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Abstract

Microbial transformation of arsenic species andrtimeraction with the carbon cycle play a
major role in the mobility of this toxic metalloid the environment. The influence of simple
or complex organic substrates on arsenic bio-okidatvas studied using two bacterial
strains: one — tharsenivoransstrain of Thiomonas delicata- is able to use Aslll as sole
energy source; the othéterminiimonas arsenicoxydans not. Experiments were performed
at two Aslll concentrations (75 and 2 mg/L). At /L As, for both strains, expression of
aioA gene decreased when yeast extract concentratiorrassesd from 0.2 to 1 g/L. At 2
mg/L As, the presence of either yeast extract ampk (succinate or acetate) organic
substrates in the medium during bacterial growttretsed the Aslll-oxidation rate by both
strains. When added specifically during oxidatiestt yeast extract but not simple organic
substrates seems to have a negative effect on édtlhation. Taken together, results confirm
the negative influence of simple or complex orgagubstrates on the kinetics of microbial
Aslll oxidation and suggest that this effect resdfbm different mechanisms depending on
the type of organic substrate. Further, for thstfirne, the influence of a complex organic

substrate, yeast extract, ainA gene expression has been evidenced.

Keywords. Betaproteobacteriastrains; organic substrates; arsenite oxidat@pA gene

expression
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1. Introduction
High concentrations of the toxic metalloid arsgi#is) in soils may be the result of pollution
from mining, industrial activities or agriculturgractices, or they may be due to the
geochemical background. In the case of mining aethllrgical activities, As is released as
a by-product in the waste (tailings) or from drgeaalleries [1].
Biological arsenite (Aslll) oxidation processesupt®d to iron oxidation and precipitation,
can be used advantageously for effective bioremiediaf mine water [1,2] and, where soils
are concerned, to attenuate the environment tgxisinhce arsenate (AsV) is less toxic than
Aslll. This oxidizing reaction is of significant elogical importance as it leads to the
stabilization of arsenic in the environment sincg/As more readily adsorbed than Aslll by
carrier phases such as iron or manganese oxidgs [3,
Bacteria able to oxidize Aslll and reduce AsV haeen found in many terrestrial and aquatic
environments [5-10]. Some bacteria possess genewira) oxidation as well as genes
conferring the ability to reduce AsV to AsNia the Ars resistance system. Although this
AsV-reduction detoxification intracellular reactismenergy consuming, it is widely found in
microbial communities because Aslll thus obtainedecreted out of the cell, or is
sequestered as reduced glutathione (GSH) or dif@rconjugates, for example in yeast [11].
Another way in which bacteria derive energy froreesuic is via the dissimilatory reduction of
AsV into Aslll by anaerobic respiration vihe Arr system, using AsV as a final electron
acceptor [12]. The Aslll oxidation function in bagt is encoded by thao operon [13],
which comprises up to six genesdB, aioA, aioS aioR, aioX andaioE). Two of them encode
the two Aslll oxidase enzyme subunigsoB, which encodes the small subunit containing the
Rieske [2Fe-2S] cluster; armloA, which encodes the large subunit containing a yatal
molybdopterin and a cluster [3Fe-4S]. These twaegemere originally identified and isolated

