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HIGHLIGHTS 

Pentacyclic triterpenyl acetates occur in soil 

The literature indicates they are discriminant biomarkers for Asteraceae. 

Their potential as chemotaxonomic tracers in palaeoenvironmental studies is discussed 



ABSTRACT 

As a part of a wider study aimed at determining new molecular biomarkers in 

soils and sediments that could be specific for distinct vegetation types with respect to 

unravelling past changes in land use, we analysed the neutral lipid content of soil 

developed in the catchment of a small lake in central France. The ketone/acetate lipid 

fraction of soil under pasture or meadow contained a series of pentacyclic triterpenyl 

acetates with a wide structural diversity, most being reported in soil for the first time. 

The restricted number of potential plant sources of triterpenyl acetates (some produced 

by a single species) underlines the potential of triterpenyl acetates as new biomarkers to 

track past vegetation change in palaeoenvironmental studies, when found in natural 

archives such as soil, sediments or peat. 
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1. Introduction  

Understanding ecosystem response under natural (climatic) and anthropogenic 

constraints is of crucial importance for anticipating the consequences of current global 

change (Dearing, 2006). Land use changes have direct consequences for the budget of 

greenhouse gases at the global scale. At a more local scale, it has been demonstrated 

that soil properties result from a long history of land use (Hurtt et al., 2006). The 

reconstruction of recent land use change can be approached through historical archives. 

For example, the impact of drastic land use change on biodiversity is particularly well 

documented for the middle mountains of the French Massif Central during the twentieth 

century (Chassagne, 1956; Antonetti, 2006).  



With respect to more ancient times, the scarcity of reliable written sources 

necessitates an investigation of natural archives (lake sediments, peat and speleothems) 

in order to unravel past natural and anthropogenic impacts on environments. These 

environmental records retain information about such interactions in a well constrained 

time frame. Deciphering such interactions involves reconstruction of ancient land use 

via multidisciplinary studies (e.g. palaeoecology, archaeology, sedimentology; e.g. 

Berglund, 1991) that provide different and complementary information.  

While the potential of sediments as natural archives has largely been 

demonstrated, soil, although a fundamental substrate ofor human subsistence and direct 

support of agricultural practices, has not received comparable interest. Soil is known to 

be disturbed in terms of physical properties, organic matter (OM) content and thereby of 

fertility when affected by land use change (Rumpel et al., 2009). The after effects of 

such changes remain perceptible in terms of biodiversity, and of chemical and structural 

soil properties, at least at the historical scale (Dupouey et al., 2002). However, only a 

few studies have focussed on the direct recording of land use at the molecular level (e.g. 

van Bergen et al., 1997; Bull et al., 1998). These studies have shown that the lipid 

content is directly linked to the current overlying vegetation, since the major part of the 

soil lipids originates from plants and is well preserved (e.g. Dinel et al., 1990; van 

Bergen et al., 1997; Bull et al., 1998). This makes them a reliable tool as molecular 

biomarkers, i.e. as compounds preserved intact or slightly modified in natural archives 

(and aerosols), the structure of which allows unequivocal identification of their 

biological source (e.g. van Bergen et al., 1997; Oros and Simoneit, 2001a,b; Simoneit, 

2002, 2004; Killops and Killops, 2004). Such molecular markers benefit from 



increasing interest for studies dealing with vegetation change or human activity (e.g. 

Hjulström and Isaksson, 2009). 

Amongst these, pentacyclic triterpenes are of special interest for organic 

geochemists exploring the distributions of lipids in soil, sediments and peat as remnants 

of past vegetation. For example, those with a lupane, oleanane or ursane structure, as 

well as their diagenetic derivatives, in soil and sediments are classically used as tracers 

of angiosperms (Cranwell, 1984; Jacob et al., 2007). However, as a result of their wide 

structural (skeletal) diversity (oleanane, ursane, lupane, taraxerane…), potential 

isomerism and associated functional groups, several recent studies have shown that, in 

favourable cases, pentacyclic triterpenes can be discriminant for more constrained taxa. 

