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Abstract. We present an original method for measuring the 

intrinsic dissolution rate of gypsum. We use a simple microfluidic 

setup, with a gypsum block inserted between two polycarbonate 

plates, which is dissolved by water. By changing the flow rate and 

the distance between the plates, we can scan a wide range of Péclet 

and Damköhler numbers, characterizing the relative magnitude of 

advection, diffusion and reaction in the system. We find the 

dissolution to be unstable, with a formation of a characteristic 

fingering pattern. The dissolution rate can then be calculated from 

the initial wavelength of this pattern. Alternatively, it can also be 

estimated from the time it takes for the gypsum chip to get 

completely dissolved near the inlet channel. The method presented 

here is general and can be used to assess the dissolution rates of 

other minerals. 

1 Introduction 

One of the main challenges in geochemical modeling is the determination of the rates of 

reaction of minerals. When a mineral is subjected to a flow of dissolving fluid, the 

dissolution reaction is not only kinetically controlled by the rate of detachment of the ions 

from the reactive surface, but also by the ability of the aqueous solution to transport 

efficiently the products of the reaction away from the surface. This strong coupling between 

chemistry and transport complicates the extraction of the intrinsic reaction rate from the 

measurable data. The measurements of gypsum dissolution rate by Raines and Dewers [1] 

show well the difficulty associated with the measurement and with the diffusion boundary 

layer. They used a rotating disk set-up combined with a mixed flow reactor and proposed in  
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opposition to the commonly used linear dissolution law, a quadratic law with an intrinsic 

reaction rate of 3.5×10−3 mol/m2/sec. But their result has been criticized [2, 3] for issues in 

the methodology and especially in the estimation of the diffusion boundary layer. Indeed, 

they used the thickness of this layer as a fitting parameter for their reaction law and 

obtained values, which are much lower than the theoretical ones [2]. The difficulty of the 

measurement explains why the literature actually exhibits numerous values for the intrinsic 

reaction rate of gypsum dissolution.  For example, the 2004 USGS report [4] cites Jeschke 

et al. [3] with a value of 1.6×10−3 mol/m−2/sec obtained using both the rotating disk and 

batch experiment, but also cites Raines and Dewers [1], four years after Dreybrodt 

criticisms [2]. A very successful attempt to reconcile literature was put in place by 

Colombani [5]. Considering that the discrepancy in literature stems from the 

hydrodynamics associated with different experimental set-ups and the estimation of the 

diffusion boundary layer, he reassessed all the literature data and came up with the 

consolidated value of 7×10−5  mol/m−2/sec, which is consistent with his result obtained by 

interferometry (5×10−5  mol/m−2/sec for the (010) cleavage plane of a single crystal of 

gypsum). This conclusion is also corroborated by the experiments of Mbogoro et al. [6], 

who found a value of (5.7±1.4)×10−5 mol/m−2/sec. 

In this article, we present an original method for measuring the intrinsic reaction rate of 

mineral dissolution. Instead of monitoring the concentration of ions in the fluid and 

calculate the reaction rate through the diffusion boundary layer – as was done before in the 

literature – we take a different approach and calculate the dissolution rate from the pattern 

carved by reactive fluid in a dissolving mineral. 

2 Methodology 

Let us begin by shortly recapitulating gypsum reactivity. Gypsum dissolves in water 

according to: 
2 2

4 2 4 2( ) ( ) ( ) 2 (2 )CaSO H O s Ca aq SO aq H O l       (1) 

Following the transition state theory, the intrinsic reaction rate i.e. the rate of detachment of 

atoms from the solid can be written as 0 ( )1diss rsr k a   where k0 is the intrinsic reaction 

rate, sr is the specific reactive surface area, a is the activity of the solid (taken equal to 1), η 

is a parameter and Ω is the saturation defined as 2 2
24

2 /H OCa SO
Ka a a  .  Here, ax stands for 

the activity of species X, and K is the thermodynamic equilibrium constant. Expressing the 

activities through the molalities and the activity coefficients, we obtain the following 

expression for the saturation 2 2
24

2 /H OCa SO
m Km a    where 2 2

4Ca SO
      is the mean 

activity coefficient. Since the solubility of gypsum is quite low, the ionic strengths even at 

saturation are relatively moderate and we can consider that the solution is following an 

ideal behavior [5]. This means that the mean activity coefficient can be approximated by 

unity as well as the activity of water (solvent). As a result, assuming as in [4, 5] that the 

reaction rate is linear with molality, we have the following relation for the reaction rate, 

assuming that molalities can be expressed as the volumetric concentration (density variation 

of water is also negligible): 

 diss r satr ks c c         (2) 

where 0  / satk k c . The reactive surface area in our experiment is actually considered to 

be equal to the geometric surface area as argued below. 