from two B-proteobacteria Alcaligenes faecali§14] and Herminiimonas arsenicoxydans
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[15]. The other fourio genes correspond to the following functioasiS encodes a histidine
kinase sensogioR a transcriptional regulatoajoX an oxyanions-ligand protein, aatbE an
Aslll oxidation electron transporter [16]Santini and van den Hoven [17] studied a
chemolithoautotrophic bacterium, strain NT26 thetives energy from Aslll oxidation but is
not able to grow on minimal medium in the presentearsenic when itioA gene is
inactivated. This experiment demonstrated the disarsenic as an energy source by some
bacteria. Many other bacteria have been identéigdarrying genes encoding Aslll oxidase
[18, 19]. This is the case for theTHiomonas (T.) arsenivorans’strain, a
chemolithoautotrophic, acid-tolerant and mobile r&#aegative rod [5,20]. It has been proven
elsewhere that this bacterium, by oxidizing Ashita AsV, can bothcreate energy and
detoxify the environment [5]. Some publications gest a very significant effect of organic
substrates on bacterial Aslll oxidation in the pres of oxygen. Challan-Belval et al. [21]
have shown that addition of yeast extract substiytieduces the rate of Aslll oxidation by
bacteria organized in biofilms. Bachate et al. [@Bserved a decrease in enzymatic Aslll-
oxidase activity of two pure strains as the towhaentration of organic substrates (acetate
and yeast extract) in the growth medium increatedcure et al. [23] observed a negative
effect of organic substrates input, with concemiret from 0.08 to 0.4 g of carbon/L,
corresponding to 0.2 to 1 g/L yeast extract, on As#ll-oxidation rate constant of soll
microbial communities. It therefore appears thagaaic substrates slow down the
transformation of Aslll into AsV by bacteria in aéed conditions, and may decrease the
retention of As in the environment. Nandre et 24][showed that the presence of acetate in
the growth medium induced a lowaioA gene expression in diverse bacterial strainsatsdl
from tannery effluent and soils. Organic substrates/ inhibit theaio encoded oxidation
processes, because bacteria would preferentialliabokze simple or complex organic

substrates providing more energy than Aslll. Orgauabstrates may also induce a decrease
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in Aslll bioavailability by complexation reaction@5]. Because of these complexation
reactions, if Aslll oxidation was mainly or exclusly a detoxification mechanism, the
presence of a high concentration of organic sutestreay have a protective effect against
Aslll, inducing an attenuation of the detoxificatiprocess.

However, to date, the influence of the concentraind nature of different organic substrates
on biological Aslll oxidation has not been studsdtematically.

The objective of this work was to study the inflaenof two types of organic substrates,
complex or simple organic substrates, on the giilitoxidize Aslll of twop-proteobacteria
strains presenting different metabolisms. One e$¢h a strain dFhiomonas delicateeferred

to as T. arsenivorans” — uses Aslll as energetic substrate; the other,
Herminiimonas (H.) arsenicoxydansloes not. The hypothesis to be tested trough this
experiment was that bacterial Aslll oxidation coudd inhibited differently by organic
substrates when Aslll is used or not as energyceok common complex organic substrate
was chosen: yeast extract, a reference complexiargabstrate in laboratory studies that can
promote the growth of both strains. In parallelcdese the strains do not use any common
simple organic substrate, two simple organic sabstr were selected; acetate fdr
arsenicoxydansnd succinate forT. arsenivorans’ Two sets of experiments were carried
out. First, Aslll oxidation andioA gene expression were studied in batch growth axpets
with a relatively high concentration of arsenicoaling strain growth with Aslll as sole
energy source: 75 mgiL(or 1 mM) Aslll. Then, Aslil oxidation kinetics we determined at
an initial Aslll concentration more compatible witie concentrations commonly found in the

pore water of polluted soils (0.5—-2 mg.Rslll, [26]).



124 2. Materialsand methods
125
126 2.1.Bacterial strains

127 Two Aslll-oxidizing microorganisms carrying amioA gene were selected as
128 models;Thiomonas arsenivorans(DSM 16361), a mixotrophic and optional autotrophic
129 strain able to grow on Aslll and using only the IAsixidation reaction as an energy source;
130 Herminiimonas arsenicoxydaf®SM 17148), a heterotrophic strain perfectly elcéerized
131 [27].

132 These two strains belong to the subdivisionpefProteobacteria “T. arsenivorans”was
133 isolated by BRGM [5]H. arsenicoxydan$28] was kindly provided for this study by the
134 laboratory of Molecular Genetics, Genomics, Micodbgy (GMGM) of Louis Pasteur
135  University (Strasbourg, France), where the straas golated.

136

137 2.2. Culture media

138 "T. arsenivoranswas maintained in minimal CAsO1 medium [29] wit®0 mg.L* Aslll,
139 and H. arsenicoxydanswhich is a heterotrophic bacterium, in the LuBertani (LB)
140  medium, then sub-cultured in CAsO1 medium amendéu Ivg.L™* yeast extract before each
141  experiment.