For example, Gramineae are the most common producers of pentacyclic triterpenes 

bearing a MeO group at C-3 (Ohmoto et al., 1970; Jacob et al., 2005; Zocatelli et al., 

2010). In particular, more specific relationships can be established, such as that 

allowing the linking of miliacin (olean-18-en-3-ol methyl ether) in sediments from 

Lake le Bourget (French Alps) to Panicum miliaceum (broomcorn millet) cultivated in 

the watershed (Jacob et al., 2008, 2009).  

Here we report the presence of a series of pentacyclic triterpenyl acetates in a 

soil developed under pasture in the catchment of Lake Aydat (Massif Central, France). 

Following description of the different compounds analysed by way of gas 

chromatography-mass spectrometry (GC-MS), we discuss their potential biological 

sources and finally evaluate their potential for palaeoenvironmental studies. 

 

2. Setting, materials and methods 

2.1. Location and general context  



Lake Aydat is ca. 25 km SW of Clermont-Ferrand, in the volcanic French Massif 

Central. The small catchment of the lake (ca. 30 km²) is at an altitude ranging from 825 

m (lake level) to ca. 1,300 m above sea level (a.s.l.). The tops of the volcanoes, the 

highest points, are covered by coniferous forest (mainly of Picea sp.), whereas the 

slopes are covered by pasture/grassland and, to a lesser extent, shrubs. The geology, 

relating mainly to a volcanic origin, led to the development of andisoils as a result of 

rapid chemical erosion in the presence of OM (Jones et al., 2005). Typically, a 

homogeneous organo-mineral sandy-silty horizon A developed above the C horizon. 

These slightly acidic soils are well drained and quite shallow (< 30 cm).  

 

2.2. Materials and methods 

A total of 35 soil samples were taken from the lake catchment in the autumn of 

2008. They represent the diversity of land use, as described above, and were collected at 

different altitude and orientation, so that each condition prevailing in the catchment was 

taken into account. In the absence of recognizable layers, soils were sub-sampled in 

slices 2 cm thick. The 0-2 and 2-4 cm depth slices were analysed in random order, since 

they were considered the most representative of the current vegetation cover. 

Samples were dried at 40 °C for 48 h in an oven, crushed in a mortar and sieved 

at 2 mm. An aliquot (ca. 2 g) of each was extracted by way of automatic solvent 

extraction with a Dionex® ASE 200 using CH2Cl2:MeOH (1:1). After removal of the 

solvent under N2, the extract was separated into neutral, acidic and polar fractions on 

aminopropyl-bonded silica as described by Jacob et al. (2005). The neutral fraction was 

further separated into aliphatics, aromatics, ethers and esters, ketones and acetates, and 

alcohols by way of flash chromatography with a Pasteur pipette filled with activated 



silica (24 h at 120 °C, then deactivated with 5% H2O) and using a sequence of solvents 

of increasing polarity. The fraction containing triterpenyl acetates and ketones was 

eluted with a mixture of hexane:EtOAc (9:1) and 5-cholestane was added prior to 

analysis via GC-MS with a TRACE-GCQ Polaris. The GC instrument was fitted with a 

Rtx-5MS column (30 m x 0.25 mm i.d., 0.25 µm film thickness; 5m column guard). The 

operating conditions were: 40 °C (1 min) to 120 °C at 30 °C min-1, then from 120° to 

300 °C (held 30 min) at 5 °C min-1. Samples were injected in splitless mode, with the 

injector at 280 °C. He was the carrier gas at a constant flow of 1 ml min-1. The mass 

spectrometer was operated in the electron ionization (EI) mode at 70 eV and scanned 

from m/z 50 to 600. Component identification was based on comparison of retention 

times and mass spectra with authentic standards. The concentration of triterpenyl 

acetates was estimated by measuring peak areas in ion chromatograms. After calculating 

a correction factor between the peak area on the specific ion chromatogram and the peak 

area on the total ion current (TIC) chromatogram, the TIC area of triterpenyl acetates 

was measured relative to that of the standard (5α-cholestane) and to the mass of sample 

extracted. The identification of all compounds, except isopichierenyl acetate, was 

confirmed using authentic standards. 

 

3. Results  

This study reports on the triterpenyl acetates in a single soil sample that showed 

the widest diversity among the 35 samples. Variation in the distributions, probably 

reflecting various changes in biological input resulting from local conditions in the 

catchment, are not discussed here. 



