPU using single-precision arithmetic. The achieved non-
linear convergence threshold was 10−5 for every run. We realized
the entire systematic sequentially on a single GPU, which took about
one week for the reported resolution. For each simulation, we mon-
itored the maximal velocity of the upward-propagating porosity
wave max (vwave), the maximal Darcy flux normalized over back-
ground Darcy velocity max

(
vDarcy

y

)
/v

Darcy
BG , and both the minimal

and maximal solid velocities min(vs
y)/vDarcy

BG and max(vs
y)/vDarcy

BG ,
respectively (Fig. 7). The wave velocity vwave stands for the ratio
of vertical displacement of the maximal value of porosity within
the channel over time. The background Darcy velocity is the one
defined for the background porosity fraction φ0. The porosity wave
propagation velocity reflects the time needed to propagate the tip of
the high-porosity channel over a given vertical distance. The 2-D
systematic maps report an increasing wave velocity, while decreas-
ing both the decompaction over compaction bulk viscosity ratio
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Hydromechanical coupling 1601

Figure 5. Sensitivity analysis of the results on the grid resolution for both the DI (HM2Di code) and the PT (GPU-based) solving approaches. We report (a)
the normalized maximal values of porosity (φmax/φ0) and (f) the vertical distance from initial perturbation [
h(φmax)], both plotted against dimensionless time
(t/τ c) for three tested resolutions. The lines represent the PT solver and the markers the DI solver, both converged to tolnonlin = 10−5 using single (PT) and
double (DI) precision arithmetics. We report the corresponding 2-D final steps for the PT solver for the low- (b), medium- (c) and high- (d) resolution runs,
and - by analogy - (g), (h) and (i) for the DI method. The PT solver enables to compute the 2-D solution on a very high resolution grid (e), thus confirming the
spatial convergence. The colour axis represents the log10 of the normalized porosity (φ/φ0).

ηd/ηc and the bulk to shear viscosity ratio μs/(ηcφ0). The normal-
ized Darcy flux partly follows a similar trend, while both the solid
minimum and maximum velocities are mainly influenced by the
bulk to shear viscosity ratio.

5.2 Selected end-member runs

Four end-member simulations of this systematic study are high-
lighted, providing insights into the 2-D spatial distribution of nor-
malized porosity (Fig. 8), the vertical fluid flux (Fig. 9) and the
non-linear bulk viscosity (Fig. 10). We report the 2-D field and
plot the last time-step for every simulation, where the location and
the symbols correspond to those on the systematic maps (Fig. 7).
The selected runs show important variations in the reported end-
member combination of parameters, leading to significant changes
in propagation regimes. For decompaction over compaction bulk
viscosity ratios and bulk to shear viscosity ratios close to 1, the
initial high-porosity anomaly propagates upwards in a blob-shaped
soliton (circle symbol). The opposite end-member combination of
parameters (star symbol) triggers the formation of sharply defined
high-porosity channels (Fig. 8) with locally high fluid fluxes (Fig. 9)
and extremely localized low values of non-linear bulk viscosity
(Fig. 10). Note that the colour axis is different for every subplot and
is therefore reported, since the important changes in regimes in-
duce large variations in the parameter range and may saturate some
plots.

5.3 Data-collapse

Finally, we explain the maximal wave velocity values of the entire
systematic study as a function of the combined decompaction over
compaction bulk viscosity ηd/ηc and bulk to shear viscosity ratios
μs/(ηcφ0). A naive linear combination of the two parameters shows
diverging trends and does not explain the trend of the maximal
wave velocities (Fig. 11a). A more elaborate combination of the
two investigated parameters, as reported in the x-label (Fig. 11b),
shows the relative importance of ηd/ηc and μs/(ηcφ0) on explaining
the increasing wave velocity max(vwave). The reported data can be
cast into three major regimes. Most runs exhibit a single-channel-
like mode, tending towards more pronounced focussing and faster
propagation rates with an increase in the problem’s non-linearity.
At some critical point, the single-channel modes transform into a
two-channel-like motion. The impact of this macroscopically dif-
ferent behaviour is the shift in the reported maximal velocity values
from the displayed fitting curve y = 370 x0.22. This major change
in propagation regime reflects the underlying non-linearities of the
investigated coupled physics. With an increasing viscosity ratio, the
effective compaction length (or characteristic length scale) tends to
reduce, developing narrower channels. The observed shift in maxi-
mal wave velocities is also reflected in the maximal values of fluid
fluxes (Fig. 7).

The fitting formula 1/ [ηd/ηc + 0.025 ηc φ0/μs] suggests that
the the maximal wave velocity is mainly function of the ηd/ηc

ratio—the decompaction weakening—while only a small fraction
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1602 L. Räss, T. Duretz & Y.Y. Podladchikov

Figure 6. Sensitivity analysis of the PT (GPU-based) results on the grid resolution for both the 2-D and the 3-D implementations. (a) the normalized maximal
values of porosity (φmax/φ0) and (d) the vertical distance from initial perturbation [
h(φmax)], both plotted against dimensionless time (t/τ c) for three tested
resolutions. The blue coloured lines represent the 2-D configuration and the red coloured lines the 3-D configuration. We report the corresponding 2-D final
steps for the PT solver for the low- (b), medium- (c) and high- (d) resolution runs. The analogous 3-D configuration results (f), (g) and (h) represent a slice of
the 3-D domain at Ly/2. The grid resolution in the y-direction is identical to the resolution in the x-direction for the 3-D runs. Thus, the high-resolution 3-D
runs involve more than 2.5 × 108 gridpoints. The colour axis represents the log10 of the normalized porosity (φ/φ0).

is sensitive to the bulk to shear viscosity ratio. These results suggest
that volumetric deformation and tensile failure of the considered
environments may primary dictate the propagation dynamic of the
channels. Moreover, the maximal wave ascent velocity augments
in a non-linear fashion together with an increase in decompaction
weakening. This behaviour reflects that regimes where high porosity
channels propagate at elevated speed exhibit a significant asymme-
try in compaction over decompaction of the porous medium.

5.4 Extension to power law shear viscosity in 3-D

The two-phase flow model we rely on includes three important rhe-
ological parameters to quantify the bulk and shear viscous creep
behaviour of the porous medium and the pore connectivity, namely
ηφ , μs and kφ . We systematically investigated the non-linear de-
pendance of ηφ on pe and utilized a Carman–Kozeny power-law
relation to define kφ . We assumed the linear solid shear viscosity
μs to remain constant in space and time (linear); this permitted
us to discriminate between several potential non-linear feedbacks
ultimately impacting the evolution of the porosity distribution.

However, viscous shear deformation of rocks may actually be sen-
sitive to variations in strain-rate and temperature. The rather shallow
environments our study targets may be considered as isothermal due
to their shallow location justifying not considering thermal effects
at this stage. However, strain rate dependance of shear viscosity

will have to be considered as important non-linear feedback within
shallow environments such as sedimentary basins. We here provide
a first 3-D simulation at very high numerical resolution (2 billion
gridpoints) including a power law strain rate dependant solid shear
viscosity μs expressed as:

μs = 1

ε̇ I I
n−1

n + 1
μ0

, (23)

where n = 3 is the power law exponent, μ0 is the reference vis-
cosity for negligible strain rates and where ε̇I I = √

1/2 ε̇i j ε̇i j is
the square root of the second invariant of the deviatoric strain rate
tensor. We rely on the continuation method introduced for kφ /μf

and ηφ (eq. 18) in order to progressively relax the effective non-
linear shear viscosity towards the physical one μs during the PT
iterations.