142 The CAsOLl1 liquid medium is a mixture of 500 mL afch of two solutions. Solution A
143 contains 0.5 g KEPQO,, 0.5g KHPO, 0.5g NaCl, 0.05g (NH.SO, and 1 mL of trace
144  elements in solution [29]. The pH of this solutaas adjusted to 6.0 before autoclaving for
145 subsequent growth ofl arsenivorans; and to 7.2 for growth dfl. arsenicoxydansSolution
146 B (500 mL) contains 0.1 g Cadnd 0.1 g MgSQ Both solutions were autoclaved separately

147 and mixed after cooling. 10 mL of a solution ofdQ* Aslll (As,0s), filtered at 0.22 pm,
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were added to the culture medium. A concentratddtisn of 50 g/L yeast extract was
prepared, filtered at 0.22 um and then stored@t 4°

2.3. aioA gene expression with 75 myAslI|
The aim of the first experiment was to determireittiluence of a complex organic substrate,
yeast extract, on the expression of &eA gene during the growth of the bacteria, in the
presence of 1 mM Aslll, a concentration that pregicenough energy for the growth of
“Thiomonas arsenivorahg batch conditions [5].
“T. arsenivorans”inoculum was cultivated in 20 mL of CAsO1 mediyniH(6.0) containing
75 mg.L! Aslll without organic substrate, in a cottonedm glass bottle. The inoculum of
H. arsenicoxydansvas prepared in CAsO1 medium (pH 7.2) containifigng.L* Aslll and
supplemented with 1 glyeast extract. Two CAsO1 culture media containiegpectively,
0.2 and 1 g.I* yeast extract were inoculated, at pH 7.2Homrsenicoxydanand pH 6.0 for
“T. arsenivorans’ All flasks were incubated aerobically at 25°C endtirring. At t=0 and
then twice per day, bacterial growth was monitobgdenumerating bacterial cells with a
Thoma cell under an optical microscope and by ddaswe measurements at 620 nm. 1.5 mL
of each culture were sampled in a 2 mL sterile atidse and centrifuged for 10 min at
5,000 x g. Pellets were frozen in liquid nitrogemdastored at -80°C until RNA/DNA co-
extraction. In parallel, 2 mL samples were filtes#d.22 microns in sterile flasks and kept at
4°C until further AsV analysis. Abiotic controlsgpared in the same conditions showed that

Aslll was not oxidized abiotically [23].

2.4.Aslll oxidation kinetics
The aim of the second experiment was to quantig itifluence of simple and complex
organic substrates on the Aslll-oxidation rate whencentrations of Aslll are so low that the

kinetics must be carried out over a short time, less than one hour. For this purpose, a
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standardized cell concentration was used, allowiagjer comparison of the results obtained
in the different conditions. Acetate was used Horarsenicoxydangs it is the only simple
organic substrate used as the sole source of canbdrenergy by this strain [27]. F6F.
arsenivorans’], which does not use acetate, succinate was cheisee, it is a simple organic
substrate used efficiently by this strain [5]. Yteastract was chosen as a complex organic
substrate used by both strains, allowing comparedarsults with a common substrate. Each
strain was sub-cultured (1% volume) into 100 mLC#sO1 medium containing 2 mg-Lof
Aslll at the appropriate pH (pH 6.0 fof * arsenivorans; pH 7.2 forH. arsenicoxydansand
different concentrations of organic substrate: 008 or 1 g.[* yeast extract for both strains;
0.05, 0.2 or 1 g.t of succinate for T. arsenivorans”or acetate foH. arsenicoxydans
Incubations were carried out aerobically for 3 day25°C under static conditions, to avoid
the formation of cell aggregates (oxygen was notiting). For all of the sub-culture
conditions (0.05, 0.2 and 1 g'Lof organic substrates), two conditions were comgpan
triplicate to determine Aslll oxidation kineticshe liquid phase of the bacterial suspension
that oxidized 2 mg/L Aslil was either deprived afjanic substrate, or contained 0.2 §df
organic substrate.

