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S U M M A R Y
Mineralogical transformations and material transfers within the Earth’s mantle make the 350–
1000 km depth range (referred here as the mantle transition zone) highly heterogeneous and
anisotropic. Most of the 3-D global tomographic models are anchored on small perturbations
from 1-D models such as PREM, and are secondly interpreted in terms of temperature and
composition distributions. However, the degree of heterogeneity in the transition zone can be
strong enough so that the concept of a 1-D reference seismic model must be addressed. To
avoid the use of any seismic reference model, we present in this paper a Markov chain Monte
Carlo algorithm to directly interpret surface wave dispersion curves in terms of temperature
and radial anisotropy distributions, here considering a given composition of the mantle. These
interpretations are based on laboratory measurements of elastic moduli and Birch–Murnaghan
equation of state. An originality of the algorithm is its ability to explore both smoothly varying
models and first-order discontinuities, using C1-Bézier curves, which interpolate the randomly
chosen values for depth, temperature and radial anisotropy. This parametrization is able to
generate a self-adapting parameter space exploration while reducing the computing time.
Thanks to a Bayesian exploration, the probability distributions on temperature and anisotropy
are governed by uncertainties on the data set. The method is applied to both synthetic data and
real dispersion curves. Though surface wave data are weakly sensitive to the sharpness of the
of the mid-mantle seismic discontinuities, the interpretation of the temperature distribution
is highly related to the chosen composition and to the modelling of mineralogical phase
transformations. Surface wave measurements along the Vanuatu–California path suggest a
strong anisotropy above 400 km depth, which decreases below, and a monotonous temperature
distribution between 350 and 1000 km depth.

Key words: Inverse theory; Probability distributions; Equation of state; Phase transitions;
Surface waves and free oscillations; Seismic anisotropy.

1 I N T RO D U C T I O N

Seismic tomography is one of the most powerful ways to provide
information on the internal structure and dynamics of the Earth’s
deep interior. Seismic images reveal features at both lateral and
radial resolutions which are continuously being improved. Various
approaches for solving the inverse problem of describing the Earth’s
deep structure using seismological data sets have been implemented
(e.g. Montagner & Tanimoto 1990; van der Hilst et al. 1997; Fukao
et al. 2001; Romanowicz 2003). Although-high resolution earth’s
models are more and more numerous, a quantitative comparison is
difficult due to the amount of various techniques providing different
kind of uncertainties.

Recent 3-D seismic models (Zhu et al. 2012) are derived from
sophisticated inverse theories and use accurate numerical methods
for seismic wave propagation. While they improve the lateral res-
olution of the smooth 3-D starting models (Ritsema et al. 1999;
Mégnin & Romanowicz 2000), they are intrinsically rooted to first-
order perturbation theory from a laterally homogeneous reference
models such as PREM (Dziewonski & Anderson 1981) or AK135
(Kennett et al. 1995). However, from a geodynamical point of view,
in regions such as the transition zone, the degree of heterogeneity
induced by mineralogical transformations, convective motions, up-
welling and downwelling materials, and anisotropy, is strong enough
so that the concept of a 1-D reference seismic model might be
addressed.
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Among the most recent studies on tomography, for example,
Boschi & Dziewonski (2000), Trampert & Woodhouse (2003),
Panning & Romanowicz (2006), Beghein et al. (2008), Kustowski
et al. (2008) and Visser et al. (2008a,b), indicate radial anisotropic
variations throughout the mantle, they only agree at long wave-
lengths (Kustowski et al. 2008; Panning et al. 2010), even when
higher mode surface waves are used to investigate the transition
zone depth range, hereafter defined between 350 and 1000 km depth
range. These large uncertainties may be explained by the different
inverse and regularization methods, the choice of the parametriza-
tion and the data set.

When going beyond the tomographic methods and addressing
the question of the interpretation of the seismological information
in terms of mantle temperature and composition, two approaches
may be followed: by using either previously derived seismic mod-
els (Vacher et al. 1996, 1998; Goes et al. 2000; Trampert et al.
2004; Cammarano & Romanowicz 2007) or directly the observed
traveltimes, surface wave velocities or eigenfrequencies (Cobden
et al. 2008, 2009; Cammarano et al. 2009; Khan et al. 2009). One
of the main advantages of the latter approach is to directly connect
the posterior uncertainties on the geodynamical parameters to the
variances on observations. However, the non-linear nature of the
problem requires to use time-consuming Monte Carlo-like inverse
methods. This difficulty has previously been handled by testing a
limited amount of selected models (Cammarano et al. 2009), or by
exploring tightly constrained parameter spaces (Khan et al. 2009,
2011; Khan & Shankland 2012).

In this paper, we choose to address these questions by inferring
the radial temperature field and anisotropy distribution for a given
mineralogy from surface wave data. This allows to relax the priors
and to sample a large range of possible parameter values.

Bayesian approaches allow to go beyond the classical compu-
tation of the unique best-fitting model by providing a quantitative
probabilistic measure of the model resolution, uncertainties and
non-unicity (e.g. Mosegaard & Tarantola 1995). Though these meth-
ods such as the Markov chain Monte Carlo (McMC) are popular in
geophysics, their use in global seismological studies and interpre-
tation of seismological models in terms of mantle temperature and
composition is recent. This is mainly due to the large amount of
inverted parameters and to the huge required computing time (e.g.
Verhoeven et al. 2009; Khan et al. 2009, 2011; Hauser et al. 2011;
Bodin et al. 2012; Mosca et al. 2012). In a Bayesian framework, the
known prior information on the parameters is combined with the
observed data to generate the a posteriori distribution of the model
parameters. McMC methods perform a non-linear guided search
by sampling the parameter space according to the posterior prob-
abilities. One important advantage of this method is the complete
independence from the choice of the starting model.

In this study, we develop a non-linear inverse approach to directly
interpret Love and Rayleigh surface waves dispersion curves of
fundamental and higher modes, in terms of temperature and radial
anisotropy distributions. The calculations are performed on the basis
of a given mantle composition. Though seismic velocity variations
are from both compositional and thermal origins, we tested that it
is hardly possible to decorrelate these two effects only on the basis
of surface wave seismic data. For example, a given decrease of the
seismic velocities in the transition zone can be explained either
by high temperatures, and/or by increasing the garnet content. Our
approach shares in common some features of the forward problem
addressed by Cammarano et al. (2009), who tested against the data
thousands of temperature profiles for three given composition of the
mantle; and a non-linear inverse method close to Khan et al. (2009,

2011), using an original parametrization and wider priors. Starting
from random realizations of the temperature field and anisotropy
distribution, the seismic velocity profiles are computed, using a
Birch–Murnaghan equation of state. The synthetic dispersion curves
are then obtained by normal-mode summation and compared to the
data through an McMC method. An originality of the algorithm is its
high flexibility during the exploration of the parameter space. The
parametrization is defined by C1-Bézier curves, which interpolate
the randomly sampled parameter values and generate a self-adapting
parameter space exploration.

The forward problem is described in Section 2, while the Bayesian
inversion is presented in Section 3. In Section 4, we detail the
practical and numerical implementation of this procedure. Synthetic
test results are exhibited in Section 5 and we illustrate the efficiency
and the resolving power of the method by inverting phase velocities
along the Vanuatu–California path, in terms of temperature and
anisotropy of the transition zone.