Investigating the first order features confirms the sustained occur-
rence of the high-porosity channels when considering a strain-rate
dependent shear rheology. The upward-propagating porosity waves
triggers highly localized matrix strain rates, which tend to locally
lower the background shear viscosity by about one order of magni-
tude (Fig. 12a); this provides a physical mechanism to locally reduce
the values of the μs/(ηcφ0) parameter investigated in the system-
atic study. The non-linear bulk viscosity ηφ is sensitive to both the
porosity averaged solid shear viscosity μs and the effective pressure
pe. In the present scenario, μs is also sensitive to the matrix strain
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Hydromechanical coupling 1603

Figure 7. Systematic study of decompaction’s relative importance over compaction bulk viscosity 1/R = ηd/ηc (eq. 8) and shear over bulk viscosity C =
μs/(ηcφ0) ratios (eq. 7). In the upper left-hand panel, we report maximal non-dimensional wave velocities max (vwave), scaled by the characteristic length (δc)

and time (τ c); in the upper right-hand panel, maximal Darcian fluxes max
(
v

Darcy
y

)
/v

Darcy
BG ; in the lower left-hand panel, the minimal solid velocities values

min(vy
s)/vDarcy

BG ; in the lower right panel, the maximal solid velocities values max(vy
s)/vDarcy

BG . The symbols represent four end-member runs for which spatial

distribution of log10(φ/φ0), log10

(
max

(
v

Darcy
y

)
/v

Darcy
BG

)
and log10(ηφ /ηc) are reported in Figs 8, 9 and 10, respectively. The forward model used for this

systematic study has a grid resolution of 511 × 1023 gridpoints in 2-D.

rate. The spatial distribution of (ηφφ0)/μs ratio (Fig. 12b) however
confirms a more pronounced dependence of ηφ on pe. This obser-
vation is in good agreement with the outcome of the systematical
flow regimes investigated in 2-D.

6 D I S C U S S I O N

6.1 The genesis of high-porosity channels

Numerically accurate resolving of coupled and non-linear two-
phase flow and including decompaction weakening as focussing
mechanism allows one to predict the spontaneous formation and

propagation of high-porosity channels (Fig. 2), developing from an
initial region of elevated porosity, such as a fluid reservoir or a region
containing partial melt. The buoyant fluid generates forces on the
upper part of the reservoir, leading to increase in fluid pressure. The
effective pressure decreases accordingly and decompaction occurs,
permitting the fluid anomaly to move upwards. Pressure-sensitive
bulk rheology further results in lower bulk viscosity values in the
regions affected by decompaction, leading to enhanced upward-
migration. Decompaction weakening is responsible for orders of
magnitude faster decompaction (opening of pores) at the top of the
channels compared to compaction (closure of pores) at the tail of the
channel. The fluid pressure gradient decreases from regions outside
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1604 L. Räss, T. Duretz & Y.Y. Podladchikov

Figure 8. We report spatial distribution of normalized porosity log10(φ/φ0)
for the end-member runs in the explored parameter space (Fig. 7). The final
stage (i.e. when the porosity wave reached 85 per cent of the domain depth
h) is shown with individual colour axes for every parameter combination to
encounter the important variations between the different regimes.

the channels towards the inside of the channels, resulting in fluid
drainage from the surrounding regions affected by the presence of
a propagating channel. This mechanism enables the self-sustenance
of the propagation of the porosity waves and results in fluid de-
pletion in the rims of the channels. To ensure mass-balance, those
rims thus compact and turn into high viscosity regions. Thus, the
channels’ structure may remain detectable even if the channels are
dormant.

Both the channel spacing and the channel width are mainly con-
trolled by the compaction length. Since we use a dimensionless
implementation of the two-phase flow equations introducing char-
acteristic scales (eq. 9), we can post-process the model outcome
for various settings as long as the dependant variables conserve
their respective ratios with regard to the defined scales. Thus, the
three scales (eq. 9) can be used to predict the effective size and
propagation speed of high-porosity channels for different reservoir

Figure 9. We report spatial distribution of normalized vertical Darcian flux

log10

(
v

Darcy
y /v

Darcy
BG

)
for the end-member runs in the explored parame-

ter space (Fig. 7). The final stage (i.e. when the porosity wave reached
85 per cent of the domain depth h) is shown with individual colour axes for
every parameter combination to encounter the key variations between the
different regimes.

and metamorphic environments, ranging from kilometre to metre
size features, with propagation velocities in the range of metres per
year in low-permeable shales to kilometres per years in permeable
sandstones (Table 2).

6.2 Prediction of localized flow regimes

The power law relationship between maximal wave velocities and
the combination of viscosity ratios (Fig. 11b) allows one to give
an estimate on potential flow enhancement for relevant and well-
defined rheological parameters. Further, a closer analysis of the var-
ious maximal velocity values shows a distinct trend, supporting the
wave-like behaviour of porosity waves. The maximal dimensionless
wave velocity is close to 103. The maximal recorded vertical fluid
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Hydromechanical coupling 1605

Figure 10. We report spatial distribution of normalized bulk viscosity
log10(ηφ /ηc) for the end-member runs in the explored parameter space
(Fig. 7). The final stage (i.e. when the porosity wave reached 85 per cent
of the domain depth h) is shown with an individual colour axis for every
parameter , to encounter the key variations between the different regimes.
Notably, the colour axes are reversed for this figure; the red values represent
low bulk viscosities—enhanced ability for fast viscous matrix deformation.

fluxes are about one order of magnitude lower, with values of close
to 140. The solid velocities are even one order of magnitude lower
than the fluid fluxes; thus, two orders of magnitude lower than wave
velocities. This clearly shows that fast-propagating high-porosity
channels trigger minor solid displacement and moderate to high
fluid fluxes. Our results highlight that the wave velocity is not the
combination of the solid and fluid velocities, but the result from a
more composite behaviour; the relatively small solid strain rates al-
low for local (de)compaction, while local fluid fluxes result from the
active drainage of the passing wave. This mechanism continuously
feeds the propagating wave which is thus growing over time. The
fluid velocity within the wave’s top part is slightly slower compared
to the maximal wave motion speed. Reason for this discrepancy is

that the wave is not only driven by the fluid contained in its inte-
rior but benefits from the active drainage. It is interesting to note
the similarity in maximal positive and negative values for the solid
velocity components’ characteristics for percolation flow instead of
circulation observed in diapirism regimes (Scott 1988).