Appropriate sub-culture volumes were sampled ateti@ of the growth phase in order to
adjust the final cell densities in the suspensimnsalues close to 2 x i@ells.mL*. After
centrifugation (30 minutes at 8,500 x g), pelletsravwashed with 20 mL of arsenic-free
CAsO1 medium. After a second centrifugation (30 utes at 8,500 x g), pellets were re-
suspended in 130 mL of arsenic-free CAsO1 mediuith ar without 0.2 g.[* of organic
substrate. 20 mL of the resulting bacterial susipasswere distributed in 60 mL sterile
cottoned flasks.

At t=0, 400 pL of 100 mg.E Aslll solution were added to the flasks to obticoncentration

of 2 mg.L* Aslil, mixed immediately and sampled for bactedalls counting and for arsenic
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speciation. The flasks were incubated at 25°C, ustiic conditions, and Aslll oxidation
was monitored over 45 minutes, with 2.5 mL-sampkwgry 15 minutes. The samples were
filtered at 0.2 pum in sterile microtubes immedatafter sampling and were promptly diluted
tenfold in sterile ultrapure water and stored af 40r subsequent As speciation. Blank
experiments were prepared in the same conditiotioout cells. The specific Aslll-oxidation
rate was calculated as the ratio of linear Asllidation over 45 minutes and the cell
concentration measured at the start of the expaetilftieis concentration did not significantly

vary during the 45 minutes of the experiment).

2.5Speciation and quantification of arsenic

Aslll and AsV were separated using resins (AG® 1R@sin, Cat. # 140-1431, Biorad) as
described in [2], and a fraction of the sample remg in the tube was used for total As
guantification. Quantification of As in tubes caniag AsV, Aslll and total As was carried

out by electrothermal atomic absorption spectropimetry (Varian SpectrAA 2202).

2.6. RNA and DNA co-extraction and cDNA synthesis

RNA and DNA co-extractions were performed on calllgis stored at -80°C, using the
NucleoSpin® RNA 1l kit (Macherey-Nagel) in accoradan with the manufacturer's
recommendations, including a separate DNA elutiep svith the NucleoSpin® DNA/RNA
Buffer Set (Macherey-Nagel). The column was theacgtl on a new 1.5 mL collection tube
and the manufacturer's protocol was continued thiéhdigestion of DNA followed by RNA
elution. An additional digestion step was neededetmove residual DNA from the RNA
extract. To that end, extracted RNA was mixed witL of buffer and 1 pL of Turbo DNase
(2 U; Ambion, ThermoScientific) and then incubatg®7°C for 10 min. Finally, a new RNA

purification step was performed with the Nucleo®iRNA Il kit (Macherey-Nagel). The
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RNA was finally eluted in 60 uL and assayed by Bio®meter spectrophotometer
(Eppendorf). The quality of extracted RNA was cleztkn 1% agarose gel (25 min at 100 V)
and by calculation of the AdyAz3 and AsdAzso ratios. They were stored in LoBind
microtubes (Eppendorf), at -80°C until the revers@scription PCR (RT-PCR) step. The
reaction mixture used for the RT-PCR step consisfetl uL iScript™ reverse transcriptase
(BioRad), a variable volume of RNA extract (so asobtain 50 ng per tube), 4 uL 5X ™
iScript reaction mix (BioRad), and ultrapure nuskedree water (gsp 20 upL). RT-PCR

consisted of 5 min at 25°C, 30 min at 46°C, 5 nti@52C and hold at 15°C.