Fifteen triterpenyl acetates eluted in the 44-52 min tR range under our GC 

conditions (Fig. 1). The structures discussed are displayed together with the mass 

spectra in Fig. 2.  

The spectra of all triterpenyl acetates display ions at m/z 468, 453, 393 408 

([M+], [M+-15], [M+-60], i.e. loss of the acetate group, and [M+-60-15], respectively), 

with an intensity depending on the compound. Compounds 1, 2, 3 and 6 elute in the 44-

47 min tR range and are characterised by intense m/z 189, 203, 204 and 218 fragments 

attesting to a taraxerane, oleanane or ursane structure (Shiojima et al., 1992). 

Considering the relative retention times, 2, 3 and 6 were assigned as olean-13(18)-en-

3-yl acetate (-amyrin acetate), olean-12-en-3-yl acetate (-amyrin acetate) and urs-

12-en-3-yl acetate (-amyrin acetate) respectively, whereas the rather intense 

fragments at m/z 269, 329 and 344 in the spectrum of compound 1 attest to a tarax-14-

en-3-yl acetate (taraxeryl acetate) structure. 

The spectra of 10 and 11 are also characterized by intense fragments at m/z 189 

and 204. Their late elution time vs. 2 and 3, combined with the presence of an ion at m/z 

249, allowed identification of 10 as taraxast-20-en-3-yl acetate (-taraxasteryl acetate) 

and 11 as taraxast-20(30)-en-3-yl acetate (taraxasteryl acetate). This assignment was 

confirmed by comparison with authentic standards. 

Intense fragments at m/z 259 and 274 in the spectrum of 5 are diagnostic for 

D:B-friedo-oleanane structures (Shiojima et al., 1992), consistent with glutin-5-en-3-yl 

acetate (glutinyl acetate). 

The spectra of 4, 8, 9, 12, 13 and 15 are characterized by intense ion at m/z 229, 

289, 241 and 301, with a minor contribution from ions at m/z 255 and 393 (Fig. 2). 

These features are characteristic for D:C-friedo-ursen-3-ol and D:C-friedo-oleanen-3-



ol acetates (bauerenyl and multiflorenyl acetates, respectively) and are also found in 

swertenyl acetates (Shiojima et al., 1992). The use of authentic standards and relative 

retention times allowed assignment of 4 as bauer-8-en-3-yl acetate (isobauerenyl 

acetate), 9 as bauer-7-en-3-ol acetate (bauerenyl acetate), 8 as multiflor-7-en-3-yl 

acetate (multiflorenyl acetate), 12 as pichier-8-en-3-yl acetate (isopichierenyl acetate – 

no standard available), 13 as pichier-9(11)-en-3-yl acetate (pichierenyl acetate) and 15 

as pichier-7-en-3-yl acetate (swertenyl acetate). Finally, 7 was assigned as lup-20(29)-

en-3-yl acetate (lupeyl acetate) and 14 as gammacer-16-en-3-yl acetate 

(gammacerenyl acetate) on the basis of their mass spectra (Shiojima et al., 1992) and 

authentic standards.  

Taraxeryl acetate (1.10 µg/g soil), pichierenyl acetate (0.91 µg/g soil), glutinyl 

acetate (0.81 µg/g soil), taraxasteryl acetate (0.29 µg/g soil), -taraxasteryl acetate 

(0.07 µg/g soil) and isopichierenyl acetate (0.54 µg/g soil) were the most abundant 

compounds in the sample. In all the other samples, the concentration rarely reach 1 µg/g 

soil. For comparison, the concentrations in plants range from a few tens of µg to a few 

mg per gram dried plant, with a strong variability as to whether roots or aerial parts are 

considered (i.e. Bohlmann et al., 1981; Shiojima et al., 1989b; Lu et al., 1994; Tsao et 

al., 2008).  

 

4. Discussion 

4.1. Distribution of triterpenyl acetates in plants 

Our literature survey of triterpenyl acetates sources led to an inventory of > 460 

plants known to produce these compounds. Most information concerning Asteraceae 

(432 species among the 460) was extracted from the “Bohlmann Files” database 



(Jakupovic et al., 2011), which concerns all the natural components of this family. This 

information was completed with other data on the distribution of triterpenyl acetates in 

Asteraceae. Additional data on the occurrence of the compounds in other plant taxa 

allowed testing of the chemotaxonomical value of the different triterpenyl acetates. 