2 F O RWA R D P RO B L E M

This section describes the parametrization and modelling hypoth-
esis, used to compute synthetic data for given temperature and
anisotropy distributions, and the corresponding radial seismic mod-
els. To generate a self-adapting model space, with respect to the
resolution power of the data and to slightly reduce the computing
time, polynomial Bézier curves are chosen for the parametriza-
tion. This choice enables us to remove the effects of a regular
depth-discretization, while allowing to generate a huge set of radial
models.

2.1 Physical parameters

2.1.1 Isotropic parameters

A standard procedure to compute the density and elastic moduli, at a
given depth, relies in extrapolating their values from standard tem-
perature and pressure (STP) conditions, using thermodynamic laws
(e.g. Jackson 1998; Stixrude & Lithgow-Bertelloni 2010). Labora-
tory experiments provide these STP values, their derivatives with
respect to the temperature and pressure and the thermodynamic
parameters from which they can be derived. The elastic behaviour
of mantle materials may be computed starting either from their
chemical or mineralogical compositions.

Here, the depth-dependent values of the density and the elastic
moduli are first computed for each mineral using the approach de-
scribed in Vacher et al. (1998), and the laboratory experiment values
compiled by Cammarano et al. (2003) and Verhoeven et al. (2005).
This method relies on a Birch–Murnaghan equation of state, up
to third-order in strain, associated with a Grüneisen correction for
the temperature. The elastic properties of the mineralogical assem-
blages are computed using the Hashin–Shtrikman estimate (Hashin
& Shtrikman 1963; Watt et al. 1976). The functions needed to
compute elastic parameters are strongly non-linear, that is why a
Bayesian formulation is more appropriate than a deterministic (e.g.
least-square) procedure.

While the temperature and pressure increase, the mantle minerals
undergo mineralogical transformations, including phase transitions.
The volume fractions of the mineral phases are computed using
phase diagrams evaluated from laboratory measurements. Here,
two independent subsystems are considered: the phase diagram of
olivine and its high pressure phases, and a phase diagram for all other
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components. Subsystems are computed using a Gibbs free-energy
minimization method based on experimentally constrained phase
boundaries (Ita & Stixrude 1992). The details of the phase diagrams
can be found in Vacher et al. (1998). They incorporate changes in
Fe/Mg ratios in the minerals with depth. The major considered man-
tle minerals are: olivine, wadsleyite, ringwoodite, Mg-perovskite,
Mg-wüstite, clinopyroxene, orthopyroxene, Ca-pyroxene, ilmenite
and majorite.

The corresponding radial density and seismic velocity models
are then used to compute surface wave velocity dispersion curves,
using the MINEOS package from CIG,1 based on the pioneer work
of Gilbert & Dziewonski (1975) updated by Woodhouse (1988) and
rewritten by G. Masters.

One may note that the standard seismic parameters (VP, VS and
ρ) are not directly inverted, but are used, as an intermediate stage,
to link the temperature and the anisotropy (for a given mineralogy)
to the surface wave data.

2.1.2 Anisotropy

The other parameter of our models is the depth-distribution of the
radial anisotropy, which is constrained by the Rayleigh–Love dis-
crepancy (Anderson 1961). Seismic anisotropy may have various
origins, like lattice or shape-preferred orientation of mantle min-
erals (Mainprice 2007), and/or a superposition of alternating lay-
ers with highly contrasting seismic properties (Backus & Gilbert
1962). In a transversely isotropic medium, the number of indepen-
dent elements of the fourth-order elastic tensor reduces to the five
Love coefficients (Love 1927), A = ρV 2

PH
, C = ρV 2

PV
, N = ρV 2

SH
,

L = ρV 2
SV

and F; where ρ is the density, VPH , VPV , VSH , VSV , are the
velocities of the horizontally and vertically propagating P waves,
and the horizontally and vertically polarized S waves, respectively.
Since the behaviour of these anisotropic moduli, as a function of
temperature and pressure, is still unknown for most mantle miner-
als, we follow the procedure of Babuska & Cara (1991), Panning &
Romanowicz (2006) and Khan et al. (2009), and define an isotropic
shear wave velocity VS by the Voigt average

V 2
S = 2V 2

SV
+ V 2

SH

3
= 2L + N

3ρ
. (1)

The anisotropy parameters are

ξ = V 2
SH

V 2
SV

= N

L
, (2)

and

η = F

A − 2L
. (3)

Since the Rayleigh–Love discrepancy is mostly sensitive to the
shear wave anisotropy (Babuska & Cara 1991), we discard P-wave
anisotropy and set η = 1. Eqs (1) and (2) are combined to compute
VSH and VSV as a function of VS and ξ ,

VSH = VS

√
3ξ

2 + ξ
, (4)

VSV = VS

√
3

2 + ξ
. (5)

1
Computational Infrastructure for Geodynamics, http://www.
geodynamics.org/cig/software/mineos

Figure 1. Schematic representation of the model parametrization using a
continuous set of C1 Bézier curves. Four control points define each polyno-
mial and its derivative. Continuity requires that the upward and downward
derivatives are identical at each point that is common to two consecutive
polynomials. It works for any kind of parameter.

2.2 Model parametrization

The temperature and anisotropy distributions are described, as a
function of depth, using C1 Bézier polynomials (Bézier 1966, 1967),
based on randomly chosen control (or anchor) points. This proce-
dure offers several advantages: (1) it does not impose a regularly
spaced discretization of the models or a priori on layer thicknesses
and location of the seismic discontinuities; (2) it can be used to de-
scribe both smooth (e.g. temperature gradients) and sharp (e.g. thin
thermal boundary layers) variations with a minimum number of pa-
rameters; and (3) it may be optimized during the iterative processes
of the McMC algorithm by adapting the number of curves that are
necessary to describe a given structure to the resolving power of the
observations.

The parametrization of a temperature or anisotropy distribution
is sketched in Fig. 1. The overall distribution is described by a series
of N elementary cubic polynomials B(t) of the form

Bj (t) =
3∑

i=0

bi,3(t)P j i , t ∈ [0, 1], j = [1 . . . N ], (6)

where the P j i , i = 0, . . . , 3 are the control points and where

bi,k(t) =
(

k
i

)
t i (1 − t)k−i , i = 0, . . . k (7)

are the Bernstein basis polynomials of degree k. At the ending points
P j0 andP j3, the curvature is defined by the norm of the local tangent
vectors P j0P j1 and P j2P j3, respectively. The C1 class requires that
the upward and downward derivatives are identical at each point
joining two consecutive polynomials.

3 M c M C M E T H O D

Our inverse problem consists of computing the radial distributions
of temperature and anisotropy from surface wave dispersion curves.
This section outlines the fundamentals of the Bayesian inversion,
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based on the McMC method, detailed in Mosegaard & Tarantola
(1995) and Mosegaard (1998), and successfully applied to constrain
the Earth’s mantle structure using geophysical data (e.g. Khan et al.
2006; Verhoeven et al. 2009).

Let us denote by p the parameters of our model and d the seis-
mological data, respectively. The data are related to the parameters
through the equation, d = A(p), where the non-analytic and non-
linear operator A represents the forward problem discussed in Sec-
tion 2. Explicitly, the parameters are the control points of the cubic
Bézier curves, namely depth (z), temperature (T) and anisotropy
(ξ ) at these particular points. In the Bayesian framework, a set of
parameters is randomly chosen at each iteration. The corresponding
radial distributions of seismic velocities and densities are used to
compute Rayleigh- and Love-phase velocity dispersion curves.