2.7. aioA gene and transcripts quantification byCiP

The aioA gene involved in Aslll oxidation and its transd¢sipvere quantified by quantitative
real-time PCR (gPCR), respectively from DNAs and cDNAs olkgdirirom cultures of T.
arsenivorans” and H. arsenicoxydans g°PCR was carried out using m4-1F forward
(GCCGGCGGGGGNTWYGARRAYA) and m2-1R reverse
(GGAGTTGTAGGCGGGCCKRTTRTGDAT) primers, as designad[30] and applied in
[31]. The expected product size was 110 bp. Eaohegp was used at a concentration of
0.3 uM, with 100 ng of T4GP32 (MP Biomedicals), 1X 1Q SYBR Green Supermix
(BioRad) and a final volume of 20 uL. The programswun on a CFX Connect (BioRad) and
consisted of an initial denaturation at 95°C fanid, followed by 50 cycles of 95°C for 10 s,
54°C for 20 s, 72°C for 10 s, and a data acquisistep at 80°C for 30 s. At the end, a
melting curve analysis was performed by measurewfethie SYBR Green | signal intensities
during a 0.5°C temperature increment every 10@anf65°C to 95°C. Negative template
controls confirmed the absence of contaminant DRK-point serial decimal dilution of a
linearized plasmid carrying thid. arsenicoxidans aioAyene was used to generate a linear

calibration curve of threshold cycle versus a nundfgene copies ranging from ‘1 10.

10
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All measurements were run in duplicates. Result®w&pressed as ratiosabA transcripts

relative to theaioA gene &ioA mRNA/DNA ratio).

2.8. Statistical analysis

Statistical analysis were performed with XLSTAT 20Inormality of the data was first
verified using the tests of Shapiro-Wilk, Anderdoarling, Lilliefors and Jarque-Bera. Then,
significance of differences between results obthiaedifferent substrate concentrations was
evaluated using an Anova parametric test. Diffeesrimetween modalities were analysed with

a confidence interval of 95% using the methodsukely and Dunnett.

3. Results

3.1.Expression of aioA gene during bacterial growttiia presence of 75 mg-IAslII
Arsenite oxidation activity in batch conditions wasnitored together with the detection and
guantification ofaioA gene expression and growth of the pure strains. FAg shows that
expression of thaioA gene by T. arsenivorans”was mainly detectable during early growth
(Fig. 1C). MaximumaioA gene expression was measured at 24 h, correspotaiagout
60 mg.L!, i.e. 80% of oxidized Aslll (Fig. 1E), and tendedbe higher in the presence of
0.2 g.L'* than 1 g.[! of yeast extract (averageoA mRNA/DNA ratios were, respectively,
0.032 and 0.0015 in the presence of 0.2'cahd 1 g.L* yeast extract). However, due to a
large variability between replicates, the differerabserved between ratios obtained at 0.2
and 1 g/L yeast extract was not statistically gigant. Expression of th@ioA gene for
H. arsenicoxydanwas detectable throughout the duration of the exyat (Fig. 1B). As for
“T. arsenivorans; maximum expression was detected in the early trgkrig. 1D) and Aslll
oxidation phase (t=5 h), and corresponds to 2080 ™(26-40%) of oxidized AsllI (Fig.

11
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1F). Here, in the maximuraioA gene expression phase, expression was signifycgrehter
in the presence of 0.2 gilthan 1 g.[* of yeast extract (at t=5h, averagieA mRNA/DNA
ratios were 1.6 x Idand 3.3 x 19 in the presence of 0.2 g'land 1 g.[* of yeast extract,

respectively).

For T. arsenivoransAsV concentrations were always similar whatewer ¢concentrations of
yeast extract (Fig 1E), whereas fér arsenicoxydansAsV concentration was slightly higher
with 1 g.L* yeast extract at t=5h (Fig. 1F). No significantVAsxidation was observed in
sterile media (Fig. 1G). For both strains, bacteiawth was higher at 1 githan at 0.2 g.L

! of yeast extract (Fig. 1C and 1D). Consequentig, lower the yeast extract concentration,

the higher the specific Aslll oxidation.