The microfluidic set-up used in the experiments has been described in [7]. It consists of 

two disks of 6.5 cm diameter and 1 cm thickness made of polycarbonate. The bottom plate 

contains a rectangular indentation (3.3 cm x 3.8 cm x 0.5 mm) engraved using the 
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MSG4025 CNC micro-milling machine. This indentation serves as a cast for the plaster that 

is used as a soluble material in our system. The top plate engraved by the same machine 

contains a hierarchical cascade of channels connected to large inlet/outlet reservoirs (4.5 cm 

x 5 mm x 2 mm). Their large sizes help in keeping the uniform pressure along the edges of 

the system. In between the two plates a spacer made out of the ultra-thin PET-based 

double-coated tape of a thickness of h0=100μm (ORABOND 1394TM from ORAFOL 

GmbH), h0=70μm (ORABOND 1398) or h0=210μm (ORABOND 1397TM) creates the 

aperture of the cell. Experiments were performed at room temperature. The cast was 

prepared with a 60 % ratio (w/w) of water to plaster. This yields an average porosity of the 

block of φ = 50 %. A special care during the preparation has been put on the saturation of 

the medium with water in chemical equilibrium with the gypsum. Before the injection, the 

chip is placed in vacuum within a beaker of saturated water in order to remove any air 

bubbles which might have remained in the pore space. Sealing is finally ensured with a 

silicone joint on the sides of the system. After sealing, we connected the syringe pump 

(Harvard Apparatus PHD2000) to the chip to inject pure water. We recorded the 

experiment with a UI 1550LE-C-HQ CCD camera IOS, Germany), acquiring photographic 

images of the system every 100 sec. In order to ensure homogeneous intensity of light over 

the system we used a circular fluorescent illuminator. 

 

 

Fig. 1. The microfluidic setup used in the experiments (left) and the resulting dissolution 

patterns (right). 

Since the hydraulic resistance of the gypsum is much larger than the hydraulic 

resistance of the slot between the top cover and the plaster layer, we can safely assume that 

the whole flow is actually circulating on top of the soluble layer and does not penetrate in 

the porous medium. Therefore, the reactive surface area that the fluid sees is then only the 

top surface of the soluble layer. Since the roughness is relatively small because of the 

polishing step, we can assume that the reactive surface area can be approximated by the 

geometrical surface area. 

The aperture of the fracture is several orders of magnitude smaller than its lateral 

dimensions, thus the mathematical description of the flow and transport in the fracture can 

be obtained by depth-averaged equations [7, 8, 9]. In particular, the aperture (h) increase 

due to the dissolution of the soluble layer is governed by the following equation: 

eff

1
( ),r sat

h
k s c c

t





 
 


      (3) 

where 
0

1
( , , ) ( , , , ) ( , , , )

h

c x y t x y z t c x y z t dz
h

  v is the flow-averaged concentration field,  υ 

denotes the molar volume of gypsum and φ - its porosity. Next, 

eff ( )
1 2 /

k
k h

kh DSh



      (4) 
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is an effective reaction rate which accounts for the diffusive slowdown of a reaction as the 

aperture increases. In the above, D is the diffusion coefficient. and the Sherwood number 

Sh measures the dimensionless diffusive flux transporting the products of reaction away 

from the reactive surface. Two different parameters control the behavior of the system: the 

Péclet number Pe =vh0/D, which characterizes the relative magnitude of convective and 

diffusive transport, and the Damköhler number Da =k/v relating the surface reaction rate to 

the rate of convective transport. Note that in the experiment we can control both the 

flowrate (v) and the initial aperture (h0) and thus vary Pe and Da values independently.  