Depending on bibliographical source, the degree of detail is highly variable for the 

different taxa. The resulting database evidently suffers from bias linked to a more 

specific interest toward a given plant taxa or a given chemical family. Nevertheless, the 

inventory provides key information on the distribution of pentacyclic triterpenyl 

acetates in plants. 

The most commonly reported triterpenyl acetates are lupeyl acetates, comprising 

lup-20(29)-en-3-yl acetate, lup-19(20)-enyl acetate, tarolupenyl acetate [lup-19(21)-

en-3-yl acetate], epilupeyl acetate [epi-lup-20(29)-en-3-yl acetate], lactucenyl acetate 

(D-friedo-lup-14-en-3-yl acetate; Shinozaki et al., 2011) and neolupenyl acetate (lup-

12-en-3-yl acetate), the first being by far the most reported. Of the Asteraceae, 416 

species are reputed to contain lupeyl acetates (Jakupovic et al., 2011; Madrigal et al., 

1975), but this component is also present in various other families such as 

Amaranthaceae, Cucurbitaceae, Euphorbiaceae, Moraceae and Apocynaceae (e.g. 

Jewers and Manchada, 1970; Dutta and Ray, 1972; Woldu et al., 1988; Yoshizumi et 

al., 1998; Medeiros et al., 2001; Gasparetto et al., 2010). Taraxasteryl and -

taraxasteryl acetates were overwhelmingly detected in Asteraceae, with 153 and 29 

occurrences, respectively (Dutta and Ray, 1972; Madrigal et al., 1975; Jordon-Thaden 

and Louda, 2003; Jakupovic et al., 2011) and also in a few Apocynaceae (6 and 2 

occurrences, respectively; Jewers and Manchada, 1970; Thakur et al., 1984; Abbott et 

al., 1990; Sen et al., 1992; Medeiros et al., 2001; Zhang et al., 2006; Yin et al., 2007; 



Pereira et al., 2008). Bauerenyl acetate was found in three Asteraceae spp., four 

Apocynaceae and Euphorbia chrysocoma (Cava et al., 1967; Cicció-Alberti and Hoet, 

1981; Lao et al., 1983; Shi et al., 2005; Pereira et al., 2008; Jakupovic et al., 2011). 

Isobauerenyl acetate was only found in Euphorbia fischeriana (Liu et al., 2001) and in 

two Asteraceae spp.: Picris hieracioides (Shiojima et al., 1989a) and Centaurea aspera 

(Picher et al., 1985); -amyrin acetate occurs in three Asteraceae spp.: Vernonia cinerea 

(Misra et al., 1984), Inula britannica and Echinops echinatus (Jakupovic et al., 2011) 

and in the Phyllanthaceae sp., Phyllanthus polyanthus (Ndlebe et al., 2008). 

The biosynthesis of lupeyl, taraxasteryl, -taraxasteryl, bauerenyl, as well as 

that of isobauerenyl acetates therefore appears almost exclusively constrained to 

Asteraceae. The lack of data concerning -amyrin acetate does not allow discussion of 

its specificity. Remarkable is the detection of pichierenyl, isopichierenyl, gammacer-16-

en-3-yl and swertenyl acetates in our soil samples since these compounds have only 

been described in the roots of the hawkweed oxtongue Picris hieracioides (Shiojima et 

al., 1989a,b; 1995). 

Although taraxeryl and -amyrin acetates are also found in Asteraceae (9 and 29 

spp., respectively; Yang et al., 1994; Madrigal et al., 1975; Jakupovic et al., 2011), they 

were also detected in various taxa such as Apocynaceae, Aceraceae, Euphorbiaceae, 

Crassulaceae, Betulaceae and Moraceae (e.g. Dutta and Ray, 1972; Stevens et al., 

1994a; b; van Bergen et al., 1997; Vilegas et al., 1997; Wada et al., 1998; Pereira et al., 

2008). Multiflorenyl acetate was found in Cirsium sp. and Ixeris chinensis (Asteracae; 

Ulubelen and Berkan, 1977; Shiojima et al., 1994; Kataria, 1995; Jakupovic et al., 

2011), as well as in Tabernaemontana longipes (Apocynaceae; Cicció-Alberti and Hoet, 