3.2. Oxidation kinetics with 2 mgtLAslI|
Cells at the end of the growth phase, that gredifegrent concentrations of a simple organic
substrate or yeast extract oxidized AslIl in a minin medium containing 2 mg*Lof AsllI
and no organic substrate (Fig. 2) (cell growth wagligible throughout the 45 min duration
of the Aslll-oxidation kinetics). In the blank expeents without cells, AsV concentration
remained lower than the quantification limit. Exaation of the kinetics shows that oxidation
of Aslll was more efficient with cells that grew greast extract (Fig. 2B and 2D) than on
simple substrates (Fig. 2A and 2C), and more efficwith “T. arsenivorans(Fig. 2A and
2B) than withH. arsenicoxydangFig. 2C and 2D)H. arsenicoxydanslid not grow well on
acetate, thus the rates obtained with this straiheasimple substrate were very low (Fig. 2C).
The results expressed as specific oxidation r&tigs 8) confirm these observations: for both
strains, a significant decrease of specific Askidation rates was observed when yeast

extract concentration in the growth medium incrdaggig. 3A). The same trend was

12
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297 observed for T. arsenivorans’grown on succinate as a simple organic substFage §B).H.

298 arsenicoxydanslid not grow well in the presence of acetate,altfh the trend is less clear.
299 However, for this strain, the specific Aslll oxidat rate was lower at 1 g (5.6.10"

300 pg/cell/min) than at 0.05 g'lof acetate (2.18 pg/cell/min).

301

302 These specific rates were compared with those mddaivhen Aslll-oxidation kinetics were
303 determined in the presence of organic substraigs4Fand Table 1). A negative effect of the
304 addition of yeast extract was observed systeméti¢dat both strains, whatever the pre-
305 culture condition: rates decreased by 13.6% to%%dr “T. arsenivoransand by 10% to
306 25.9% forH. arsenicoxydandn contrast, no effect on Aslll-oxidation rateasmdetected with
307 simple organic substrates (acetate or succinate).

308

309

310 4. Discussion

311 A negative effect of organic substrates on badtéséi-oxidation activity was observed with
312  two pure strains presenting contrasting metabolismes able to use Aslll as an energy source
313 (“T. arsenivorany, the other not K. arsenicoxidans This study has shown, for the first
314 time, the negative effect of a complex organic tnalbs, yeast extract, on the expression of the
315 aioA gene encoding the catalytic subunit of the AsKidase in the Aio system. So far, the
316 main factor studied influencing the expression lo¢ &ioA gene was the presence and
317 concentration of arsenic Ill or V. Expression oé #ioA gene is induced by the presence of
318 As in most Aslll-oxidizing bacteria [32] includirggveral strains belonging to tlhieiomonas
319 genus [33]. However, in some strain®A gene expression is also observed in the absdnce o
320 arsenic:Thiomonassp. 3AS [7],Ralstoniasp. 22 [34] andAgrobacterium tumefaciensA

321 strain, for which Aslll oxidation seems regulated quorum-sensing [35], and for some
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strains ofPseudomona$36, 37]. InH. arsenicoxydansthe expression of genes in th®
operon is related to the presence of Aslll ancheoéxpression of genes involved in motility
[38]. Our results are in accordance with those ahdite et al. [24], who observed a higher
expression ofRioA genes under acetate starvation condition in sesteains belonging to
different genera, for one single time of incubat{8rh), in presence of 1.33 mM of As. Here,
the phenomenon was observed with a complex orgastrate (yeast extract) and correlated
with early growth phase.

The specific Aslll-oxidation rates obtained as pairtthis study are of the same order of
magnitude (Table 2) as the,) of Aslll oxidation determined fovariovoraxsp. 24 [39] and
Agrobacterium albertimagr\OL15 [40].

The specific oxidation rate was lower when celésl lbeen grown with a high substrate
concentration. Several authors have observed thgbles or complex organic substrates
influence the activity of Aslll-oxidizing bacteri&antini et al. [41] reported that the Aslll-
oxidizing strain NT-26, able to use Aslll for engrghowed strong Aslll-oxidase activity
when it was grown without any organic substrate, dddition of yeast extract resulting in a
decrease in Aslll-oxidizing activity. Challan-Belveat al. [21] observed that Aslll oxidation
by a bacterial consortium containind@.“arsenivoran§ grown as biofilm in microplate
experiments with pozzolana, was drastically de@@as the presence of yeast extract,
dropping from 100% to 34%. This result was expldibg the supply of nutrients present in
yeast extract, including electron donors other tiatll. Bachate et al. [22] studied the
influence of various parameters (temperature, pH gmowth medium) on Aslll-oxidation
rate by bacterial cells washed and re-suspend@&8 img.L* Aslil-containing medium. They
followed Aslll oxidation by these cells for 1 hourhe strains were heterotrophic bacteria,
phylogenetically related to the gen®&ardetellaandAchromobacterThese authors observed