The solutions of the inverse problem are described by the poste-
rior probabilities P(p|d) that the parameters are in a configuration p
given the data are in a configuration d. The parameter space is sam-
pled according to P(p|d). Bayes’ theorem links the prior distribution
P(p) and the posterior distribution P(p|d),

P(p|d) = P(d|p)P(p)∑
p∈M

P(d|p)P(p)
, (8)

where M denotes all the configurations in the parameter space.
It exists a set of rules named priors P(p) which defines the prior
distribution, that is, the set of possible models which reduce the
configuration space and represents our state of knowledge. For ex-
ample, we do not know the temperature profile in the transition
zone, but we can set upper and lower bounds on its expected value.
Only models that belong to the prior distribution are proposed and
tested against the data.

The probability distribution P(d|p) is a function of the misfit
S(d, A(p)), which measures the difference between the observed
data d and the computed synthetic data A(p),

P(d|p) ∝ exp(−S(d, A(p))). (9)

The misfit function takes into account the overall variance that we
assign to the data. We assume independent and normally distributed
data errors. The misfit function is evaluated with an L2 norm:

S(d, A(p)) =
∑

i

(di − A(p)i )2

2σ 2
i

, (10)

where di and A(p)i represent the i-th component of the observed
data vector d and of the synthetic data, respectively, and σ i is the
standard deviation associated with the i-th observation. The data
variance directly determines the form of the posterior probability
distribution and hence the posterior samples generated from it. In
eq. (10), the sum runs over all considered surface wave modes and
frequencies.

Bayes’ formula provides an estimate of the marginal probability
P(pi = x|d), which is obtained by summing all the probabilities of
the p configurations where the i-th parameter takes the value x:

P(pi = x |d) =

∑
p∈Mi

x

P(d|p)P(p)

∑
p∈M

P(d|p)P(p)
, (11)

where Mi
x represents all the configurations whose i-th component

is x. The evaluation of the marginal probability is impossible to cal-
culate in practice, because the sum in the denominator runs over the
huge number of configurations. This number is equal to

∏m
i=1 |Mi |,

where |Mi | is the number of values that the parameter i can take. We
therefore choose an McMC method, which samples the parameter
space through a random walk, according to the probability P(p|d).
The method is derived from the Metropolis–Hastings Algorithm
(e.g. Metropolis et al. 1953; Hastings 1970), which generates sam-
ples according to the unknown posterior distribution. This step is
done using a randomized decision rule which accepts or rejects the
proposed models according to their fit to the data and the prior.
After an initial exploration, the misfit function guides the research
to choose another set of parameters, and the whole procedure is
iterated.

Because each new model is chosen to be in a specific neighbour-
hood of the previous model, each new step depends only on the
previous step. Let us consider the Markov chain associated with the
i-th parameter with value x at the iteration t. If the prior is con-
sidered to be uniform in a given interval, the marginal probability
P(pi = x|d) is directly equal to

P(pi = x |d) =

∑
p∈Mx

P(d|p)

∑
p∈M

P(d|p)
. (12)

In this case, given a current model whose parameters are pt
i and a

proposed model pt+1
i , a decision has to be made whether or not the

new model is accepted or rejected.

(1) If S(d, P(pt+1
i )) ≤ S(d, P(pt

i )), the new model is accepted
and added to the set of samples of the posterior distribution because
it improves the fit to the data.

(2) If S(d, P(pt+1
i )) > S(d, P(pt

i )), the new model is degrading
the misfit function but is not necessarily rejected. The model is
accepted when the ratio P(pt+1

i |d)/P(pt
i |d) is larger than a ran-

dom number taken from a uniform distribution between 0 and 1.
Otherwise, the model is rejected.

One of the advantages of the Metropolis–Hastings algorithm is
to prevent the random walk to be trapped into a local minimum.
This feature can be of first importance when dealing with a non-
linear problem. Another advantage is that only probability ratios are
handled. Explicitly, the denominator of the eq. (8) does not need to
be computed.

If the amount of iterations can be large enough, the samples
provide a good approximation of the posterior distribution for the
model parameters, that is, P(p|d). The posterior probability of the
temperature and anisotropy at a given depth can be visualized by
plotting the distribution of the selected values for the whole set of
solutions.

4 P R A C T I C A L I M P L E M E N TAT I O N

This section details the technical aspects of the developed algorithm
and its implementation to obtain the inverted synthetic and real data
results shown in Sections 5 and 6.

4.1 Boundary conditions

When studying the Earth’s mantle, it is well known that Rayleigh
and Love surface wave data are both sensitive to the crustal struc-
ture (e.g. Montagner & Jobert 1988; Bozdag & Trampert 2007). Im-
proper corrections may lead to the spurious mapping of crustal seis-
mic signatures into the underlying mantle (Boschi & Ekström 2002;
Ferreira et al. 2010; Panning et al. 2010). Some studies (Shapiro &
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Ritzwoller 2002; Visser et al. 2008b; Khan et al. 2009; Shen et al.
2013a,b) attempt to circumvent this difficulty by allowing slight ve-
locity and Moho depth variations with respect to an a priori crustal
model.

Our region of interest is the transition zone (i.e. between 350 and
1000 km depth), and an original strategy is followed for the crust
and the uppermost mantle. Due to the heterogeneous mineralogical
content of the 0–350 km depth region and the inadequacy of equa-
tion of state applied at lithospheric P–T conditions, only VS and
ξ are jointly inverted above 350 km, as many tomographic studies
do. This means that the stage which consists in using temperature
and Birch–Murnaghan EOS and anisotropy to secondly interpret
seismic models, is not implemented in this depth range. The refer-
ence model of the crust and the uppermost mantle only constrains
the parameter range and its choice does not constrain the inverse
scheme such as in the inversions based on perturbation theory. To
assure a scale invariant parametrization (Tarantola 2005), we adopt
a log(VS/VS0 ) parametrization, between 0 and 350 km depth. The
reference velocity, VS0 , can take any arbitrary value. We use scal-
ing relations based on the experimental study of Isaak (1992) to
compute VP and ρ profiles.

From 1500 km depth down to the centre of the Earth, the seismic
values are those of the PREM, but the deepest point in the inverted
region is set to 1000 km. This defines a 500-km-thick region within
which the continuity between the seismic profile in the transition
zone and in the PREM below is ensured. This means the temperature
at 1500 km depth has to be set but various numerical experiments

show that this value does not influence the results in the region of
interest (350–1000 km).

4.2 Prior information

The inverted parameters are the vectors corresponding to the Bézier
points for shear velocity (VS), temperature (T), and radial anisotropy
(ξ ), and the depths at which these Bézier points are located (zVS , zT

and zξ ). The vector of all inverted parameters can be written as
p = [VS, T, ξ , zVS , zT, zξ ]. Various amounts of control points, which
construct temperature Bézier curves (see Section 2.2), are used to
allow a large sampling of the parameter space. Considering the
aforementioned boundary conditions, the model vector p contains
between 27 and 35 parameters, depending on the number of Bézier
points for temperature (Table 1).

The Bayesian formulation enables to account for a priori knowl-
edge, provided that this information can be expressed as a prob-
ability distribution P(p). One feature of the Bayesian inversion is
the possible tuning of the prior sampling. Here we choose minimal
prior information, which consists of uniform probability distribu-
tions in wide realistic parameter spaces. Following this statement,
the priors on the parameters are uniformly distributed over wide
domains (Fig. 2).