Decompaction weakening is the principal driver owing to flow
channeling in the reported results, suggested to be a viable mecha-
nism leading to the formation of fluid escape pipes (Böttner et al.
2019). Porosity waves with a symmetric bulk rheology would fail
to produce the vertically elongated tubular features strikingly well
reproducing the subsurface flow features mapped and interpreted
as fluid escape pipes (e.g. Løseth et al. 2011; Plaza-Faverola et al.
2011). We quantify by R = ηc/ηd the level of asymmetry between
compaction and decompaction creep regime; this parametrization
reflects the occurrence of tensile micro-fractures developing in the
regime where the fluid pore pressure pf overcomes the mean stress
of the fluid-filled porous matrix p̄. Comparing the decompaction
weakening model versus results obtained using a viscoplastic ma-
trix with dilatant brittle failure (Yarushina et al. 2015b, Section 3.4)
suggests that a ratio of ηc/ηd ≈ 500 corresponds in a first order to
a tensile failure of the porous matrix at Y/pc = 0.1, where Y stands
for the failure property of the rock, here at about 10 per cent of the
characteristic pressure pc.

6.3 Relevance of the hydromechanical model for
geological applications

The present study aims at an in-depth investigation of non-trivial
outcomes owing to hydromechanical coupling. We, for the first time,
implement the consistent set of two-phase flow equations proposed
by Yarushina & Podladchikov (2015a) in 2-D and 3-D and on very
high spatial and temporal resolution. Within this contribution we
systematically investigate the ability of diffusive fluid flow coupled
to incompressible viscous porous matrix deformation to generate
high-porosity channels in a spontaneous fashion without the need
of any external and additional mechanisms. We report an enhanced
focussing, narrower channels and faster wave velocities the lower
the ratio μs/(ηcφ0) is. In fact, some other physical processes may
significantly influence the dynamic of the system, such as strain
rates, temperature or chemical composition. The multiphysics cou-
plings among those additional processes may further impact the
shear and bulk viscosity. For exemple, a rise in temperature may
tend to lower viscosity activating enhanced creep of the porous ma-
trix. Chemical reactions may either consume or generate fluids and
thus modify the mineral assemblages ultimately affecting the petro-
physical properties of rocks. This study clearly suggests enhanced
localized and focussed fluid flow for decreasing values of bulk and
shear viscosity (Fig. 11).

The current model does yet not consider temperature neither
chemical effects and our results mainly target shallow environ-
ments such as weakly consolidated sedimentary stacks saturated
with non-reactive pore fluids. Nonetheless, the considered shallow
rock formations we use as natural laboratory may experience consid-
erable far-field tectonic stresses. We therefore augmented the model
to account for strain rate dependent non-linear shear viscosity. Our
preliminary 3-D results suggest the power law shear viscosity μs

(for n = 3) to act as a positive feedback mechanism that tends to
lower μs in region of localized high strain rates, such as channels’ tip
(Fig. 12a). Far-field tectonic regimes may potentially play a key role
in the channels and related pockmarks occurence leading towards
preferred alignment patterns (Plaza-Faverola & Keiding 2019). We
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1606 L. Räss, T. Duretz & Y.Y. Podladchikov

Figure 11. Wave velocity represented as function of combined systematically varied parameters, the bulk viscosity and bulk to shear viscosity ratios. (a) Wave
velocity (vwave) plotted against linear combination of bulk decompaction ηd and solid shear viscosity μs normalized over compaction viscosity ηc. (b) Wave
velocity after data collapse: the formula shown as x-label allows us to collapse the entire systematic study result onto a single power law trend y = 370 x0.22.
The three regimes are highlighted by colours, ranging from diffuse blobs to single-focussed channels, and finally, splitting into two channels towards the x-axis
range end.

Figure 12. High-resolution numerical simulation of propagating high-porosity channels in 3-D. We report (a) the strain rate-dependant non-linear solid shear
viscosity normalized over background porosity (μs/φ0) and (b) the non-linear bulk viscosity normalized over solid shear viscosity values (ηφφ0/μs). The
initial condition used for this simulation is presented in Fig. 1(a) with R = ηc/ηd = 500 and C = μs/(ηcφ0) = 1. The numerical resolution is 1023 × 1023
× 2048 gridpoints in 3-D, which represents a total of 2 × 109 gridpoints. The subplots magnifie the central part of the computational domain (290 × 290
× 760 gridpoints) and provide a detailed view of (a) regions where elevated strain rates exhibit a close to two orders of magnitude decreases in solid shear
viscosity values (of and around the developing fluid-conducting chimneys) and (b) the spatial distribution of bulk to shear viscosity ratios showing low values
concentrated at the tip of the channels, highlighting the non-linear dependance of both bulk and shear viscosity on the effective pressure (pe). The simulation
took three weeks to perform the close to 104 time-steps on 128 Nvidia Titan X GPUs, using the entire octopus GPU-based supercomputer designed by the
Scientific Computing Group and hosted by the Institute of Earth Sciences at the University of Lausanne. The tube-shaped isosurface contours 1.5 order of
magnitude permeability increase from background values. The related movies are available as supplementary material.

preliminary investigate far-field extension, compression and strike-
slip regimes within our 3-D numerical model in order to evaluate
the impact of those major tectonic regimes on the high-porosity
channel distribution (Figs 13a and b). We report that the channel
distribution is sensitive to applied deformation regimes, while the
channel geometry remains mostly unaffected (Figs 13a and b). 2-D
vertical (Fig. 13c) and horizontal (Fig. 13d) cross-section for all

three far-field regimes clearly illustrate that the vertical channel
propagation (i.e. the vertical velocity) is maximal in extensional
regimes, intermediate in shear regimes, and minimal in compres-
sional regimes. Further, vertical channel connectivity seems max-
imal in horizontal shear regimes. Total pressure values reflect the
mean stress state in the model. The results clearly show deviation
from lithostatic pressure conditions as reported by the total pressure
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Hydromechanical coupling 1607

Figure 13. Total pressure ( p̄) distribution after dimensionless time t = 1.59 × 10−2 for the 3-D configuration described in Fig. 12, as a function of three far-field
tectonic regimes, namely extension along the x-axis, compression along the x-axis, and shear in the xy horizontal plane. (a) Overview of the high-porosity
channels’ distribution. (b) Zoom-in on the region of interest, showing p̄ values interpolated onto an isosurface of 1.5 order of magnitude increase in permeability.
(c) yz slice at Lx/2 of the (b) plot. (d) xy slice at given depth h as shown on (b). The related movie is available as Supporting Information.
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Table 2. Scaling of the numerical results to representative values for reservoir rocks (Räss et al. 2014, 2017b; Makhnenko & Podladchikov 2018, and references
therein) and crustal environments (McKenzie 1984).

Desription Shale Limestone Sandstone Crustal rocks Units

Bulk viscosity (ηφ ) 1013 1015 1016 1016 [Pa.s]
Permeability (kφ ) 10−19 10−16 10−14 10−13 [m2]
Fluid viscosity (μf) 8 × 10−4 8 × 10−4 8 × 10−4 1 [Pa.s]
Channel width 0.1−1 10−100 100−500 100−500 [m]
Propagation speed 0.3 300 104 100 [m yr−1]

p̄ colormap. Changes in non-lithostatic pressure conditions in time
and space may have major implications related to hydrochemical
and reactions, such as methane hydrate expulsion within sedimen-
tary basins.