1981), Euphorbia guyoniana (Euphorbiaceae; Haba et al., 2007), Sedum brevifolium 



and S. meyeri-johannis (Stevens et al., 1994a), and in Polypodium niponicum 

(Polypodiaceae; Ageta and Arai, 1983). -Amyrin acetate was described in 11 

Asteraceae spp. (Jakupovic et al., 2011), but also in various families such as 

Apocynaceae spp. [e.g. Tabernaemontana laeta (Medeiros et al., 2001), Crassulaceae 

(Stevens et al., 1994a), Sapotaceae (e.g. Pouteria tomentosa; Anjaneyulu, 1965), 

Moraceae (e.g. Antiaris africana; Okogun et al., 1976), or Balanophoraceae 

(Balanophora abbreviate; Yadagiri et al., 1984)]. Therefore, taraxeryl, -amyrin, -

amyrin and multiflorenyl acetates cannot be considered as being specific of Asteraceae. 

Finally, glutinyl acetate has not been reported in Asteraceae but has been in Kalanchoe 

daigremontiana (Crassulaceae; van Maarseveen and Jetter, 2009), Acer mandschuricum 

(Aceraceae; Ding et al., 2010), Erythrophleum fordii (Fabaceae; Tsao et al., 2008), as 

well as in Dorstenia sp. and Maquira coriacea (Moraceae; Woldu et al., 1988; Mitaine-

Offer et al., 2001).  

 

4.2. Comparison of soil triterpenyl acetate diversity with local plant sources 

According to the survey by Antonetti et al. (2006), 97 species of Asteraceae 

occur in the catchment of Lake Aydat, ten being reputed to produce triterpenyl acetates 

(Table 2): the greater burdock (Arctium lappa), the musk thistle (Carduus nutans), the 

creeping thistle (Cirsium arvense), the mouse-ear hawkweed (Hieracium pilosella), the 

cotton thistle (Onopordum acanthium, the bristly oxtongue (Picris echioides), the 

hawkweed oxtongue (Picris hieracioides), the goldenrod (Solidago virgaurea), the 

common sowthistle (Sonchus oleraceus) and the dandelion (Taraxacum sp.).  

Picris hieracioides, largely present in the area, appears as the most evident 

primary source of triterpenyl acetates in our samples because it is the only plant reputed 



to produce isopichierenyl, pichierenyl, swertenyl and gammacer-16-en-3-yl acetates 

(Shiojima et al., 1989a; b). Because it also produces -amyrin, -amyrin, lupeyl, 

bauerenyl, isobauerenyl, taraxasteryl and -taraxasteryl acetates (Shiojima et al., 1989a; 

b; 1995), it could also have contributed to these compounds in soil.  

Other local sources of -amyrin acetate from Asteraceae can alternatively be 

provided by Cirsium arvense (Tulloch and Hoffman, 1982) and Solidago virgaurea 

(Choi et al., 2004). Similarly, taraxasteryl acetate can be produced by up to seven 

species of Asteraceae encountered in the catchment (Arctium lappa, Carduus nutans, 

Cirsium arvense, Onopordum acanthium, Sonchus oleraceus and Taraxacum officinale; 

Jakupovic et al., 2011; Jordon-Thaden and Louda, 2003; Dutta and Ray, 1972; 

Khalilova et al., 2004; Hänsel et al., 1980).  -Taraxasteryl acetate is also synthesised 

by Cirsium arvense (Tulloch and Hoffman, 1982), whereas lupeyl acetates are found in 

Cirsium arvense, Hieracium pilosella, Picris echioides and Sonchus oleraceus (Tulloch 

and Hoffman, 1982; Jakupovic et al., 2011).  