For the temperature, where priors need to be set only between
350 and 1000 km depth, the low-temperature bound corresponds to
the thermal state in a subducting lithosphere (Tagawa et al. 2007;

Table 1. Synthesis of the parameters constraining the localization of Bézier points.

T ξ VS

Number of Bézier points 6–10 7 5
Depth interval (km) 350–1000 0–1000 0–350
Minimal distance between two consecutive points (km) 80–10 40 20
Norm of the local tangent vector (km) 40–5 20 10
Maximal gradient between two consecutive points 5 K km−1

Figure 2. Illustration of a priori setting on the Bézier points used in both synthetic and real data inversions for temperature (T), shear wave velocity (VS) and
anisotropy (ξ ). Black stars represent the Bézier points. Dotted grey lines define 0 and 350 km depths. Black lines are the bounds of the model space. Embraces
indicate the depth ranges where the points are randomly sampled. The depth ranges for T, VS and ξ profiles are 350–1000, 0–350, and 0–1000 km depth,
respectively. The shear wave velocity VS2 at 350 km depth is computed according to the temperature T1.
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Ganguly et al. 2009), while the high-temperature bound is defined
by the dry solidus of a peridotite (Hirshmann 2000; Hirshmann et al.
2009).

For the anisotropy, inferred between 0 and 1000 km depth, the
domain bounds are set to 0.9 and 1.1. These bounds are chosen to
bracket the range of values obtained in recent surface wave studies
(Panning & Romanowicz 2006; Kustowski et al. 2008; Visser et al.
2008b; Khan et al. 2009, 2011). Even when radial anisotropy might
decrease with increasing depth, we do not shrink the domain range
in the deepest part of the model space.

Between the surface and 350 km depth, the seismic structure
is randomly sampled within the bounds of +10 per cent and
−10 per cent of the PREM (Dziewonski & Anderson 1981). The
seismic value at 350 km depth is not randomly sampled, but is com-
puted from the temperature value (since it is also the shallowest
point of the transition zone), owing to the thermodynamical law.
To prevent from an artificial discontinuity between the uppermost
mantle and the transition zone, the point located just above 350 km
depth is sampled in such a way that the VS gradient is between
±2.5 × 10−3 s−1.

The Bézier points are randomly located in depth, independently
for zVS , zT and zξ values within the prior domains.

Figs 3(a)–(c) represent the uniform prior distributions on the
Bézier control points (see Table 1 for details), and Figs 3(d)–(f)
enhance the resulting prior probability distributions on the temper-
ature, and anisotropy and uppermost VS models, respectively, fol-
lowing eqs (6) and (7). Note that the continuity of the Bézier curves
modifies the former uniform sampling of the parameter space using
discrete control points.

To be consistent with the data resolution power, minimal distances
are set between two consecutively randomly sampled Bézier control
points. This leads to unsampled regions, near the depth bounds (red
lines), visible in Figs 3(a)–(c).

4.3 The McMC algorithm within a three-step exploration

In the McMC algorithms, new models are proposed by randomly
perturbing the previously accepted model. Here, the sampling of
the parameter space is performed using a continuous proposal func-
tion and the stepsizes of the exploration depend on each parameter
(VS, T, ξ , zVS , zT and zξ ). For instance, defining the t-th and the (t
+ 1)-th value of a parameter p, as pt

i and pt+1
i , respectively, then

the subsequent step may be defined as pt+1
i = pt

i + wt
i , where wt

i

is the t-th stepsize, randomly sampled from a normal distribution
with zero mean. A Gaussian probability density distribution, centred
at pt

i ,

q
(

pt+1
i

∣∣pt
i

) = 1

θi

√
2π

exp

[
−1

2

(
wt

i

θi

)2
]

, (13)

is classically used to randomly sample the pt+1
i , where θ i is the

standard deviation of the Gaussian distribution. If pt+1
i is out of the

prior bounds, then the random walk reflects on the edge to respect
the equirepartition of the proposal distribution. A proper choice for
the θ i value mostly affects the efficiency of the exploration and
therefore the computing time, but it does not influence significantly
the posterior probability distribution (MacKay 2003). For normal
distributions, an optimal jumping rule produces an acceptance rate
of about 23 per cent for multidimensional problems (Gelman et al.
2003).

To perform a comprehensive and efficient sampling of the param-
eter space within a reasonable computation time, the parallel pre-

disposition of the algorithm (Rosenthal 2000) enables us to propose
an unusual split of the inversion scheme into three steps. Indeed,
each chain can be conveniently placed on an independent processor
of a parallel computer system. The two first steps look for a family
of the best-misfit configurations of the parameters, and the statistics
are performed during the third step, named ‘stationary period’. The
overall inversion scheme takes about 2 days on a parallel computer
system. During the first step, the standard deviations (θ i) are chosen
to be large enough to explore a large part of the configuration space.
A great number of chains (1600 in the presented inversions) are
placed on a parallel computer system, and hence each chain runs
on an independent processor. The chains start from a different state
and follow different paths in the parameter space. At each iteration,
the synthetic data computed from the given configuration is tested
against the real data by computing the misfit (eq. 10). First, the
previously described procedure (see Section 3) is used to simulta-
neously explore all models providing that, at each iteration, a whole
set of randomly sampled trial models is tested, up to a uniform sam-
pling of the parameter space. As stated previously, various amounts
of temperature control points are used to not a priori fix the sam-
pling of the parameter spaces. This step is stopped after 6 × 103

iterations and the best-misfit configuration is then determined for
each independent chain.

One of the major issues when using McMC exploration is to know
which iteration rank is to estimate the number of iterations needed
to achieve statistical convergence of the procedure. Practically, it
can be however disabling, with respect to the computation time,
to stop the iterations at any time. For this reason, the second step
restarts with the parameter configuration which gives the best misfit
during the first step.

Only the 20 per cent best-misfit configurations of all the chains
are selected for the second step to refine the results. The second
step is done, again using the same McMC procedure during 6 × 105

iterations, using thinner Gaussian distributions for the parameter
sampling but, this time, modifying only one couple of parameters
at each iteration. The strategy of perturbing only one couple at a
time ensures to preserve most of the characteristics of the current
model, which may have resulted in a good data fit. This induces
an increase of the acceptance rate (∼20–25 per cent) while keeping
a large-scale exploration of the models. The perturbed model for
the next iteration, (VS, zVS ), (T, zT) or (ξ , zξ ), is randomly sampled.
McMC methods estimate the posterior density distribution after
a ‘burn-in’ period, which is necessary to loose the memory of the
initial configuration (starting model). The second step of our method
can be considered as this ‘burn-in’ stage. Here the originality is to
restart the Markov chain after the ‘burn-in’ period using the best-
misfit configuration, instead of the last one.