We believe that these first results should be followed up with a
detailed systematic analysis investigating the effects of shear de-
formation on the high-porosity channel formation and propagation
before further building complexity into the model, such as adding
metamorphic reactions, thermal effects and chemistry. We specu-
late however that these additional diffusive (non)linear multiphysics
couplings may further enhance localization and a non-intuitive sys-
tem behaviour (e.g. Omlin et al. 2017a), and require too be rigor-
ously addressed in future studies.

6.4 Benefits and limitations of the pseudo-transient
method

The pseudo-transient and direct-iterative solvers implemented both
allow us to accurately resolve the non-linear coupled two-phase flow
physics, in reasonable wall-time. Modern CPUs and the current
amount of RAM present on modern desktop systems enable to
compute numerical domains of up to 2 million gridpoints using
DI solvers that are robust with the ability to handle large contrasts
in material properties such as variable viscosity. Although the DI
solver types are efficient in addressing 2-D models, such type of
algorithms which necessitate the assembly of a large coefficient
matrix may not be the optimal candidate when targeting very high-
resolution 3-D configurations.

The current development of hardware accelerators such as GPUs
enables new possibilities for iterative methods. The massive num-
ber of arithmetic units of many-core computing devices such as
GPUs allows one to perform computations at low costs. Further,
the constant increase in memory bandwidth enables rapid mem-
ory transfers between on-chip memory and computing cores. Thus,
these latest hardware developments put matrix-free iterative meth-
ods in the spotlight and make PT solvers fully competitive with
matrix-based solvers, even on 2-D configurations (see Appendix D
for additional details).

Since PT-based solvers rely on finite-difference stencils to eval-
uate partial derivatives, the memory access patterns remain fairly
local and the memory usage grows linearly with increasing problem
size. The addition of point-to-point MPI communication directly en-
ables the PT solvers to run on distributed-memory supercomputers,
mandatory when targeting high-resolution 3-D calculations. More-
over, appropriate communication and computation overlap permits
to achieve close-to-optimal parallel efficiency. Thus, we were able
to produce the 3-D results (Section 5.4) in less than 3 weeks, calcu-
lating more than 104 time-steps on more than 2 × 109 gridpoints.
We involved 128 Titan X GPUs available in the octopus GPU-based

supercomputer, hosted by the Swiss Geocomputing Centre at the
Institute of Earth Sciences, University of Lausanne (Appendix D).

In summary, the key benefits of the PT method are as follows: (i)
we obtain identical results as the DI method, (ii) the implementation
of PT solver types using the finite-difference method is straightfor-
ward and results in short, readable codes (see the MATLAB PT
codes in the supplementary material), (iii) the GPU implementation
of PT solvers is fully competitive compared to the DI approach, and
iv) PT solvers are a viable option when investigating 3-D config-
urations; further, MPI parallelization can readily be implemented
for distributed-memory parallelization. Finally, the approach’s lim-
itations reside mainly in deprecated convergence rates for large
contrasts in material properties over narrow spatial extent and the
need for additional effort finding optimal numerical parameters for
highly non-linear configurations.

7 C O N C LU S I O N S

We successfully developed 2-D and 3-D routines to solve cou-
pled hydromechanical problems. We benchmarked both the pseudo-
transient-based and direct-iterative-based two-phase flow-solvers
and report their relative sensitivity on the non-linear threshold and
the numerical grid resolution. We conclude that both methods are
in agreement, since the GPU-based pseudo-transient matrix-free
solver and the CPU-based direct-iterative solver unveil identical
results. We herewith confirm similar trends as observed in a com-
panion study investigating thermo-mechanical coupling in 2-D and
3-D (Duretz et al. 2019).

We further highlight the strong impacts of non-sufficient grid
resolution and non-linear threshold on physical results after a large
number of time-steps. We performed a systematic investigation of
hydromechanical coupled flow in deforming porous media. The
outcome of the data collapse is a scaling power law that predicts
the propagating wave velocity as a combination of viscous bulk and
shear rheology.

We also show that the MPI-based and GPU-based implementation
of the PT routines allowed us to realize extremely high-resolution
3-D simulations involving over 2 × 109 gridpoints with a parallel ef-
ficiency close to 1. This significant increase in affordable resolution
enabled us to tackle mega-pixel resolution in all three dimensions.
The 3-D results provide novel insights towards better understanding
the physics of chimney formation. Predicting with high accuracy
the potential localization of flow in the shallow subsurface may sup-
port reliable risk assessment related to underground waste storage
operations (e.g. Räss et al. 2018).

A C K N OW L E D G E M E N T S

The authors thank Nina Simon, Stefan Schmalholz and Viktoryia
Yarushina for enlightening discussion during the entire project, and

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/218/3/1591/5497299 by G

EO
SC

IEN
C

ES-R
EN

N
ES C

N
R

S user on 12 Septem
ber 2019



Hydromechanical coupling 1609

are grateful to Samuel Omlin for his participation in the early stage
design of the HPC application related to the current research. We
acknowledge Philippe Logean for his constant support and devel-
opment with the GPU-based octopus supercomputer. We thank two
anonymous reviewers which provided valuable feedback that per-
mitted to significantly enhance the focus of the manuscript.

R E F E R E N C E S
Ague, J.J., 2011. Extreme channelization of fluid and the problem of element

mobility during Barrovian metamorphism, Am. Mineral., 96(2-3), 333–
352.

Aharonov, E., Whitehead, J., Kelemen, P. & Spiegelman, M., 1996. Chan-
neling instability of upwelling melt in the mantle, Oceanogr. Lit. Rev.,
8(43), 798.

Appold, M.S. & Nunn, J.A., 2002. Numerical models of petroleum migration
via buoyancy-driven porosity waves in viscously deformable sediments,
Geofluids, 2(3), 233–247.

Barcilon, V. & Richter, F.M., 1986. Non-linear waves in compacting media,
J. Fluid Mech., 164(1), 429.

Baud, P., Schubnel, A. & Wong, T.-F.. 2000. Dilatancy, compaction, and fail-
ure mode in solnhofen limestone, J. geophys. Res.: Solid Earth, 105(B8),
19289–19303.

Berndt, C., 2005. Focused fluid flow in passive continental margins, Phil.
Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci., 363(1837), 2855–2871.
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McKee, S., Tomé, M., Ferreira, V., Cuminato, J., Castelo, A., Sousa, F.
& Mangiavacchi, N., 2008. The MAC method, Comput. Fluids, 37(8),
907–930.

McKenzie, D., 1984. The generation and compaction of partially molten
rock, J. Petrol., 25(3), 713–765.

Miller, S.A., van der Zee, W., Olgaard, D.L. & Connolly, J. A.D., 2003.
A fluid-pressure feedback model of dehydration reactions: experiments,
modelling, and application to subduction zones, Tectonophysics, 370(1),
241–251.

Minakov, A., Yarushina, V., Faleide, J.I., Krupnova, N., Sakoulina, T., Der-
gunov, N. & Glebovsky, V., 2017. Dyke emplacement and crustal structure
within a continental large igneous province, northern Barents Sea, Geol.
Soc., Lond., Spec. Publ., SP460.4.

Minkoff, S.E., Stone, C., Bryant, S., Peszynska, M. & Wheeler, M.F., 2003.
Coupled fluid flow and geomechanical deformation modeling, J. Petrol.
Sci. Eng., 38(1-2), 37–56.