Most of the triterpenyl acetate distribution in our soil sample can thus be 

explained by Asteraceae species found in the surrounding vegetation, except for 

taraxeryl, glutinyl, multiflorenyl and -amyrin acetates (Table 2). Because current 

knowledge of the distribution of these compounds does not allow explanation of their 

presence in our sample, alternative explanations can be invoked, each exemplified by 

one or two compounds: 

 

(i) Taraxeryl, glutinyl, -amyrin and multiflorenyl acetates may be produced by other 

Asteraceae spp. that occur in the catchment but have not yet benefitted from a complete 

phytochemical survey. Due to their belonging to genera in which other species are 



known to synthesize triterpenyl acetates, they are likely to do so as well (Table 2). In 

addition to Cirsium arvense, six Cirsium spp. have been described in the Lake Aydat 

catchment (C. acaule, C. dissectum, C. eriophorum, C. erisithales, C. palustre and C. 

vulgare; Antonetti et al., 2006), but whose pentacyclic triterpenyl acetate content has 

not been investigated. Because multiflorenyl acetate was described in Cirsium sp. and 

C. benedictus (Asteraceae; Ulubelen and Berkan, 1977; Kataria, 1995), it is tempting to 

suppose that one of the Cirsium spp. in the catchment could also produce multiflorenyl 

acetate. Similarly, because taraxeryl acetate was described in Artemisia dalailamae 

(Yang et al., 1994), it could possibly originate from Artemisia verlotiorum or A. 

vulgaris (Asteraceae), both reported in the area. Likewise, -amyrin acetate was 

described in Inula britannica, while another species of the genera, I. conyza, grows in 

the area and could therefore be the source of this compound in the soil sample. 

 

(ii) The compounds are produced by plants other than Asteraceae in the catchment. If 

the two preceding examples can help clarify the presence of taraxeryl, -amyrin and 

multiflorenyl acetates, they cannot account for the presence of glutinyl acetate. 

According to phytochemical data, this compound is only described in Erythrophleum 

fordii (Fabaceae: Tsao et al., 2008), Kalanchoe daigremontiana (Crassulaceae: van 

Maarseveen and Jetter, 2009), Acer mandshuricum (Aceraceae: Ding et al., 2010), 

Dorstenia sp. and Maquira coriacea (Moraceae: Woldu et al., 1988; Mitaine-Offer et 

al., 2001), none of these species or genus being found in the catchment except for Acer 

sp. (A. pseudoplatanus, A. campestre subsp. campestre and A. platanoides; Antonetti et 

al., 2006). In the area, the occurrence of Acer species could thus explain the presence of 

glutinyl acetate in the soil sample. 



 

 (iii) The compounds are produced by one or several of the already identified potential 

sources of triterpenyl acetates. Asteraceae spp. developed around Lake Aydat could 

synthesize distinct triterpenyl acetates distinct from those in the same species cited in 

the literature. Such a variability in chemodemes (i.e. biochemical races - plants from the 

same species producing distinct chemicals depending on location, environmental 

conditions or slight genetic differences) have, for example, been described for 

pentacyclic triterpene methyl ethers in New Zealand (Connor and Purdie, 1976). 

(iv) Pentacyclic triterpenes are reputed to suffer structural rearrangements and double 

bond migration during diagenesis that could affect the original diversity of compounds 

(e.g. Rullkötter et al., 1994). This phenomenon, well documented from laboratory 

experiments for compounds the oleanane series (Courtney et al., 1958; Coates et al., 

1967), is also observed in sedimentary records (Rullkötter et al., 1994). Precisely, 

friedel-3-ene, glutin-5-ene, multiflor-7-ene and taraxer-14-ene are progressively 

rearranged to olean-18-ene, olean-12-ene and finally olean-13(18)-ene isomers. Such 

rearrangements have also been reported for the hopane and fernane series (Nishimoto et 

al., 1968) in rock and sediment samples (Volkman et al., 1986; Paul et al., 1998). To our 

knowledge, the only studies about such reactions on triterpenyl acetates that carried out 

in the laboratory (Chatterjee et al.; 1976), showed the acid-induced transformation of 

taraxeryl acetate to -amyrin acetate, which could further be transformed to -amyrin 

acetate. To our knowledge, the stability of pichierenyl or swertenyl acetates in natural 

environments remains to be checked. Thus, in the absence of available evidence, the 

possibility of rearrangements of triterpenyl acetates in soils can be excluded, further 



work being needed to ascertain whether this conclusion could be extended to sediments, 

especially over a long duration. 