The dissolution of fractures proceeds nonuniformly – planar dissolution front is unstable 

and soon the flow becomes spontaneously localized in pronounced dissolution channels 

(“wormholes”). This is a manifestation of reactive infiltration instability, caused by a 

positive feedback between the reaction and fluid flow: a faster reaction locally leads to a 

permeability increase, which speeds up the local flow allowing the reactant to penetrate 

deeper inside the fracture. The initial wavelength of the instability is uniquely determined 

by the Peclet and Damköhler number [9]. Measuring the characteristics of the dissolution 

pattern allows then to trace back the characteristics of the dissolution and calculate the 

intrinsic reaction rate, k. In order to get the main wavelength of the dissolution front, the 

front is extracted from the pictures and a Fast Fourier Transform is applied. The tallest peak 

in the spectrum is then considered as the main wavelength of instability. Agreement 

between predicted wavelength and measured one is very good, usually below 10%. 

The reaction rate can be estimated in yet another way – by measuring the time needed to 

erode the whole layer of soluble material in the fracture at a point close to the inlet (inlet 

dissolution time). Indeed, if we consider the erosion equation (3), we can calculate the inlet 

dissolution time as: 
2 2

max 0 max 01

sat

h h h h
T

c k DSh





  
  

 
      (5) 

where hmax is the maximum aperture (equal to the sum of the initial aperture and the 

thickness of the soluble layer). 

3 Results and discussion 

We have conducted 16 dissolution experiments, with different flow rates (in the range of 

0.25 to 2 ml/hr) and different initial apertures (in the range of 70 to 210 μm). The values of 

the reaction rate estimated based on the experimental data are given in Fig. 2. Some of the 

experiments (no. 2, 3, 4 and 8) have been conducted several times, which allowed us to 

estimate the statistical error associated with a given method. The average value of the 

intrinsic reaction rate was estimated to be 
5 2

0 0.4) 10 mol / m.8 s(6k    (for the 

assessment of reaction rate through instability wavelength) and 
5 2

0 1.5) 10 mol / m.7 s(4k    (for the estimate of k0 through inlet dissolution time). The 

lower value of the latter estimate is due to the assumption adopted in deriving Equation (5) 

that the incoming concentration is zero. In reality, there is a small but nonzero 

concentration of the calcium ions at the inlet, due to the upstream diffusion. This results in 

the decrease of the dissolution speed at the inlet, which is consistent with our results. 

Currently in the literature, several values for the dissolution rate of gypsum coexist. 

Based on our experiments we can conclude that the actual intrinsic reaction rate of the 

dissolution of gypsum is very close to the one obtained by Colombani [5] and his 

reassessment of the data in the literature, and to the value obtained by Mbogoro et al. [6]. 

Other values reported in the literature [1-3,5] are almost two orders of magnitude higher. 

As argued by Colombani, such a significant overestimation of the reaction rate comes from 
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the underestimation of the specific reactive area – he advocates using the BET surface area 

instead of geometric surface area for the normalization of the dissolution rates. 

Summarizing, we have devised a novel method of estimating the reaction rate based on 

the initial wavelength of the reactive infiltration instability in a dissolving microfluidic 

chip. Importantly, the method can be relatively easily adapted to other reactions and 

minerals. Indeed, gypsum was used in these experiments because of the simplicity 

associated with its chemistry and moulding, but nothing prevents the use of other minerals 

which can be used as compacted powder and inserted in the indentation of the bottom plate. 

Two precautions have to be taken though: one should avoid solvents which react to 

polycarbonate (like acetone) and one should avoid the use of metal in the construction of 

the cell since it is likely to react through oxidation with the ionic solution. Importantly, the 

method is not limited to linear kinetic laws, since the instability wavelength can also be 

estimated in a nonlinear case [8]. Thanks to the above, we are confident that the method 

proposed here would provide a reliable and efficient alternative method for measuring the 

intrinsic reaction rate of minerals. 

 

Fig. 2. The values of the reaction rate estimated based on the experimental data. Different 

numbers refer to the experimental runs with different value of flow rate and/or initial aperture. 

The letters (a, b, …..) refer to the repetitions of the same experiment. 
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