The ‘stationary period’ starts after the computation of the best-
misfit configurations during the second step. Only 5 per cent of these
configurations, with respect to the 1600 chains considered for the
first step, are engaged in the third step. Each chain runs for 6 × 105

iterations in total. The amount of Bézier control points is the same
as the one randomly chosen at the beginning of the second step,
and since many Markov chains are started in parallel with various
amount of Bézier points, the amount of parameters for temperature
is also a parameter itself, which gives some common features with
the reversible jump approach (Green 1995; Green & Mira 2001;
Bodin & Sambridge 2009; Bodin et al. 2012). Only the 4.8 millions
of models sampled during the ‘stationary period’ are used to com-
pute the probability density functions (pdfs). This procedure should
guarantee that the samples are less correlated as well as leading to
a better coverage of the probability distribution. Another advantage
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Temperature and anisotropy in the TZ 1171

Figure 3. Marginal probability density functions (pdf) for temperature (left), shear wave velocity (middle) and anisotropy (right), considering that all the
sampled models which are in good agreement with a priori information are accepted. The results are shown for the discrete values of the parameters (top row)
and for the 1-D models (bottom row). Red and blue colours show high and low probabilities, respectively. Black lines represent the minimum and maximum
parameter values allowed. The pdf values for the parameters are computed by counting the number of Bézier points in each cases. The sizes of the cases for T,
VS and ξ are 25 K × 5 km, 0.01 km s−1 × 2 km and 0.005 × 5 km, respectively. The pdf values for the 1-D models are computed by counting the number of
curves in each parameter interval at each depth. For a given depth, the sum of the pdf over all the parameter intervals is equal to 100 per cent.

of our method is that, since the chains are preconditioned, thanks to
the two first steps, the beginning of the ‘stationary period’ is well
defined and does not need any statistical assessment.

5 I N V E R S I O N O F S Y N T H E T I C DATA

In this section we show how we test our method, using synthetic
data. Tests on synthetic data are useful to evaluate the robustness

of the method and to highlight some features which could be found
on real data, considering real uncertainties on dispersion curves.
We also discuss the question of how to interpret the results by the
analysis of the posterior distributions. The results demonstrate the
potential of the inversion method to detect and decorrelate first-
order variations of temperature in the transition zone, shear wave
anisotropy between the surface and 1000 km depth, and shear wave
velocity in the crust and the upper mantle.
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5.1 Input models

Synthetic data are computed for known temperature and anisotropy
models. A pyrolitic composition is considered because it is the most
widely accepted model of mantle composition, and generally com-
patible with a large range of petrologic, geochemical and seismic ob-
servations (Ringwood 1975). The iron number (xFe = Fe/(Fe+Mg),
where Fe and Mg indicate the bulk molar abundances) is assumed
to be constant throughout the whole transition zone and is set
to 0.11.

To illustrate the different features of the algorithm, we choose two
synthetic models represented in Figs 4 and 5. The 1-D profiles are
plotted with black lines and the corresponding Bézier points with
black stars. We choose temperature models far from an adiabatic
profile (dashed lines in Figs 4h and 5h), to demonstrate the ability
of the algorithm to detect strong temperature variations. The model
1 is created in such a way that the perturbation on phase velocities
produced by temperature variations compared to an adiabatic pro-
file is two times larger than the perturbation caused by anisotropy.
Second, we investigate with model 2 the question of whether or not
the anisotropy in the transition zone can be detected by putting a
shear wave anisotropy anomaly at 500 km depth.

The number of parameters used and the constraints for the Bézier
curves computation are shown in Table 1. To fully investigate the
robustness of the method, a relative freedom is given for the placing
of temperature parameters, setting the maximal gradient between
two consecutive points to 5 K km−1. We sample 4.8 millions of mod-
els during the ‘stationary period’. To eliminate dependent samples
in the ensemble solution because only one couple of parameters is
modified at each iteration, every 40th visited model is selected for
analysis.

Synthetic data are Love and Rayleigh surface wave dispersion
curves of the fundamental mode and the first three overtones. They
are computed from the input models with the forward method de-
scribed in Section 2. We use in average 35 periods per mode, cov-
ering the 45–273 s period range. Realistic uncertainties taken from
Beucler et al. (2003) are used and they vary between 0.04 and
2.4 per cent of the synthetic phase velocity values.

5.2 Characterization of posterior results

Since the posterior pdf is thought as the solution to our inverse prob-
lem, our main concern is now the analysis of the distributions. Due
to the interpolation from the discrete Bézier points to the continuous
1-D profiles, uniform distributions of Bézier points do not lead to
uniform distributions on 1-D profiles (Fig. 3). Consequently, results
must be taken with care and other representations, in addition to
colour density plots, are necessary to fully investigate the results.
There is no unique way on visualizing the system under study. Thus,
the results presented here reflect the particular parametrization
chosen.

Before discussing the results shown in Figs 4 and 5, the four
different sorts of representations used to analyse the distributions
are detailed.

(1) The distribution of the Bézier points and its pdf (Figs 4a, e,
i, for instance). This figure reveals the regions of the model space
where the parameters are spread or narrowed. The depth of the
Bézier points is not a priori fixed, so this representation is useful
to investigate if the points are concentrated around some specific
depths. The pdf gives an additional information about the most

sampled regions. The drawback is that we cannot see which points
are linked together to form a 1-D profile.

(2) The distribution of the Bézier points and the misfit values
(Figs 4b, f, j). The information provided by the misfit is usually
disregarded in Bayesian studies, as the theory relies on probabilities
based on the repetition (or not) of certain values of the parameters.
However, the misfit is the only quantitative expression indicating if
the tested model is closed to the expected one. This figure allows
to be sure that the algorithm was not trapped in a local minimum.
Theoretically, the regions of low misfit values should match with
regions of high probabilities.

(3) Some models randomly taken in the ensemble models and
the four best-misfit models (Figs 4c, g, k). Mosegaard & Tarantola
(1995) encourage this kind of representation. Here we consider a
very small subset of models (20 models) and it cannot be used to
infer statistical properties, but it is useful to visualize the diversity
of the sampled models and to detect the depths which are the best
resolved. In general, the 1-D models show different features, but
all give a good fit to the data. For the synthetic tests, the profiles
corresponding to the four best misfits are in general very close to
expected model.

(4) The pdf of the Bézier curves (Figs 4d, h, l). This representa-
tion is the most widely employed. Using continuous Bézier curves,
1-D marginals of T, ξ and VS can be computed at each depth. The
juxtaposition of the histograms gives a 2-D density probability map.
This figure provides an overview of the most frequently sampled
paths, but has a tendency to smooth the results.

5.3 Results

The results of the probabilistic inversion of model 1 and 2 are shown
in Figs 4 and 5, respectively. Labels are placed on figures to make
easier the visualization of some particular features discussed in the
following.

5.3.1 Temperature

Concerning temperature, both Bézier curves distributions contain
the input models. Bézier points are scattered around the profiles,
with high density values of points in the vicinity of the profiles. The
misfit values are low for the Bézier points located along the profiles
to retrieved. The highest density values coincide with temperature
extrema (labels ). The pdfs are sharper between 350 and 600 km
depth than in the rest of the transition zone. The marginal probabil-
ities of model 2 at 410 and 660 km depth are compared in Fig. 6. At
410 km depth, the temperature to retrieve is, without ambiguity, the
most frequently sampled, while it is not so visible at 660 km depth.
In Figs 4(g) and 5(g), the best-misfit profiles are all relatively close
to the true models. The profiles randomly taken in the ensemble
solution are oscillating around the input models between 600 and
800 km depth (labels ) and around 900 km depth (labels ). At
these depths, the Bézier points are the most scattered. The distribu-
tions of Bézier points are narrower just above 1000 km depth due to
the a priori PREM connection condition at 1500 km.