 

4.3. Potential palaeoenvironmental implications 

Few studies have reported the occurrence of triterpenyl acetates in soil and 

sediments (Logan et al., 1995; van Bergen et al., 1997; Xu et al., 2008; Oyo-Ita et al., 

2010; Trendel et al., 2010). According to Oyo-Ita et al. (2010), this lack can be 

explained by the procedures generally applied, saponification entailing loss of the 

acetate group. These authors also underline the possibility of natural hydrolysis of the 

ester bond during riverine transport. They therefore attribute the presence of triterpenyl 

acetates in sediments to a local source. Despite the few reports, no origin was proposed 

for the compounds, probably because, except for lupeyl acetates, those detected 

(taraxeryl, germanicyl, -amyrin, -amyrin acetates) were not of direct taxonomical 

interest. To our knowledge, our work constitutes the first report on bauerane, 

taraxastane, swertane and pichierane acetates in soil, which can be unequivocally linked 

to Asteraceae.  

Asteraceae are defined as meadow and pasture species (semi-open to open 

habitats) that colonize disrupted environments and are able to invade fallow land 

developed on abandoned arable land (Cronquist, 1980; Bouby and Billaud, 2001, 2005; 

Antonetti et al., 2006). Their pollen is frequently used as an anthropogenic indicator 

because it is found mainly in settlements next to cultivated fields, in mowed or grazing 

places, or in ruderal communities (i.e. growing in rubbles; Hicks, 1992; Court-Picon et 

al., 2006). Thus, the detection of triterpenyl acetates in soil and sediments could attest to 



both open vegetation and major perturbation in the catchment, under natural but more 

obviously anthropogenic influence.  

The compounds could constitute diagnostic tracers of agriculture and other 

human activities. For example, the presence of various Asteraceae seeds in a Late 

Bronze Age (905-869 BC) settlement on the shore of Lake le Bourget was related to 

their ethnobotanical properties, their consumption as human food or livestock fodder, 

dye and/or medicine (Bouby and Billaud, 2001; 2005). Triterpenyl acetates thus extend 

the panel of biomarkers for past flora that can attest, in favourable cases, to human 

activities such as miliacin for millet (Jacob et al., 2008), other pentacyclic triterpene 

methyl ethers for Gramineae (Ohmoto et al., 1970; Jacob et al., 2005; Zocatelli et al., 

2010), iso- and anteiso- monomethyl alkanes for culinary and aromatic herbs from the 

Lamiaceae family (Huang et al., 2011) and more generally those reported by Evershed 

(2008) with respect to archaeology. As with these other biomarkers, triterpenyl acetates 

can constitute a reliable tool for tracing the presence of plants of economic interest. 

They could reinforce other widely used techniques that allow detection of the presence 

of Asteraceae in any sedimentary or archaeological context: for example, for 

palynological studies that suffer from the under representation of Asteraceae in pollen 

records because of their dispersal mode (Andrieu et al., 1997).  

 

5. Conclusions 

Neutral lipids in soils developed under pasture and meadow exhibit a wide array 

of pentacyclic triterpene structures bearing an acetate group at C-3. Among these, C-3 

acetates with bauerane, taraxastane, swertane and pichierane skeletons are reported in 

natural archives for the first time. An exhaustive review of the phytochemical literature 



allowed us to unequivocally attribute some of the triterpenyl acetates to a single 

vegetation source within the Asteraceae family. This specificity confers to these 

compounds a high potential as tracers of Asteraceae – and thus of open environments - 

for palaeoenvironmental studies.  
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Table captions 

 

Table 1 

Inventory of triterpenyl acetates in soil samples with peak number, retention time and 

mass spectral data. 

Peak  

Ret. 

time (tR 

min) 

Name Trivial name M+ 
Significant MS fragments 

(m/z decreasing abundance) 

1 44.90 Tarax-14-en-3-yl acetate Taraxeryl acetate 468 204,189,269,218,329,344,393,453,468 

2 45.15 
Olean-13(18)-en-3-yl 

acetate  
-Amyrin acetate  468 189,205,218,204,203 

3 45.28 Olean-12-en-3-yl acetate -Amyrin acetate 468 203,218,189,257,323,393,408,453,468 

4 45.57 Bauer-8-en-3-yl acetate Isobauerenyl acetate 468 229,289,241,257,341,393,409 

5 46.23 Glutin-5-en-3-yl acetate Glutinyl acetate 468 259,274,393,408,453,468 

6 46.25 Urs-12-en-3-yl acetate -Amyrin acetate 468 218, 189, 203, 257, 393, 408, 468, 453 