Morency, C., Huismans, R.S., Beaumont, C. & Fullsack, P., 2007. A numeri-
cal model for coupled fluid flow and matrix deformation with applications
to disequilibrium compaction and delta stability, J. geophys. Res.: Solid
Earth, 112(B10), doi:10.1029/2006JB004701.

Oliveira, B., Afonso, J.C., Zlotnik, S. & Diez, P., 2017. Numerical modelling
of multiphase multicomponent reactive transport in the Earth’s interior,
J. geophys. Int., 212(1), 345–388.

Olson, P. & Christensen, U., 1986. Solitary wave propagation in a fluid
conduit within a viscous matrix, J. geophys. Res.: Solid Earth, 91(B6),
6367–6374.

Omlin, S., 2017. Development of massively parallel near peak performance
solvers for three-dimensional geodynamic modelling., Ph.D. thesis, Uni-
versity of Lausanne.

Omlin, S., Malvoisin, B. & Podladchikov, Y.Y., 2017a. Pore fluid extraction
by reactive solitary waves in 3-D, Geophys. Res. Lett., 44 (18), 9267–9275.
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A P P E N D I X A : T H E D I R E C T - I T E R AT I V E
M E T H O D

A1 The direct-iterative scheme

The implicit (or semi-implicit) discretization of the hydromechani-
cal equations result in a linear system of equations such as:

KHM x = b, (A1)

and couples the different solutions variables v, p̄, pf as following:⎡⎣Kvv Kvp 0
Kpv Kpp Kppf

0 Kpfp Kpf

⎤⎦
︸ ︷︷ ︸

KHM

⎡⎣ v
p̄
pf

⎤⎦
︸ ︷︷ ︸

x

=
⎡⎣bv

bp̄

bpf

⎤⎦
︸ ︷︷ ︸

b

(A2)

where the matrix KHM contains discrete coefficients (staggered fi-
nite differences). The symmetric and positive-defined Kvv block
represents the mechanical operator. The block Kpv represents the

divergence operator, which equals minus the transposed of the gra-
dient operator Kpv = −Kvp

T. Kpp and Kpf are the total pressure
block and the fluid pressure diffusion operator (Laplace), respec-
tively. Moreover, the Kpp diagonal block takes values of [ηφ(1 −
φ)]−1, physically solving the issues of the missing diagonal entries
encountered in the incompressible Stokes formulation, as discussed
in Räss et al. (2017a). The diagonal Kppf and Kpfp blocks contain the
symmetric pressure coupling terms, total-to-fluid and fluid-to-total
respectively. They arise from splitting the pe variable (eq. 10) into
total and fluid pressures. The b vector contains contributions from
transient terms and boundary conditions.

In a linear problem, the solution vector x is obtained by applying
the inverse of the KHM matrix to the right-hand side vector b:

x = KHM
−1 b. (A3)

In the presented set of two-phase flow equations, several parame-
ters (e.g. effective permeability, bulk viscosity) exhibit a non-linear
dependence on porosity φ and effective pressure pe. Hence the
global system of equations is non-linear and a imbalance:

b − KHM x = f 	= 0. (A4)

Here f stands for the non-linear residual vector which quantifies
the imbalance. We utilize an iterative approach to minimize the
magnitude of f. We thus update the solution vector within a non-
linear iteration cycle:

xk+1 = xk + αδxk+1, (A5)

where δxk is the non-linear correction. The parameter α is deter-
mined in a line search procedure in order to minimize f:

min
∣∣∣∣f(xk + αδxk+1)

∣∣∣∣
L2

. (A6)

We obtain these corrections in the context of Picard and Newton
iterations by evaluating the matrix KHM every iteration, thus com-
puting the correction as:

δxk+1 = (
KHM

k
)−1

fk . (A7)

where k is the non-linear iteration index and the vector f is obtained
as following:⎡⎢⎣ fv

fp̄

fpf

⎤⎥⎦
︸ ︷︷ ︸

fk

=

⎡⎢⎣ bv

bp̄

bpf

⎤⎥⎦
︸ ︷︷ ︸

bk

−

⎡⎢⎣Kvv(φ) Kvp 0
Kpv Kpp(φ, p̄, p f ) Kppf (φ, p̄, p f )

0 Kpfp(φ, p̄, p f ) Kpf (φ, p̄, p f )

⎤⎥⎦
︸ ︷︷ ︸

KHM
k

⎡⎢⎣ v
p̄
pf

⎤⎥⎦
︸ ︷︷ ︸

x

.

(A8)

We here highlight the inherent non-linearities in the majority of
the blocks reflecting their non-linear dependence on φ, p̄ and pf.
The non-linear iteration procedure needs to be performed until the
magnitude of the residual decreases below a given tolerance level,∣∣∣∣fk

∣∣∣∣
L2

≤ tolnonlin, in order to obtain an accurate and fully coupled
solution. The Picard linearization delivers a linear convergence rate
that may require significantly more iterations compared to a Newton
linearization. We therefore substitute the iteration matrix (eq. A7)
by the Jacobian matrix JHM:

JHM = ∂fi

∂x j
, (A9)

which contains information about gradients of the residuals with
regards to the solution. We here express the Jacobian matrix as:

JHM =
⎡⎣Jvv Jvp 0

Jpv Jpp Jppf

Jpfv Jpfp Jpf

⎤⎦ (A10)
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1612 L. Räss, T. Duretz & Y.Y. Podladchikov

Figure A1. Comparison of Picard and Newton linearization; (a) Relative non-linear residuals as function of non-linear iterations for both the Picard (blue)
and Newton (red) linearization. For enhanced readability, we only display every second non-linear iteration for the Picard residuals. (b) Number of linear
iterations per non-linear step for the DI solver nlin

iter. The sum of linear iterations for all the non-linear steps equals 142 and 390 for the Newton and Picard
linearization, respectively. This figure can be reproduced by running the HM2Di.m code distributed as supplementary material and available for download at
https://bitbucket.org/lraess/m2di.

where the J blocks differ from the Picard K blocks as they are aug-
mented with additional contributions from the gradients of porosity,
total and fluid pressure as well as velocities. We finally retrieve the
Newton corrections:

δxk+1 = (
JHM

k
)−1

fk . (A11)

and thus reach the targeted non-linear accuracy within less than 10
non-linear iterations. On the other hand, reaching similar accuracy
with the Picard linearization requires about 35 iterations (Fig. A1a).
Interestingly, the required number of linear iterations reported for
each non-linear step (Fig. A1b) follows a quadratic and a linear trend
for the Newton and the Picard linearization, respectively. Thus, the
total number of linear iterations among all the non-linear steps sums
up to 142 and 390 for the Newton and the Picard linearization,
respectively.