We performed an inversion with the same models but considering
that the Earth is only composed of pure olivine, without phase
transition, and we found a narrower distribution in the middle of
transition zone. In this case, the pdf takes nearly the same value down
to 800 km depth, suggesting that the relative broader distribution just
below 600 km depth for models 1 and 2 are due to mineralogical
transformations in both olivine and pyroxenes–garnet subsystems.
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Temperature and anisotropy in the TZ 1173

Figure 4. Results of the probabilistic inversion for the synthetic model 1 for VS (top), T (middle) and ξ (bottom). Black lines and black stars show the models
to retrieve and the corresponding Bézier points. Thick black lines are the prior bounds. (a), (e) and (i) show the Bézier points accepted during the McMC
exploration. Colour lines represent the corresponding pdf. (b), (f) and (j) display the Bézier points and the misfit values. Blue and red colours are high and low
misfit, respectively. Misfit values are scaled according to the highest and the lowest values encountered. (c), (g) and (k) show in grey a random subset of 20
models taken in the ensemble solution, which contains 120 000 models. Red lines are the profiles corresponding to the four best misfits. (d), (h) and (l) are
colour density plots of 1-D profiles. Dashed lines in (h) show the 1600 K adiabat considering a temperature gradient of 0.4 K km−1. The squared labels refer
to special comment, see Section 5.3 for details.
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1174 M. Drilleau et al.

Figure 5. Same as Fig. 4 but for model 2.

In return, the oscillations below 800 km remain like in the case of a
pyrolitic model, and are attributed to the decrease of surface waves
sensitivity.

Fig. 7 emphasizes that models with different attributes are able
to describe the same data, accounting for data uncertainties. This

figure represents the pdfs of the phase velocity distributions of all
the sampled models for the inversion of model 2. Fig. 7 clearly
enhances that all the sampled models fit the synthetic data within
their uncertainty bounds. Only the fundamental mode and overtones
of Love waves are shown, but Rayleigh branches are seen to be fit
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Temperature and anisotropy in the TZ 1175

Figure 6. Prior (in black) and posterior (in grey) marginal probabilities of
Bézier curves on temperature at 410 and 660 km depth for model 2. Input
values are shown in red (1951 K at 410 km and 1987 K at 660 km). Intervals
are 20 K wide.

within uncertainties too. Models on Figs 4(g) and 5(g) individu-
ally highlight different temperature structures of the mid-transition
zone, but nonetheless are models that all produce a good fit to the
synthetic data. This good agreement between synthetic and tested
data reinforces the method employed here of elucidating the tran-
sition zone interior from a big number of models, rather than just
adopting the 1-D profile belonging to the region of highest probabil-
ity as the prevalent one (Figs 4h and 5h), and inferring the transition
zone structure straight from this.

The number of Bézier points selected for each chain of the ‘sta-
tionary period’ is summarized in Table 2. Model 1 and model 2 are
composed of 6 and 7 Bézier points, respectively. The right number
of points is not the most frequently used. The percentage of sam-
pled models is nearly equivalent for each number of Bézier points,
which means that the number of points is not decisive because the
parameters’ depth is not a priori fixed. When the number of points
is too high than the expected one, Bézier points are placed along the

Table 2. Number of Bézier points selected for the ‘stationary period’
(per cent).

Number of Bézier points 6 7 8 9 10

Model 1 (6 points) 18.75 17.50 23.75 27.15 12.50
Model 2 (7 points) 22.50 20.00 18.75 18.75 20.00

Vanuatu–California 22.50 16.25 25.00 18.75 17.50

Bézier curve to retrieve and the form of the 1-D profile expected is
preserved.

5.3.2 Radial anisotropy

Figs 4(l) and 5(l) show that the distributions of Bézier curves are
in very good agreement with the expected profiles. Both anisotropy
perturbations at 200 and 500 km depth, for models 1 and 2, respec-
tively, are retrieved at the right depths (labels ). Figs 4(j) and 5(j)
show two clusters of low misfit values at these depths, which means
that dispersion curves are sensitive to anisotropy variations in the
upper mantle as well as in the transition zone.

The subset of 1-D models is nearly similar to the input models
down to 750 km depth for model 2. Below this depth, some 1-D
models are oscillating around the value of one (labels ) and the
Bézier points fill nearly the entire parameter space. Even though
some points are far from the Bézier curves to retrieve, the corre-
sponding misfit values can be relatively low (label ). The same
behaviour is observed for model 1, where the points are getting
wider as a function of depth symmetrically around ξ = 1. Accord-
ing to sensitivity kernel theory, the fundamental mode and the first
overtone are very sensitive to the first 200 km of the Earth. Higher
modes enable to enhance the resolution down to 1000 km depth,
but to a lesser extent, which explains the broader distribution of
Bézier points below 700 km depth, as for temperature. Our results
demonstrate that the probabilistic inversion method employed here

Figure 7. Posterior phase velocity distributions of Love fundamental mode and overtones of model 2. Results are shown in percentage of phase velocities
(C) compared with phase velocities of model 2 (Cref). Black curves are uncertainties on phase velocities. For long periods, uncertainties are large and are not
displayed.
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presents a clear potential to detect radial anisotropy in the transition
zone, if any.

5.3.3 VS in the uppermost mantle

Figs 4(d) and 5(d) show that VS profiles in the uppermost mantle are
well retrieved for both cases, even when the input profile is close
to the prior bounds, like for model 2 (label ). Strong changes
of VS gradient are well characterized by clusters of Bézier points.
At 50 km (model 1) and 80 km depth (model2), where the slope
change is the strongest, we observe a correlation between the depth
of the Bézier points and VS values (labels ). This trade-off means
unsurprisingly, that the data are fit equally well when the disconti-
nuity is deeper and VS is higher, and vice versa. This illustrates the
limitation of the resolving power of the data. The other points are
located along the Bézier curves to retrieve.

The points are more concentrated than for T and ξ results and are
less numerous, which means that VS parameters were already close
to the expected values at the end of the second step of the three-step
exploration (see Section 4.3), and that the algorithm did not need
to change them too much during the ‘stationary period’. The well-
constrained VS profiles are in good agreement with the fundamental
mode sensitivity to the shallowest part of the Earth. Fig. 7 shows
that fundamental mode error bounds are very thin (between 0.04
and 0.065 per cent) within the 50 to 100 s period range, which means
that the misfit is significantly improved when the VS profile is close
to the true one.

6 R E A L DATA

Our non-linear algorithm is used to determine the average tem-
perature and anisotropy distributions under the Vanuatu–California
path, which has been the focus of several previous studies (e.g. Cara
1979; van Heijst & Woodhouse 1997; Beucler et al. 2003).

6.1 Data and a priori conditions

The data set we analyse is made of Love and Rayleigh phase veloc-
ities up to the third order of Visser et al. (2008a). Phase velocity
measurements were obtained using a model search approach (Visser
et al. 2007), yielding consistent uncertainties between all the mea-
surements. We use a total of 107 distinct phase velocities as function
of period that we invert jointly for a thermal and radial anisotropy
structure along a great circle. The period range investigated is 35–
175 s and uncertainties are between 0.29 and 0.77 per cent of phase
velocities. The bulk and shear dissipations are specified as in PREM.
Pressure profile remains fixed to the PREM values, and a pyrolite
composition is considered. The expected temperature gradient in
the mantle is 0.4 K km−1 (Katsura et al. 2010), but we let a large
freedom in the location of the Bézier points by fixing the value
of ±1.5 K km−1 to the maximal gradient between two consecutive
points.