7 46.28 
Lup-20(29)-en-3-yl 

acetate 
Lupeyl acetate 468 189,204,218,297,355,453,468,393 

8 47.62 Multiflor-7-en3-yl acetate Multiflorenyl acetate 468 205,229,241,301,262,289 

9 48.08 Bauer-7-en-3-yl acetate Bauerenyl acetate 468 229, 289,241,393,453,468 

10 48.40 
Taraxast-20-en-3-yl 

acetate 

-Taraxasteryl 

acetate 
468 189,204,249,408,468,393 

11 48.70 
Taraxast-20(30)-en-3-yl 

acetate 
Taraxasteryl acetate 468 189,218,204,232,249,408,262,468 

12 49.11 Pichier-8-en-3-yl acetate Isopichierenyl acetate 468 289,229,241,301,393,453,468 

13 49.73 
Pichier-9(11)-en-3-yl 

acetate 
Pichierenyl acetate 468 289,301,241,229 

14 49.86 
Gammacer-16-en-3-yl 

acetate 

Gammacerenyl 

acetate 
468 187,191,327,408,468 

15 51.63 Pichier-7-en-3-yl acetate Swertenyl acetate 468 289,229,241,301,393,453,468 

 



Table 2 

Known occurrences of triterpenyl acetates found in soil sample from Lake Aydat 

Catchment.a,b  
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Reference 

(a) Asteraceae species  

Arctium lappa L.           X      Jakupovic et al., 2011 

Carduus nutans           X      Jordon-Thaden and Louda, 2003 

Cirsium arvense   X   X X   X X      Dutta and Ray, 1972; Tulloch and Hoffman, 1982; Jakupovic et al., 2011 

Hieracium pilosella L.       X          Jakupovic et al., 2011 

Onopordum acanthium           X      Khalilova et al., 2003, 2004; Shoeb et al., 2007 

Picris echioides       X          Jakupovic et al., 2011 

Picris hieracioides   X X  X X  X X X X X X X Shiojima et al., 1989a; b; 1995; Jakupovic et al., 2011 

Solidago virga-aurea   X              Choi et al., 2004 

Sonchus oleraceus L.      X X    X      Jakupovic et al., 2011 

Taraxacum officinale                     X         Hänsel et al., 1980 

Total (a)       X X   X X   X X X X X X X   

(b) Asteraceae genera 

Artemisia (2)  X  X   X X  X  X      Lao et al., 1983; 1984; Yang et al., 1994; Jakupovic et al., 2011 

Cirsium (7)       X     X X X   X X         
Dutta and Ray, 1972; Ulubelen and Berkan, 1977; Tulloch and Hoffman, 
1982; Jakupovic et al., 2011 

Inula (1)     X         X       X         Ahmad and Ismail, 1991; Jakupovic et al., 2011 

Total (a)+(b)   X X X X   X X X X X X X X X X   

(c) Other taxa 

Acer    X  X            van Bergen et al., 1997; Ding et al., 2010 

Euphorbia   X   X X X   X X X   X         
Dutta and Ray, 1972; Ahmad and Fizza, 1986; Liu et al., 2001; Shi et al., 
2005; Haba et al., 2007 

Total (a)+(b)+(c) X X X X X X X X X X X X X X X   

 

a (a) Asteraceae species in Lake Aydat catchment; (b) Asteraceae genera in which 

triterpenyl acetates have been described; b numbers in parentheses refer to number of 

species of a given genera described in the catchment according to Antonetti et al. 

(2006). 



Figure captions 

Fig. 1. Example of distribution of triterpenyl acetates in ketone/acetate fraction from a 

soil sample from catchment of Lake Aydat, under pasture. a TIC); b m/z 

189+203+204+218 chromatogram; c m/z 259+274 chromatogram; d m/z 229+289 

chromatogram. The MS and tR data and assignment of compounds 1 to 15 are given in 

Table 1. The spectra are provided in Fig. 2. 

 



Fig. 2. Mass spectra and structure of compounds in soil sample. Numbers refer to Table 

1 and Fig. 1. Mass spectra of glutinyl, -amyrin and lupeyl acetates were recorded for 

the standard compound because of GC co-elution with the soil sample. 

 