A2 The direct-iterative solver

We seek to solve the following linear system:⎡⎣Jvv Jvp 0
Jpv Jpp Jppf

Jpfv Jpfp Jpf

⎤⎦
︸ ︷︷ ︸

JHM

⎡⎣ δv
δp̄
δpf

⎤⎦
︸ ︷︷ ︸

δx

= −
⎡⎣ fv

fp̄

fpf

⎤⎦
︸ ︷︷ ︸

f

. (A12)

We define the linear residuals as:⎧⎨⎩
rv = fv − Jvv δv − Jvpδp̄
rp̄ = fp̄ − Jpv δv − Jpp δp̄ − Jppfδpf

rpf = fpf − Jpfvδv − Jpfpδp̄ − Jpfδpf
, (A13)

and the solutions are found iteratively:⎧⎨⎩
δvi+1 = δvi + δδv
δp̄i+1 = δp̄i + δδp̄
δpf i+1 = δpf i + δδpf

, (A14)

where δδv, δδp̄, and δδpf are iterative corrections and i is the itera-
tion count.

The iterative corrections are retrieved within a two step substitu-
tion and precomputing three separate Schur complements (denoted

by˜):

J̃pv = [
Jpv − Jppf

(̂
Jpf Jpfv

)]
,

J̃pp = [
Jpp − Jppf

(̂
Jpf Jpfp

)]
,

J̃vv =
[
Jvv − Jvp

(̂̃
Jpp Jpv

)]
, (A15)

where Ĵpf = diag−1
(
Jpf

)
and̂̃Jpp = diag−1

(̃
Jpp

)
are the approxima-

tion (diagonal preconditioner, denoted by )̂ of the inverse of Jpf and
J̃pp, respectively. The velocity as well as the total and fluid pressure
corrections can be iteratively retrieved by applying the action of
J̃vv

−1, J̃pp
−1 and Jpf

−1, the inverse of the velocity, the total pressure
and the fluid pressure Jacobian blocks, to f̃v, f̃p̄ and fpf :

δδv = J̃vv
−1

⎡⎢⎢⎣fv − Jvp J̃pp
−1

(
fp̄ − Jppf J−1

pf fpf

)︸ ︷︷ ︸
f̃p̄

⎤⎥⎥⎦
︸ ︷︷ ︸

f̃v

,

δδp̄ = J̃pp
−1

[
f̃p̄ − J̃pv δδv

]
,

δδpf = J−1
pf

[
fpf − Jpfvδδv − Jpfp δδp̄

]
. (A16)

We pursue the iterations until the linear residuals reach the toler-
ance threshold of the linear solver ‖f‖L2 < tollin. Since the velocity
Schur complement and the fluid pressure blocks (̃Jvv and Jpf ) are
symmetrical and positive-definite, we perform a Cholesky factor-
ization of J̃vv and Jpf followed by iterative back-substitutions to
compute the corrections increments (eq. A16). Since the total pres-
sure Schur complement (̃Jpp) is a diagonal block, there is no need to
perform a Cholesky factorization as its trivial inverse can readily be
used in the solving procedure. In the presented examples, the fluid
continuity equation is solved with Neumann boundary conditions.
The subsequent null space is taken care by removing the mean of
total continuity residuals at each linear and non-linear iteration.

A P P E N D I X B : N U M E R I C A L T R A N S I E N T
T I M E

The essence of the PT continuation method resides in introducing
a transient or numerical time derivative to the equation of interest
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Table B1. Number of PT iteration as function of damping parameter νv (utilized in [1 − νv/ni]) for the 3-D hydromechanical solver. The resolution used is
10143 and the targeted non-linear tolerance is tolnonlin = 10−8. νpf = 0.9 is kept constant for this investigation.

νv 2 3 4 5 6 7 8 9 10 20

# of PT iterations (× 10−4) 52.60 6.65 5.50 5.90 6.15 7.05 7.15 7.60 8.45 14.55

Table B2. Number of PT iteration as function of damping parameter νpf for the 3-D hydromechanical solver. The resolution used is 10143 and the targeted

non-linear tolerance is tolnonlin = 10−8. νv = 4 is kept constant for this investigation.

νpf 0.50 0.60 0.70 0.80 0.88 0.90 0.92 0.94

# of PT iterations (× 10−4) > 100 > 100 13.85 9.65 6.35 5.50 5.50 5.75

and to iterate on until steady state is reached. At that stage, the
time derivative vanishes and the equation is solved. The following
generic 1-D example illustrates this basic workflow. Assuming one
must find the solution to the elliptic problem:

C = ∂2 A

∂x2
, (B1)

without performing a direct solve. The first step is to rearrange the
equation, sending all the terms to the right-hand side, assembling
the residual:

0 = ∂2 A

∂x2
− C = fA. (B2)

It is now possible to introduce a numerical time derivative on the
left-hand side of the equation (eq. B2):

∂ A

∂τ
= fA, (B3)

and use it to iteratively reach the steady state of the system:

A k = A k−1 + 
τ fA
k, (B4)

where k and 
τ are the pseudo-transient iteration count and time-
step, respectively. Once A stops changing over successive iterations,
the numerical time derivative vanishes. Thus, the residual fA has
converged towards machine precision, and the eq. (B1) is solved.
Notably, first, the method is also applicable if fA contains non-linear
terms—as present in the two-phase flow equations described here.
Second, the solution of parabolic equations using the PT continua-
tion leads to an implicit solution, since both the temporal and the
spatial derivative are included in the residual. The solution of the
unknown field satisfies the equation at time (t + 
t). Additional
details regarding the PT continuation approach can be found in
selected contributions (e.g. Kelley & Liao 2013; Kelley & Keyes
1998, and references therein).

Moreover, the utilization of a second order PT scheme (Frankel
1950) permits to efficiently damp the residuals of the momentum
(Table B1) and fluid pressure (Table B2) equations. As results, the
number of total iterations needed to reach the desired tolerance is
greatly reduced.

A P P E N D I X C : S O L I TA RY WAV E S
B E N C H M A R K

We perform two validations of our numerical implementation. First,
we compare numerical and exact analytical 1-D solutions. Second,
we verify the convergence of 2-D numerical solutions with growing
spatial and temporal resolutions. Both 1-D exact solution and con-
verged 2-D numerical solutions are proposed as benchmark cases
for validation of hydromechanical coupling in numerical codes.

C1 Analytical 1-D solution

We derive a general 1-D analytical solution using the hydraulic
potential approach (e.g. Yarushina et al. 2015b; Connolly & Pod-
ladchikov 2014). Using a coordinate system moving together with
the 1-D propagating porosity wave, one can exclude depth from the
compaction equations and express effective pressure as a function
of porosity. Thus, the governing system of coupled partial differ-
ential equations (eq. 1–4, 6) is simplified to a system of ordinary
differential equations:

∂vs
z

∂z
= vpw

∂ log (1 − φ)

∂z
,

∂
[
φ
(
v

f
k − vs

k

)]
∂z

= −vpw
∂ log (1 − φ)

∂z
,

∂ p̄

∂z
= −ρ̄g,

φ
(
v

f
i − vs

i

)
= − k0

μ f

(
φ

φ0

)nk
(

∂ ( p̄ − pe)

∂z
+ ρ f g

)
, (C1)

∂vs
z

∂z
= − φpe

φ0ηC (1 − φ)
,

where vpw is the porosity wave velocity with respect to the solid
and z is the vertical coordinate. In the present case, we consider all
non-linearities previously introduced and assume here that the total
pressure is obtained by the integral of ρ̄gz with depth. Eliminating
the total pressure and the fluid and solid velocities leads to the
following system:

− φpe

φ0ηC (1 − φ)
= vpw

∂ log (1 − φ)

∂z
,

∂

[
− k0

μ f

(
φ

φ0

)nk
(

− ∂pe

∂z
− (1 − φ) (ρs − ρ f )g

)]
∂z

= −vpw
∂ log (1 − φ)

∂z
.