that the growth conditions have an effect on AeHidation rate: the latter was maximal
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when the strains were cultured with only 0.4 hyleast extract, decreased by 25 to 50% with
1 g.L'* yeast extract, and by 85% with 0.4 §.bf yeast extract and 20 mM (1.18 g)Lof
acetate. They also observed a decrease in the atizy#yslll-oxidase activity of both strains
with the increase of total organic substrate cotraéion in the growth medium. The present
results are consistent with those of Bachate g23], although the studied strains belong to
different genera and come from very different emwiments: T. arsenivorans and H.
arsenicoxydanswere isolated from a mining site and a wastewdteatment plant
respectively, whereas the origin of strains of Baetand al. [22] was a garden soil.

Here, bacterial specific Aslll-oxidation rate weadvarsely affected for both strains by the
presence of simple or complex organic substrategawth medium. This phenomenon was
observed both at relatively high Aslll concentratio (75 mg.[}) and at the lower
concentrations of arsenic (2 mg)L.commonly detected in groundwater or soil poreewan
polluted sites. This negative effect on Aslll oxida was observed with a complex organic
substrate (yeast extract), as well as with at s simple organic substrate that do not
provide nitrogen, i.e. succinate, suggesting that dbserved phenomenon is not linked to
nitrogen metabolism but rather to energy or carbmurce. Thus for bothTl. arsenivorang a
mixotrophic strain using Aslll as energy sourced &h arsenicoxydansa heterotrophic
strain, arsenic oxidation and metabolism of organigstrates seem to be linked.

Several hypotheses may explain the negative effiéabrganic substrates oaioA gene
expression and the bacterial specific Aslll-oxidatirate. Nandre et al. [24] hypothesized
cross protection in the carbon starvation stressrgrh nutrient deprived cells show higher
resistance against other stresses. However, theagohenon could hardly explain results
obtained with bacteria such as."arsenivoransusually growing in mineral or oligotrophic
media. In bacteria using Aslll as an energy sousaeh as NT-26 orT. arsenivoran the

phenomenon could be related to competition betw&slii and organic substrates as an

15
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372 energy source: in the presence of high energy-gnagiorganic molecules, cells do not have
373 to acquire energy from the Aslll oxidation reactiand therefore express thmA gene more
374 weakly. In bacteria unable to gain energy from AsKidation (like H. arsenicoxydansand
375 in which the ability to oxidize Aslll can be a detfication mechanism [41], the presence of a
376 high concentration of organic substrate may hapetective effect against Aslll.

377  Another hypothesis would be linked to complexatieactions that may occur between As
378 and some compounds present in complex organic ratgst and thus reduce Aslll toxicity
379 and/or bioavailability. Here, the results of expents at 2 mg.t As suggest that the
380 complex organic substrate (i.e. yeast extract) hasegative effect on Aslll oxidation,
381 considering the comparison of kinetics with cefissuspension in solution with or without
382 yeast extract. This phenomenon may be related eoctimplexation of Aslll with certain
383 components of yeast extract such as thiol groupanuho acids that would make As less
384 bioavailable. These complexation reactions woultlguzur with simple organic substrates.
385 Direct binding of Aslll to cysteine residues of mims has been observed [43]. Another
386 possible explanation of the negative effect of $&mgr complex organic substrates on Aslll
387 oxidation may be that the availability of energyises would favor the AsV-reducing Ars
388 arsenic resistance system [12] because this resestarocess consumes energy. Regarding
389 the Ars resistance system, most studies have fdcosearsB and ACR3 genes carriers
390 [35,44,45] whose expression was shown to be cdetidly the concentration of arsenic and
391 phosphate. Further studies should focus on detatromof the effect of organic substrates on
392 Aslll complexation, and on the expression of @éhgeC gene encoding an AsV reductase in the
393 Ars resistance system, which, in parallel with #e system, could influence the balance of
394 speciation of inorganic arsenic in aerated or naerophilic environments.