Prior boundaries are slightly different of the ones used with syn-
thetic tests. Considering previous studies, a strong positive radial
anisotropy is expected under the Pacific Plate (Ekström & Dziewon-
ski 1998; Kustowski et al. 2008; Nettles & Dziewonski 2008; Khan
et al. 2009). Consequently, we extend the upper bound of ξ to 1.3
instead of 1.1. Because the path under study is oceanic, high seis-
mic values are expected in shallow layers and we allow a wider
range of seismic velocities for the first 25 km. Setting relatively
large bounds prevents from compensation effects between the dif-

ferent sets of parameters because several parameters cannot reach
adequate values.

6.2 Results

6.2.1 Temperature distribution

Figs 8(e)–(h) show that the temperature distribution is globally close
to an adiabat. As for synthetic tests, the Bézier points are spread at all
depths and the profiles do not depend on the number of points used
(see Table 2). The temperature is particularly well defined between
350 and 550 km depth, where the pdfs are the highest (Figs 8e and
h). The distribution is more scattered in the mid-transition zone,
between 550 and 750 km depth.

In Fig. 8(g), three kinds of profiles can be distinguished. The
first family (referred as profiles 1 in red) is nearly adiabatic and
is very close from the median of the distribution (in blue). The
temperature gradient of the median profile is about 0.22 K km−1,
which is slightly lower than the supposed one in the mantle. When
the temperature values are extrapolated to the surface, a potential
temperature of about 1600 K is obtained. The second (in green)
and third (in purple) families of models are characterized by an
increase and a decrease of temperature, respectively, with respect to
the median profile.

Although the pdf of Bézier curves appears to be smooth and uni-
modal between 550 and 750 km depth (Fig. 8h), the statistic results
on Bézier points (Fig. 8e) enhance two distinct clusters (labels
and ), also visible with misfit values (Fig. 8f). They can be as-
similated to the families 2 and 3. All the results gathered together,
it seems that both high and low temperatures in the mid-transition
zone are able to fit the data within uncertainties, as shown in Fig. 9.

6.2.2 Radial anisotropic structure

Between the surface and 350 km depth, a strong positive (VSH >

VSV) anisotropic signal nearly equal to 1.05 is revealed. It seems
to be a robust feature because Bézier points are all concentrated
around this value (Figs 8i and j). This result is different from the
PREM but the shear wave anisotropy structure retrieved here con-
curs with upper-mantle results obtained from recent whole mantle
seismic tomographic studies. The origin of this anomaly is not well
understood, though several authors have proposed that this region of
anisotropy corresponds to a flow channel at the boundary between
the lithosphere and asthenosphere (Gaboret et al. 2003; Gung et al.
2003). The apparently strong anisotropy that is depicted near the
surface might be due to the inability of surface waves to resolve
the details of shallow crustal layers at low frequencies (Backus &
Gilbert 1962; Fichtner et al. 2013). Between 350 and 450 km depth,
the signal amplitude of anisotropy is decreasing as a continuous
fashion as the transition zone approached. The distribution is cen-
tred around a value of one down to 1000 km depth. As we observed
with synthetic tests, the distribution of Bézier points is broader
below 700 km depth, due the decrease of surface waves sensitivity.

Several models (Fig. 8k) show slight oscillations around ξ = 1 at
depths deeper than 400 km (labels in Fig. 8k and in Fig. 8j).
The marginal distributions of ξ at this depth is represented for Bézier
points and Bézier curves in Fig. 10. Both histograms clearly show
that ξ ∼ 1 is the most probable value. The case for a slight (∼0.97
at most) negative shear wave anisotropy (VSH < VSV) below 400 km
depth, as observed by Montagner & Kennett (1996), Panning & Ro-
manowicz (2006) and Visser et al. (2008b), is not substantiated here
and our results indicate that the transition zone is nearly isotropic.
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Temperature and anisotropy in the TZ 1177

Figure 8. Same as Fig. 4 but for the Vanuatu–California data. Dashed lines in (c), (d), (k) and (l) are PREM values. Dashed lines in (g) and (h) show the
1600 K adiabat considering a temperature gradient of 0.4 K km−1. Blue lines in (c), (g) and (k) are the median profiles of the distributions.

6.2.3 Seismic velocities and density

We describe as in the synthetic tests, the results of the primary pa-
rameters of the inversion scheme, that is, VS between the surface
and 350 km depth (Figs 8a–d). Moreover, the derived physical prop-
erties from the temperature distribution are discussed, in the form of

S- and P-wave velocities and density distributions of the transition
zone (Fig. 11), since these parameters are also determined during
the whole direct problem.

VS in the uppermost mantle. At the surface, VS values are globally
large compared to PREM and are consistent with an oceanic path.
Unlike synthetic tests, all depths are sampled with Bézier points
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Figure 9. Same as Fig. 7 but for the Vanuatu–California data. White dots are phase velocities of the median profiles plotted in Fig. 8.

Figure 10. Marginal prior (in black) and posterior (in grey) distributions of
Bézier points and Bézier curves for shear wave anisotropy at 450 km depth.
It concerns the Vanuatu–California path. Intervals are 0.01 wide.

(Figs 8a and b). This is due to larger data uncertainties, which allow
the algorithm to accept wider configurations of Bézier points.

Between 50 and 150 km depth, VS is smoothly decreasing, and
can be considered to be a low-velocity zone extensively described
before under oceans (e.g. Gaboret et al. 2003; Gung et al. 2003;

Nettles & Dziewonski 2008). A change slope that we assimilate to
the Lehmann discontinuity occurs between 200 and 300 km depth.
This feature is clearly visible on Bézier points, where they split into
two branches (label ). Precise agreement is not warranted here
as surface wave data are not as sensitive to the exact location of
discontinuities as are converted or reflected phases, for example.

VS, VP and ρ in the transition zone. The VS, VP and ρ distribu-
tions plotted in Fig. 11 are computed using the forward problem as
detailed in Section 2.1.

In the upper half of the transition zone (between 400 and 520 km
depth), P- and S-wave velocity distributions are found to be larger
than the PREM, while in the lower part P- and S-waves velocities
are slightly lower, implying an overall steeper velocity gradient in
this region. The density distribution agrees with PREM between
the transformations ol→wad and wad→ring. At the latter, density
increases and become more than PREM.

The depth where the phase transition ol→wad occurs is similar
to the one of PREM, roughly at 400 km depth. The temperature the
most frequently sampled at this depth is ∼1650 K, within the range
that is expected for this transition from high-pressure experiments,
that is, ∼1750 ± 100 K (Ito & Takahashi 1989). A striking feature
is the magnitude of the seismic jump near 400 km depth of our VS

and VP distributions, relative to PREM. This discrepancy between
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Temperature and anisotropy in the TZ 1179

Figure 11. Probability maps of (b) VS, (c) VP and (d) ρ as a function of depth for the Vanuatu–California data. The abbreviations in (d) stand for ol, olivine;
wad, wadsleyite; ring, ringwoodite; pv, perovskite; mgw, magnesiowustite: (a) shows in grey a random subset of 20 models in the ensemble solution and in
colour the four models corresponding to the best misfits. Dashed lines are PREM values.

the results based on elastic modulii taken from laboratory exper-
iments and global models was already noted by Stixrude (1997),
Cammarano et al. (2003) or Katsura et al. (2004) for a pyrolitic
composition. The amplitude of the discontinuity could be reduced
considering a less olivine-rich mineralogical model (Duffy et al.
1995). Instead, the amplitude of the seismic discontinuities may be
underestimated in the global seimic models (Shearer 2000), which
may be due to finite frequency effect of seismic waves (Jackson
1998). However, as the data considered here are less sensitive to the
location and size of the discontinuities, we leave it for further study
to investigate this discrepancy.