(C2)

We finally integrate and re-arange the second equation:

∂log(φ)

∂z
= pe

φ0ηCvpw
,

∂pe

∂z
= (− (1 − φ) (ρs − ρ f )g

)
−μ f

k0

(
φ0

φ

)nk (
vpwlog (1 − φ) + q0

)
, (C3)

where q0 is an integration constant. This system of two ordinary
equations can be solved analytically and visualized on a phase plane
(Fig. C1c). The phase trajectories represented on the (φ, pe) plane
characterize the type of solution (Yarushina et al. 2015b). The vec-
tors stand for the gradients ∂log(φ)/∂z and ∂pe/∂z and are tangential
to the trace of the stationary solution (phase vectors – Fig. C1c). The
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Figure C1. Stationary 1-D solution of (a) porosity, (b) effective pressure and (c) the phase portrait reported both for the 1st and 2nd order time discretization
schemes, Backward Euler (BE) and Crank–Nicolson (CN), respectively. The phase portrait is analogous to Fig. 4 in Yarushina et al. (2015b) and depicts: (1)
background porosity and effective pressure levels, (2) decompaction regime associated with a negative effective pressure, (3) maximal amplitude of the porosity
anomaly (also represented by the horizontal dashed line) and (4) back to background porosity and effective pressure level within the compaction regime.

Figure C2. Potential surface E(φ, pe) (coloured parabolic surface) inter-
secting the hydraulic potential plane H(φ) (grey plane). The intersection
of the two surfaces produces the constant potential (dashed line) used in
Fig. C1(c). The arrows on the H(φ) plane stand for the phase vectors and we
use the potential surface E(φ, pe) values as colormap.

1-D numerical stationary porosity (Fig. C1a) and effective pressure
(Fig. C1b) profile are reported on the (φ, pe) plane (numerical so-
lution – Fig. C1c). We then compare our numerical solution to the
analytically obtained trajectory (constant potential – Fig. C1c). This
analytical trajectory is obtained by the intersection of E(φ, pe) and
[H(φ) − H(φ0)] and represents the potential function E(φ, pe) at the
zero level (grey plane – Fig. C2) of the hydraulic potential function
H(φ):

E(φ, pe) = p2
e

2φ0ηCvpw
+ [H (φ) − H (φ0)] , (C4)

where

H (φ) = −
∫

∂pe

∂z
dlog(φ). (C5)

Figure C3. Spatial convergence test results. We report errors (L2 norm) of
porosity and effective pressure relative to a 2-D reference high-resolution
simulation for various grid spacings 
x−1. All results are obtained using a
second order Crank–Nicolson (CN) time-integration scheme. The continu-
ous lines stand for the linear fit of the plotted data, with slopes of close to
−1.5.

For a cubic permeability power-law exponent (nk = 3) the above
integral evaluates to an explicit function of porosity:

H (φ) = −vpwμ f

3k0
φ0

3

(
1

2
φ−2 + φ−1 − ln (φ) + ln (1 − φ0)

φ3

− (1 − φ) ln (1 − φ)
(
3 φ + (1 − φ)2)

φ3

)

−(ρs − ρ f )g

(
φ − ln (φ) + 1

3

φ0
3 (φ0 − 1)

φ3

)
(C6)

Our numerical solution shows a relatively good match with the
analytically obtained trajectory (Fig. C1c) which is obtained by the
intersection of E(φ, pe) and [H(φ) − H(φ0)]. We capture well the
regions of highest amplitude (3) and both the decompaction (2) and
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Figure C4. Temporal convergence test results. We report errors (L2 norm)
of porosity relative to a 2-D reference high temporal resolution simulation
(
tfact = 1) for various multiple of the high-resolution time step. Results are
obtained using either a first order Backward–Euler (BE) or a second order
Crank–Nicolson (CN) accurate time-integration scheme. The continuous
lines stand for the linear fit of the plotted data; the CN schemes tackles
quadratic convergence while the BE scheme is close to linear trend. The BE
tests failed with the largest tested value of 
tfact = 16.

compaction regimes. However, our numerical solutions shows some
discrepancy in the regions where pores start to expand (1) or are
very close to recover their original fluid content (4). We utilized
a numerical resolution of 200 gridpoints in the vertical direction
h, and five girdpoints in the x direction to achieve a pseudo 1-D
configuration. We rely on a second order in time CN discretization
and recorded the numerical data once we obtained the stationary
solution (in a moving coordinate frame). In comparison, a Back-
ward Euler scheme (first order) captures with less accuracy the
compaction phase, and fits thus not as well the analytical contour
(Fig. C1c).

C2 Convergence verification in 2-D

As a second validation, we report the convergence of our numerical
implementation for the full set of non-linear coupled two-phase
equations with both spatial and temporal resolution. We consider a
numerical domain extend of 50δc and 100δc in x and y directions,
respectively. The background initial porosity is φ0 = 10−2 and we
locate a Gaussian anomaly at 0.2Ly with an amplitude equal to 3φ0

and a standard deviation of 6δc. The total dimensionless simulation
time is 0.1τ c, which permits the porosity anomaly to propagate
upwards about 80 per cent of the domain depth.

In first, we vary the numerical gird resolution keeping the grid
step in x and y direction equal to each other (
x = 
y). We utilize
a high-resolution simulation as reference and perform 4 additional
simulations where we keep dividing the number of gridpoints in
both x and y direction by a factor 2. We report the L2 norms:∣∣∣∣φerr

∣∣∣∣
2

= ∣∣∣∣φref − φcoarse

∣∣∣∣
2
,∣∣∣∣peerr

∣∣∣∣
2

= ∣∣∣∣pe ref − pecoarse

∣∣∣∣
2
, (C7)

for both porosity φ and effective pressure pe as a function of the
grid size on a logarithmic plot (Fig. C3). In this test we rely on a
second order time discretization using a CN scheme. Our numerical
implementation convergences with decreasing grid resolution and

we report linear fitting slopes of about −1.5 for both the porosity
and effective pressure L2 norms.

In second, we vary the numerical time step 
t while keeping
the numerical grid resolution fixed. We investigate the impact of
multiplying by a factor 
tfact the reference time step (high temporal
resolution). We report the L2 norms for errors in the porosity field
(Fig. C4) defined as:

(CN, BE)
∣∣∣∣φerr

∣∣∣∣
2
= ∣∣∣∣φref − φ(
t
tfact)

∣∣∣∣
2
, (C8)

where CN and BE refer to the second order temporal discretiza-
tion using the CN scheme and the first order Backward–Euler (BE)
scheme, respectively. We report close to quadratic convergence of
the porosity error for the CN implementation, while the BE scheme
converges with a slope close to 1. Also, the BE method fails to
converge the largest tested value of 
tfact = 16 while the CN
scheme resolves it. This is accordance with the observations re-
ported by Duretz et al. (2019) for thermomechanical couplings.
This behaviour reflects that the non-linearities arising from the
multiphysics coupling significantly impact the allowed maximal
physical time step selection.