395
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Legendsto figures

Figure 1. Expression @ioA gene represented as th®A mMRNA/DNA ratio during growth
of T. arsenivorans(A) and H. arsenicoxydangB) in the presence of 75 mg-LAslIl. ;
Evolution of cells concentrations @t arsenivorangC) andH. arsenicoxydangD) during
this experiment. Evolution of AsV concentration lwifl. arsenivorans(E) and H.
arsenicoxydangF) during this experiment, and in sterile cultaredia incubated in the same
condition (G). Significance of differences betweandalities 0.2 and 1 glyeast extract

was evaluated using an Anova parametric test (detamaterial and methods section).

Figure 2. Kinetics of Aslll oxidation in minimum rdizim containing 2 mg/L Aslll and no
organic substrate. Cells were previously grownrespnce of 0.05, 0.2 or 1 g/L of organic
substrate. A: T. arsenivoranson succinate; B: T. arsenivoranson yeast extract; C: H.
arsenicoxydans on acetate; D: H. arsenicoxydangeast extract. Error bars represent the

standard error of the mean (triplicates).
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Figure 3. Specific Aslll-oxidation rates of kinetiof Aslll oxidation in minimum medium
containing 2 mg/L Aslll and no organic substrafe; T. arsenivorangandH. arsenicoxydans
grown in presence of yeast extract; B: arsenivoransgrown in presence of succinate.
Significance of differences between modalities waaluated using an Anova parametric test

(details in material and methods section).

Figure 4. Kinetics of Aslll oxidation in minimum rd&im containing 2 mg/L Aslll and 0.2
g/L of organic substrate. Cells were previouslyvgran presence of 0.05, 0.2 or 1 g/L of
organic substrate. AT. arsenivoranson succinate; B: T. arsenivoranson yeast extract;
C: H. arsenicoxydansn acetate; DH. arsenicoxydansn yeast extract. Error bars represent

the standard error of the mean (triplicates).

24



Table 1. Influence of the presence of 0.2 g.L™ organic substrate on specific Aslll oxidation
rate during the kinetics: variation of Aslll oxidation rates between 0 and 0.2 g.L™ organic
substrates conditions, with pre-cultures grown under different conditions. Significance of

variation was tested by ANOVA parametric test.

Variation (%) of AslIl oxidation rates between 0 and 0.2 g/L
organic substrates during the kinetics

Strain Pre-culture conditions

T. arsenivorans 0.05 g/L succinate +7.3
T. arsenivorans 0.2 g/L succinate +3.0 (NS)
T. arsenivorans 1 g/L succinate +26.3 (NS)

H. arsenicoxydans 0.05 g/L acetate -11.5 (NS)
H. arsenicoxydans 0.2 g/L acetate NI
H. arsenicoxydans 1 g/L acetate +106.1
NI: not identified (not observable AsllI oxidation)
NS: not significant

Organic substrate (0.2 g/L) within the kinetics medium has a negative effect on Asll|
oxidation rate

Positive Organic substrate (0.2 g/L) within the kinetics medium has a positive effect on Asll|
effect oxidation rate




Table 2. Comparison of the specific oxidation rates obtdimethe present study with rates

reported in the literature

Specific rate

Bacterial strains : References
(ug/L/min per cell)

Comamonas sp. ASR11 3.6 x 18 [46]
Pseudomonas sp. ASR1 7.35x 18 [46]
Variovorax sp. 34 V max 8.85 x 189 [38]

H. arsenicoxydans 0.5t0 9.5 x 18° Present study
Agrobacterium albertimagni AOL15 V max 1.36 x 18¢ [39]

T. arsenivorans 1to3x 10 Present study
Bordetella sp. SPB-24 V max 1.46 x 0 [22]

Variovorax sp. MM-1 V max 9.23 x 18 [47]
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