The phase transition wad→ring (the 520-km discontinuity) is not
present in PREM. There is no jump near 520 km depth concerning

the VS distribution, but it appears in the density distribution, where
the jump occurs between 490 and 520 km depth. The VP distribution
shows a slightly low-velocity zone around 500 km depth. This be-
haviour is linked to the particular values chosen for the wadsleyite
and ringwoodite elastic modulii and their derivatives with respect
to temperature and pressure, and was already noted by Cammarano
et al. (2005).

Between 600 and 700 km depth, the distributions are more com-
plicated. The inverse problem is highly non-linear, and hence the
posterior is far from being an unimodal Gaussian distribution. To
illustrate this, we plot in Fig. 12 the marginal distributions for VS at
655, 660 and 665 km depth. The 660 km histogram has two max-
ima, which means that the marginal distribution is influenced by
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Figure 12. Marginal posterior distributions for VS at 655, 660 and 665 km depth (i.e. around the transformation of ringwoodite into perovskite and magne-
siowustite). Intervals are 0.02 km s−1 wide. The distribution is clearly influenced by both VS values taken above and under the discontinuity.

velocity values above and below the discontinuity. Looking at
Fig. 11(a), the mineralogical transformation of ringwoodite to per-
ovskite and magnesiowustite occurs over a wide depth range above
the PREM discontinuity. In Fig. 11(a) are plotted the VS profiles
corresponding to the three families of temperature profiles shown
in Fig. 8(g). Because the ring→pv + mgw transformation is en-
dothermic (e.g. Ito & Takahashi 1989), the coldest model (profile
3) has the deepest discontinuity, and the hottest (profile 2) has the
shallowest one.

Just below 700 km depth, an additional transition to higher ve-
locities is observed on several models in Fig. 11(a), due to other
phase transformations in the pyroxenes–garnet subsystem. Deeper,
S- and P-wave velocities are equal or slightly higher than PREM,
but the density is higher by about 1.7 per cent.

6.3 Effect of the Clapeyron slope at 660 km depth on the
temperature distribution

The distribution of the Bézier points defines three possible profiles
of temperature. They are displayed in Fig. 13, along with stability
range of the olivine polymorphs (in black) and Mg-perovskite and
magnesiowustite (in pink). The limit between the latter domains
clearly coincides with the Clapeyron slope (dP/dT) used in this
study, �660 = −2.8 MPa K−1 (Ito & Takahashi 1989).

To illustrate the covariance between temperature and composi-
tion, we further investigate the effect of the Clapeyron slope on the
temperature distribution, by setting its value to �660 = 0 MPa K−1.
Then, the transformation occurs instantaneously when the temper-
ature profiles cross the limit of 24 GPa (Fig. 13). The results for
VS and ξ distributions are very similar to the ones obtained with
�660 = −2.8 MPa K−1 (not shown here), and no trade-offs between
VS, T and ξ were obtained. The temperature results are displayed in
Fig. 14. Although the distribution is similar to the one of Figs 8(e)–
(h) down to 500 km depth, a �660 = 0 MPa K−1 implies a tempera-
ture decrease in the mid-transition zone. If the best-misfit profiles
(Fig. 14c) are compared to the three families of profiles (Fig. 13),
we observe that only family 3 is preserved. The results of this test
enhance that the temperature values that are inverted close to seis-
mic discontinuities depend on the priors on the composition and
thermodynamical parameters.

7 C O N C LU S I O N

In this paper, we present a new method combining thermodynamical
laws with a non-linear inversion scheme to infer radial distributions

Figure 13. Distribution of Bézier points for temperature. When the thermo-
dynamic conditions favour the olivine polymorphs, the points are plotted in
black, and when perovskite and magnesiowustite are created, the points are
shown in pink. �660 refers to the Clapeyron slope value.

of temperature in the transition zone, shear wave anisotropy in the
mantle and shear wave velocity in the crust and in the upper mantle
from seismic surface wave data. This method was used to invert fun-
damental and higher-order Love and Rayleigh dispersion curves (up
to the third overtone). This was done with an McMC algorithm, that
is, by performing a random walk in a multidimensional model space
that combines prior information with misfit to the data from model
parameters. Input to the algorithm were random models generated
according to the prior distribution and the likelihood function. As
output we assimilated random realizations of the posterior distribu-
tion. We chose to invoke as few prior constraints as possible to gauge
which particular feature is most probable, given data and a priori
information. In our approach, size and location of discontinuities
in seismic properties are modelled in a physically realistic manner,
as their variations depend on composition and physical conditions
of the particular model being considered. The use of Bézier points
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Figure 14. Same as Fig. 8 but for the Vanuatu–California data, considering a Clapeyron slope equal to zero for the ringwoodite to perovskite and magnesiowustite
transformation. Dashed lines in (b) are the contours of the Bézier points distribution displayed in Figs 8(e) and (f).

as models parameters, whose depths are not a priori fixed, consti-
tutes an adaptive parametrization that allows a great flexibility in
the exploration of the model space.

We tested our algorithm with synthetic and real phase averaged
velocity dispersion curves. We furthermore give some examples of
how to investigate the sampled models. The results show that the
data are sensitive to temperature and shear wave anisotropy in the
transition zone. As for radial anisotropy, the picture that emerges
of the Visser et al. (2008a)’s data is in overall accordance with
other studies, that is a strong shear wave anisotropy in the upper
mantle and a roughly isotropic behaviour in the transition zone. Im-
provements on phase velocities uncertainties are surely welcome to
discriminate whether or not a significant sign change really occurs
below 400 km depth. The temperature distribution is nearly adia-
batic with a gradient of 0.22 K km−1 and a potential temperature of
1600 K, but is relatively complex between 600 and 700 km depth,
which means that the thermal structure of the transition zone cannot
be reduced to a unique 1-D profile. In addition, we observed that
the temperature distribution is very sensitive to the choice of the
Clapeyron slope of the ring→pv + mgw transformation.

The range of reported Clapeyron slopes for the perovskite-
forming reaction is wide: −3.0 (Ito & Takahashi 1989) to
−0.2 MPa K−1 (Litasov et al. 2005). A further study would be to
evaluate the effects of the Clapeyron slope on our inferred temper-
ature distribution by considering �660 as a parameter in itself. We
tested for a joint inversion of temperature and mineralogy for syn-
thetic data, but posterior distributions of volume fractions of mantle
minerals was always very close to the prior distributions. Olivine
and pyroxenes exhibit a nearly identical mechanical behaviour, and
cannot be distinguished on the basis of seismic data only. Given the
generality of our formulation, additional independent data sets such
as electrical conductivity and anelasticity properties, can easily be
incorporated to separate the effects of temperature and mineralogy
(e.g. Verhoeven et al. 2009).

McMC methods in seismology are promising, and offer a nice
alternative to deterministic methods which tend to find a model
which lies close to its start. The main restriction is the computational
cost. In spite of this limitation, since the proposed algorithm is
a direct parameter search, the forward calculations are separate

routines independent of the main algorithm, and hence they can be
easily replaced by alternative algorithms.
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