A P P E N D I X D : T H E P E R F O R M A N C E O F
T H E S O LV E R S

We use two distinct metrics to report the solvers’ performance,
the effective memory throughput (MTPeffective) and the wall-time.
We first evaluate both the MATLAB CPU-based and the CUDA C
GPU-based 2-D PT solver implementations in terms of MTPeffective.
We then compare the 2-D GPU-based PT solver to the MATLAB-
based HM2Di DI solver using the wall-time metric to time the
convergence of one non-linear time-step.

The memory accesses rather than the floating-point operations
per second (FLOP s–1) limit the performance of the PT algorithm,
which is designed to perform stencil operation in a matrix-free
approach. For this reason, we chose the MTPeffective metric (Om-
lin 2017) to evaluate how efficiently data is transferred between
the memory and the computation units, in gigabytes per second
(GB s–1):

MTPeffective = ntot
i nt nIO np

230 tnt

, (D1)

where ntot
i is the total grid resolution, nt is the number of time-steps

or iterations performed, nIO is the number of memory accesses
performed, np is the floating-point precision (either 4 or 8 bytes),
and tnt is the time in seconds needed to perform the nt steps. The
number of memory accesses (nIO) defines the minimum number of
read-and-write or read-only operations required to solve the specific
physics. For 2-D coupled hydromechanics, the read-and-write op-
erations correspond to the updates of the DoFs (vx , vy, p̄, p f ), and
three additional read-only operations for converging the non-linear
viscosity; in our case, nIO = 11.

The performance benchmark runs are performed using double-
precision floating-point arithmetic (np = 8 bytes) for a fair compari-
son in particular between MATLAB and CUDA C implementations.
However, we also report MTPeffective using single-precision arith-
metic for the CUDA C PT solver implementation (np = 4 bytes).
One motivation is the identical accuracy of the converged results
(Figs 4 and 5) for twice lower memory usage and twice faster exe-
cution time than double-precision. The MTPeffective values (Fig. D1)
represent the efficiency of memory access for both the vectorized
MATLAB CPU and CUDA C single GPU PT solver implementa-
tions. The reported numbers are to be compared to the peak memory
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Table D1. Parallel efficiency of the 3-D GPU MPI hydromechanical PT solver for 1–128 MPI process. Each MPI process handles one Nvidia Titan X GPU.
The local problem size solved on each of the GPUs contains 2553 gridpoints.

# of MPI processes 1 8 27 64 128
Numerical 3-D grid resolution 2553 5083 7613 10143 12773

Time for 100 iteration [s] 5.78 5.84 5.97 6.03 6.03
Parallel efficiency [-] 1.00 0.99 0.97 0.96 0.96

Figure D1. Performance evaluation of the PT-based hydromechanically
coupled solvers in terms of effective memory throughput MTPeffective in
GB s–1. We compare the 2-D MATLAB-based implementation running on
an Intel i5 (2016) processor (CPU) with 32 GB of RAM with the 2-D GPU-
based implementations using both SP and DP arithmetic, respectively. The
GPU is a Nvidia Titan Xp (Pascal) with 16 GB of on-chip RAM. The DoF
represents 4 variables in 2-D (vx , vy , p̄ and pf) multiplied by the respective
number of gridpoints.

Figure D2. Performance evaluation of the hydromechanically coupled
solvers in terms of time-to-converge (in seconds) one non-linear step to
tolnonlin = 10−8 (wall-time). We compare the PT GPU-based solver (CUDA
C) to the DI CPU (MATLAB) based solver for both the Newton and the
Picard linearization, respectively. We report only DP arithmetic timings.

throughput values (MTPpeak) for the specific hardware, here an In-
tel i5 CPU and a Nvidia Titan Xp (Pascal) GPU. MTPpeak values
are measured performing memory copy only, without any compu-
tation. Values of MTPpeak are in the order of 20 GB s–1 for the
Intel i5 CPU and in the order of 390 GB/s for the Titan Xp GPU.
The MATLAB CPU implementation runs at about 2 per cent of the

MTPpeak CPU (20 GB s–1), while the CUDA C GPU codes performs
at about 15 per cent of the MTPpeak GPU (390 GB s–1). The overall
performance gain of the parallel GPU implementation versus the
serial CPU routines is more than two orders of magnitude. Some
optimization steps are still possible, to bring the GPU MTPeffective

values closer to MTPpeak values. Such considerations are beyond the
scope of this study, but may include an increased number of on-the-
fly computations, kernel rearranging and register queues (Omlin
2017).

The effective memory throughput metric reports the efficiency of
hardware utilization for a specific implementation of the hydrome-
chanical solver. But to compare the memory-bounded stencil PT
iterative approach to the DI solver HM2Di, we use a more rele-
vant measure. Thus, we chose the wall-time metric to assess the
overall time-to-solution of a single non-linear step converged to
tolnonlin = 10−8 (Fig. D2). The DI solver shows a close to linear
increase of wall-time with increasing problem size (DoF). It is im-
plemented in MATLAB and we use an Intel i5 (2016) CPU on a
system equipped with 32 GB of RAM for computations. The maxi-
mal 2-D problem size fitting in 32 GB RAM represent a numerical
domain of 1024 × 2048 gridpoints, solved in a wall-time of 10 min
(Newton linearization) and in 16 min (Picard linearization). In com-
parison, only 4.5 min were needed to converge the same problem
using the CUDA C GPU-based PT solver, on a Nvidia Titan Xp
(Pascal) accelerator (Fig. D2). The speedup versus the DI Newton
implementation is about a factor 2. The PT method’s additional
key benefit is the maximal problem size that can be resolved using
the available 12 GB of GPU on-chip RAM; 134 MDoF represent
a numerical 2-D domain size of 4096 × 8192 gridpoints. On all
tested resolutions, the GPU implementation of the PT method out-
performs both the Newton and Picard DI solver (HM2Di) in terms
of wall-time. Further, for fair comparison, we realized the study
using double-precision arithmetic calculation on the GPU. Moving
towards single-precision arithmetic, a domain that includes twice
the number of gridpoints may fit in the 12 GB of on-chip GPU
RAM, and computation efficiency is enhanced, since the GPU’s
compute chip is largely populated with single-precision arithmetic
units. However, the calculations would not allow one to reach the
target accuracy of tolnonlin = 10−8.

One additional benefit of the matrix-free PT solvers is their abil-
ity to scale on MPI implementations targeting distributed memory
machines. We report efficient MPI implementation of our 3-D hy-
dromechanical PT solver, resulting in a parallel efficiency close to
1.0 on more than 128 GPUs (Table D1). The parallel efficiency
reports the ratio of the execution time required to perform a given
number of iterations by the execution time obtained on a single
process run (no communication). We achieve this successful scal-
ing since only local boundaries need to be exchanged among neigh-
bouring processes using MPI point-to-point communication; MPI
processes featuring internal boundaries receive their boundary con-
ditions from overlapping neighbouring processes computed nodes.
Moreover, we utilize some asynchronous execution CUDA features
in order to execute the MPI communication while computing the
internal nodes of each local problem resulting in hiding all MPI
communications by computations.
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